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Abstract In this paper, we derive explicit determinants, inverses and eigen-
pairs of periodic tridiagonal Toeplitz matrices with perturbed corners of Type
I. The Mersenne numbers play an important role in these explicit formulas
derived. Our main approaches include clever uses of the Schur complemen-
t and matrix decomposition with the Sherman-Morrison-Woodbury formula.
Besides, the properties of Type II matrix can be also obtained, which benefits
from the relation between Type I and II matrices. Lastly, we give three algo-
rithms for these basic quantities and analyze them to illustrate our theoretical
results.
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1. Introduction

The main research object of this paper is an n× n matrix A = (ai,j)
n
i,j=1, which is

called a periodic tridiagonal Toeplitz matrix with perturbed corners of type I and
defined as follows

A =



α1 2β 0 · · · 0 γ1

0 −3β
. . .

. . . 0

0 β
. . .

. . .
. . .

...

...
. . .

. . .
. . . 2β 0

0
. . .

. . . − 3β 0

αn 0 · · · 0 β γn


n×n

, (1.1)
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where α1, αn, γ1, γn, β are complex numbers with β 6= 0. Let În be the n×n ”reverse
unit matrix”, which has ones along the secondary diagonal and zeros elsewhere. Let
A be defined as in (1.1). A matrix of the form B := ÎnAÎn is called a periodic
tridiagonal Toeplitz matrix with perturbed corners of type II. In this case, we say
B is induced by A. It is readily seen that if A is a periodic tridiagonal Toeplitz
matrix with perturbed corners of type I if and only if its transpose AT is a periodic
tridiagonal Toeplitz matrix with perturbed corners of type II.

General tridiagonal matrices appear not only in pure linear algebra, but also in
many practical applications, such as, computer graphics [1], image denoising [26]
and partial differential equations [9, 34, 35, 40], etc. One takes the one-dimensional
linear hyperbolic equation

∂u(x, t)

∂t
+ v

∂u(x, t)

∂x
= g

considered by Holmgren and Otto [13] as an example to study certain matrices
occur in discretized partial differential equations, where 0 < x ≤ 1, t > 0, u(0, t) =
f(−at), u(x, 0) = f(x), g = (v − a)f ′. Here v and a are positive constants and f is
a scalar function with derivative f ′. Let k and h denote the time step and spatial
step respectively. The linear hyperbolic equations discretized based on trapezoidal
rule in time and center difference in space, respectively, whose coefficient matrix is
a tridiagonal matrix with perturbed last row [2]:

C =



4 α 0 · · · · · · 0

−α
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

...
. . . − α 4 α

0 · · · · · · 0 − 2α 4 + 2α


n×n

,

where α = vk/h. On the other hand, some parallel computing algorithms are
also designed for solving tridiagonal systems on graphics processing unit (GPU),
which are parallel cyclic reduction [14] and partition methods [39]. Recently, Yang
et al. [41] presented a parallel solving method which mixes direct and iterative
methods for block-tridiagonal equations on CPU-GPU heterogeneous computing
systems, while Myllykoski et al. [27] proposed a generalized graphics processing unit
implementation of partial solution variant of the cyclic reduction (PSCR) method
to solve certain types of separable block tridiagonal linear systems. Compared to
an equivalent CPU implementation that utilizes a single CPU core, PSCR method
indicated up to 24-fold speedups.

Many studies have been conducted for tridiagonal matrices [10,16–19,43]. Typ-
ical results for their inverses include Usmani’s algorithm [38] based on rudimentary
matrix analysis, El-Mikkawy and Atlan’s two symbolic algorithms [5,6] based on the
Doolittle LU factorization of the k-tridiagonal matrix, Jia et al.’s algorithms [20,21]
based on block diagonalization technique, and so on. There are also some studies
on the inverse of nonsingular periodic tridiagonal matrices [7, 22]. Tim and Em-
rah [37] used backward continued fractions to derive the LU factorization of periodic
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tridiagonal matrix and then derived the explicit formula for its inverse. Dow [4] dis-
cussed some special Toeplitz matrices including periodic tridiagonal Toeplitz matri-
ces, while Shehawey [8] generalized Huang and McColl’s [15] work and put forward
the inverse formula for periodic tridiagonal Toeplitz matrices. Furthermore, some
authors have done some research on the eigenpairs of tridiagonal matrices or peri-
odic tridiagonal matrices based on the method of symbolic calculus for difference
equations [3, 11,42].

The rest of the paper is organized as follows: Section 2 illustrates the importance
of the Mesenne numbers in the main results. Section 3 describes the detailed deriva-
tions of the determinants, inverses and eigenpairs of periodic tridiagonal Toeplitz
matrices with perturbed corners of Type I. Specifically, the formulas on repre-
sentation of the determinants and inverses of these typies matrices in the form of
products of Mersenne numbers and some initial values. Our main approaches in-
clude clever uses of the Schur complement [44, p.10] and matrix decomposition with
Sherman-Morrison-Woodbury formula [12]. Besides, we calculate the eigenpairs of
periodic tridiagonal Toeplitz matrices with perturbed corners based on the eigen-
pairs of the symmetric tridiagonal Toeplitz matrix [23]. Furthermore, the properties
of the periodic tridiagonal Toeplitz matrices with perturbed corners of Type II can
be also obtained. Section 4 presents three algorithms for these basic quantities and
analyze them to illustrate our theoretical results. The final conclusions are given in
Section 5.

2. Mersenne Numbers and Applications

In this section, we introduce the Mersenne number Mn, which satisfies the following
recurrence [32]:

Mn+1 = 3Mn − 2Mn−1 where M0 = 0, M1 = 1, n ≥ 1; (2.1)

M−(n+1) =
3

2
M−n −

1

2
M−(n−1) where M0 = 0, M−1 = −1

2
, n ≥ 1. (2.2)

It is known that the nth Mersenne number has the Binet formula Mn = 2n − 1.
Mersenne numbers are ubiquitous in combinatorics, number theory, group theory,
chaos, geometry, physics, etc [25]. More specifically, Mersenne numbers play an
important role in digital signal processing, which stems from arithmetic operations
modulo Mersenne numbers can be implemented relatively simply in digital hard-
ware [28]. Especially, Mersenne Number Transforms are often used to deal with
problems of digital filtering and convolution of discrete signals [31, 36]. For exam-
ple, Nussbaumer proposed some digital filtering using pseudo-Mersenne transforms
in [29] and pseudo-Fermat number transforms in [30].

It is clearly seen that the elements in the diagonal and superdiagonal of matrix A
satisfy the recursive relationship of the Mersenne sequence. Those elements chosen
in the diagonal and superdiagonal reflect the neat applications of Mersenne numbers.
Besides, the structure of the matrix itself determines some basic quantities of the
matrix such as determinant and inverse. Therefore, the Mersenne numbers play a
huge role in our main results.
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3. The Determinants, Inverses and Eigenpairs For-
mulas of Periodic Tridiagonal Toeplitz Matrices
with Perturbed Corners

In this section, we derive explicit formulas for the determinants, eigenpairs and in-
verses of periodic tridiagonal Toeplitz matrix with perturbed corners. Main effort is
made for working out those for periodic tridiagonal Toeplitz matrix with perturbed
corners of type I, since the results for type II matrices would follow immediately.

Theorem 3.1. Let A = (ai,j)
n
i,j=1 (n ≥ 3) be given as in (1.1). Then

detA = (−β)n−2
(
α1γn − αnγ1

)
Mn−1, (3.1)

where Mn−1 is the (n− 1)th Mersenne number.

Proof. Define a circulant matrix

ρ = (ρi,j)
n
i,j=1, (3.2)

where

ρi,j =


1, i = n, j = 1,

1, j = i+ 1,

0, otherwise.

Clearly, ρ is invertible and

det ρ = (−1)n−3. (3.3)

Multiply A by ρ from right and then partition Aρ into four blocks:

Aρ =



γ1 α1 2β 0 · · · · · · · · · 0

0 0 −3β 2β 0 · · · · · · 0

0 0 β −3β 2β 0 · · · 0

...
... 0

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . . 0

...
...

...
. . .

. . .
. . . 2β

0 0
...

. . .
. . . − 3β

γn αn 0 · · · · · · · · · 0 β



=

 A11 A12

A21 A22

 .

(3.4)

Since A22 is upper triangular, its determinant is clear which is

detA22 = βn−2. (3.5)

As we assume β 6= 0, so A22 is invertible. It is known [45, Lemma 2.5] that
A−1

22 = (âi,j)
n
i,j=1, where

âi,j =

{
Mj−i+1

β , i ≤ j,
0, i > j,
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and Mi is the ith Mersenne number.
Next, taking the determinants for both sides of (3.4) and by [44, p.10], we get

det(Aρ) = detA22 det(A11 −A12A
−1
22 A21). (3.6)

Therefore,

detA =
detA22 det(A11 −A12A

−1
22 A21)

det ρ
. (3.7)

To find detA, we need to evaluate the determinant of (A11 − A12A
−1
22 A21). From

(3.4), we have

A11 −A12A
−1
22 A21 =

 γ1 − 2Mn−2γn α1 − 2Mn−2αn

Mn−1γn Mn−1αn

 ,

and so

det
(
A11 −A12A

−1
22 A21

)
=Mn−1

(
αnγ1 − α1γn

)
. (3.8)

Finally, applying (3.3), (3.5) and (3.8) to (3.7), we get the determinant of A, which
completes the proof.

Theorem 3.2. Let A = (ai,j)
n
i,j=1(n ≥ 3) be given as in (1.1) and assume A to be

nonsingular. Then A−1 = (ăi,j)
n
i,j=1, where

ăi,j =



γn
α1γn−αnγ1

, i = 1, j = 1,
2Mn−2γn−γ1

Mn−1

(
α1γn−αnγ1

) , i = 1, j = 2,

0, i ∈ {2, 3}, j = 1,

− Mn−i

Mn−1β
, i ∈ {2, 3}, j = 2,

3ăi,j−1 − 2ăi,j−2 + 1
β , i ∈ {2, 3}, j = i+ 1,

− γ1
γn
ăi,1, 1 ≤ i ≤ n− 1, j = n,

−αnă1,j+βăn−1,j

γn
, i = n, j ∈ {1, 2},

3ăi−1,j−ăi−2,j

2 ,

{
4 ≤ i ≤ n− 1, j ∈ {1, 2};
4 ≤ i < j ≤ n− 1.

3ăi,j−1 − 2ăi,j−2,

{
i ∈ {1, 2, 3}, i+ 2 ≤ j ≤ n− 1;

3 ≤ j ≤ i ≤ n,

(3.9)

and Mi (i = n− 3, n− 2, n− 1) is the ith Mersenne number.

Proof. Let A−1 = (ăi,j)
n
i,j=1 and the identity matrix I = (ei,j)

n
i,j=1, where

ei,j =

{
1, i = j,

0, otherwise.
(3.10)

For nonsingular A, we get from A−1A = I that

ei,j =

{
2ăi,j−1β − 3ăi,jβ + ăi,j+1β, 1 ≤ i ≤ n, 2 ≤ j ≤ n− 1,

ăi,1γ1 + ăi,nγn, 1 ≤ i ≤ n, j = n.
(3.11)
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Similarly, according to AA−1 = I, we get

ei,j =

{
ăi−1,jβ − 3ăi,jβ + 2ăi+1,jβ, 1 ≤ j ≤ n, 3 ≤ i ≤ n− 2,

ă1,jαn + ăn−1,jβ + ăn,jγn, 1 ≤ j ≤ n, i = n.
(3.12)

Based on (3.10), we get from (3.11) that

ăi,j =

3ăi,j−1 − 2ăi,j−2,

{
3 ≤ j ≤ i ≤ n;

i ∈ {1, 2, 3}, i+ 2 ≤ j ≤ n− 1,

− γ1
γn
ăi,1, 1 ≤ i ≤ n− 1, j = n

(3.13)

and ă2,3 = 3ă2,2 − 2ă2,1 + 1
β , ă3,4 = 3ă3,3 − 2ă3,2 + 1

β .

Similarly, from (3.12), we get that

ăi,j =


−αnă1,j+βăn−1,j

γn
, i = n, j ∈ {1, 2},

3ăi−1,j−ăi−2,j

2 ,

{
4 ≤ i ≤ n− 1, j ∈ {1, 2};
4 ≤ i < j ≤ n− 1.

(3.14)

Based on the above analysis, we need to determine six initial values, that is,
ăi,j (i ∈ {1, 2, 3}, j ∈ {1, 2}), for the recurrence relations (3.13) and (3.14) in order
to compute the inverse of A. The rest of the proof is devoted to evaluating these
particular entries of A−1.

We decompose A as follows

A = β∆ + LK, (3.15)

where

∆ =



− 2Mn

Mn+1
2 0 · · · 0 2n

Mn+1

1 −3
. . .

. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . − 3 2

2
Mn+1

0 · · · 0 1 − 2Mn

Mn+1


n×n

,

L = (lT1 , l
T
2 ), K =

k1

k2

 with

l1 = (α1 +
2Mnβ

Mn+1
,−β, 0, · · · , 0, αn −

2β

Mn+1
)1×n,

l2 = (γ1 −
(Mn + 1)β

Mn+1
, 0, · · · , 0,−2β, γn +

2Mnβ

Mn+1
)1×n,

k1 = (1, 0, · · · , 0)1×n, k2 = (0, · · · , 0, 1)1×n,

and Mi the ith Mersenne number as before.
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It could be verified that ∆−1 = 1
3 (tij)

n
i,j=1, where

tij =

{
Mj−i+1, 1 ≤ i ≤ j ≤ n,
−2Mj−i−1, 1 ≤ j < i ≤ n,

and M−m is given in (2.2) for m = 1, 2, . . ..

Applying the Sherman-Morrison-Woodbury formula [12, p.50] to (3.15) gives

A−1 = (β∆ + LK)−1 =
1

β
∆−1 − 1

β2
∆−1L(I +

1

β
K∆−1L)−1K∆−1. (3.16)

Now we compute each component on the right side of (3.16).

Multiplying respectively ∆−1 by K and L from left and right,

K∆−1 =
1

3

µ1

µ2

 , (3.17)

∆−1L =
1

3

(
ξT1 ξT2

)
, (3.18)

where

µ1, µ2, ξ1 and ξ2 are row vectors,

µ1 = (Mj)
n
j=1, µ2 = (−2Mj−n−1)nj=1,

ξ1 =
(
ξ1,1 − 3β, ξ2,1, · · · , ξi,1, · · · , ξn,1

)
,

ξ2 =
(
ξ1,2, · · · , ξi,2, · · · , ξn−1,2, ξn,2 − 3β

)
,

ξi,1 = Mn−i+1αn − 2M−iα1, i = 1, 2, · · · , n,
ξi,2 = Mn−i+1γn − 2M−iγ1, i = 1, 2, · · · , n.

Then multiplying (3.18) by K
β from the left and further adding I, we have

I +
1

β
K∆−1L =

1

3β

 α1 +Mnαn γ1 +Mnγn

−2M−nα1 + αn −2M−nγ1 + γn

 . (3.19)

Computing the inverse of the matrices on both sides of (3.19), we obtain

(
I +

1

β
K∆−1L

)−1
=

3β

−2M−nγ1 + γn −γ1 −Mnγn

2M−nα1 − αn α1 +Mnαn


Mn+1Mn−1(α1γn − αnγ1)

.

Multiplying the previous formula
(
I + 1

βK∆−1L
)−1

by ∆−1L from the left and by

K∆−1 from the right, respectively, yields

G = ∆−1L
(
I +

1

β
K∆−1L

)−1
K∆−1 = (gij)

n
i,j=1, (3.20)
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where

gij =



(
4Mj−1M−(n+1)γ1−Mj−nMn+1γn

)
β2

Mn+1M1−n

(
α1γn−αnγ1

) +
Mjβ

3 , i = 1, 1 ≤ j ≤ n,

2
(

2Mn−iMjM−(n+1)−M1−iMj−n−1Mn+1

)
β

3Mn+1M1−n
, 2 ≤ i ≤ n− 1, 1 ≤ j ≤ n,(

Mj−nMn+1αn−4Mj−1M−(n+1)α1

)
β2

Mn+1M1−n

(
α1γn−αnγ1

) − 2Mj−n−1β
3 , i = n, 1 ≤ j ≤ n.

From (3.16) and (3.20), we have

(ăi,j)
n
i,j=1 =

1

β
∆−1 − 1

β2
(gij)

n
i,j=1, (3.21)

where

ăi,j =
Mj−i+1

3β
− gi,j
β2

, 1 ≤ i ≤ j ≤ n, (3.22)

ăi,j = −2Mj−i−1

3β
− gi,j
β2

, 1 ≤ j < i ≤ n. (3.23)

By (3.22), we compute,

ă1,1 =
γn

α1γn − αnγ1
, ă1,2 =

2Mn−2γn − γ1

Mn−1

(
α1γn − αnγ1

) , ă2,2 = − Mn−2

Mn−1β
.

By (3.23), we compute,

ă2,1 = ă3,1 = 0, ă3,2 = − Mn−3

Mn−1β
, ăn,1 =

αn
αnγ1 − α1γn

, ăn,2 =
2Mn−2αn − α1

Mn−1

(
αnγ1 − α1γn

) .
This completes the proof.

Remark 3.1. The formulas (3.22) and (3.23) would give an analytic formula for
A−1. However, there is a big advantage of (3.9) from computational consideration
as we shall see from Section 3.

Theorem 3.3. Let A = (ai,j)
n
i,j=1 (n ≥ 3) be given as in (1.1). The eigenpairs

(λj , ϑj), j = 1, . . . , n, of A are determined by the following formulas

λj =


γn+α1+

√
(γn−α1)2+4αnγ1

2 , j = 1,
γn+α1−

√
(γn−α1)2+4αnγ1

2 , j = 2,

−3β + 2
√

2β cos (j−2)π
n−1 , j = 3, 4, · · · , n,

(3.24)

and

ϑj = ρφηj , j = 1, 2, · · · , n, (3.25)

where ρ is the same as in (3.2),

φ = diag
(

1, 1, 1, 2−
1
2 , 2−

2
2 , · · · , 2−

n−3
2

)
,

ηj = (η1,j , · · · , ηn,j)T ,
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η1 =

(
γn − α1 +

√
(γn − α1)2 + 4αnγ1

2γ1
, 1, 0, · · · , 0

)T
,

η2 =

(
γn − α1 −

√
(γn − α1)2 + 4αnγ1

2γ1
, 1, 0, · · · , 0

)T
,

ηk,j =


√

2
n−1 sin (k−2)(j−2)π

n−1 , 3 ≤ k, j ≤ n,
2αnβη3,j+2−n−3

2 (λj−α1)βηn,j

(λj−α1)(λj−γn)−αnγ1
, k = 2, 3 ≤ j ≤ n,

2(λj−γn)βη3,j+2−n−3
2 γ1βηn,j

(λj−α1)(λj−γn)−αnγ1
, k = 1, 3 ≤ j ≤ n.

Proof. Let φ = diag
(

1, 1, 1, 2−
1
2 , 2−

2
2 , · · · , 2−n−3

2

)
and consider the similarity

transformations of A,

φ−1(ρ−1Aρ)φ =



γn αn 0 · · · · · · 0 2−
n−3
2 β

γ1 α1 2β 0 · · · · · · 0

0 0 −3β
√

2β 0 · · · 0

...
...
√

2β
. . .

. . .
. . .

...
...

... 0
. . .

. . .
. . . 0

...
...

...
. . .

. . .
. . .

√
2β

0 0 0 · · · 0
√

2β −3β


=

A′11 A
′
12

A′21 A
′
22

= τ,

(3.26)

where ρ is the same as in (3.2).
Since similarity transformation preserves eigenvalues, it suffices to work out the

eigenvalues of τ . It is easy to see the eigenvalues of τ are the union of the eigenvalues
of A′11 and A′22.

Upon simple calculation, we find the eigenvalues of A′11 are

λ1 =
γn + α1 +

√
(γn − α1)2 + 4αnγ1

2
,

λ2 =
γn + α1 −

√
(γn − α1)2 + 4αnγ1

2
.

By Lemma 2.1 in [24], the eigenvalues of the symmetric tridiagonal Toeplitz matrix
A′22 are

λj = −3β + 2
√

2β cos
(j − 2)π

n− 1
, j = 3, 4, · · · , n.

Thus we have determined all the eigenvalues of A.
Next, we compute the corresponding eigenvectors ηj such that (λjI − τ) ηj = 0,

j = 1, . . . , n.
For j = 1, we solve (λ1I − τ) η1 = 0 to get

η1 =

(
γn − α1 +

√
(γn − α1)2 + 4αnγ1

2γ1
, 1, 0, · · · , 0

)T
.
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Similarly, for j = 2, we solve (λ2I − τ) η2 = 0 to get

η2 =

(
γn − α1 −

√
(γn − α1)2 + 4αnγ1

2γ1
, 1, 0, · · · , 0

)T
.

Denote ηj = (η1,j , · · · , ηn,j)T for j = 3, 4, · · · , n. By Lemma 2.1 in [24], the eigen-
vectors of the symmetric tridiagonal Toeplitz matrix A′22 are

ηk,j =

√
2

n− 1
sin

(k − 2)(j − 2)π

n− 1
, 3 ≤ k, j ≤ n. (3.27)

Now we calculate ηk,j (k = 1, 2) based on (3.27) that

ηk,j =


2(λj−γn)βη3,j+2−n−3

2 γ1βηn,j

(λj−α1)(λj−γn)−αnγ1
, k = 1, 3 ≤ j ≤ n,

2αnβη3,j+2−n−3
2 (λj−α1)βηn,j

(λj−α1)(λj−γn)−αnγ1
, k = 2, 3 ≤ j ≤ n.

Next, by φ−1(ρ−1Aρ)φ = τ , we have

A(ρφηj) = λj(ρφηj), j = 1, 2, · · · , n.

Therefore, the corresponding eigenvector of λj for A is ϑj = ρφηj (j = 1, 2, . . . , n),
which completes the proof.

As the determinant of a complex matrix is equal to the product of its eigenvalues,
we have the following corollary.

Corollary 3.1. Let n ≥ 3 and Mn be the nth Mersenne number. Then

Mn−1 =

n∏
j=3

(
3− 2

√
2 cos

(j − 2)π

n− 1

)
.

The next three theorems are parallel results of type I matrices.

Theorem 3.4. Let A be given as in (1.1). If B is a periodic tridiagonal Toeplitz
matrix with perturbed corners of type II, which is induced by A, then

detB = (−β)n−2
(
α1γn − αnγ1

)
Mn−1.

Proof. Since detB = det În detAdet În, we obtain this conclusion by using The-

orem 4 and det În = (−1)
n(n−1)

2 .

Theorem 3.5. Let A be given as in (1.1) and let B be a periodic tridiagonal Toeplitz
matrix with perturbed corners of type II, which is induced by A. Then

B−1 = (ăn+1−i,n+1−j)
n
i,j=1,

where ăi,j is the same as (3.9).

Proof. It follows immediately from B−1 = Î−1
n A−1Î−1

n = ÎnA
−1În and Theorem

3.2.

Theorem 3.6. Let A be given as in (1.1) and let B be a periodic tridiagonal
Toeplitz matrix with perturbed corners of type II, which is induced by A. Assume
the eigenpairs of B are (λj , ϑ̆j), j = 1, . . . , n. Then λj is the same as in (3.24) and

ϑ̆j = Înϑj, where ϑj is the same as in (3.25).

Proof. Since B is similar to A, B and A have the same eigenvalues λj (j =
1, 2, · · · , n), where λj is same with (3.24). The other claim is straightforward.
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4. Algorithms

In this section, we give three algorithms for finding the determinant, inverse and
eigenpairs of periodic tridiagonal Toeplitz matrix with perturbed corners of type
I, which is called A. Besides, we make some analysis about these algorithms to
illustrate our theoretical results.

Table 1. Comparison of the total number operations for determinant of A.

Algorithms Number operations

LU decomposition algorithm 14n− 12
Algorithm 1 2n+ 11

1 The operation for the determinant of A in our algorithm is 2n + 1, which can be reduced to
O(logn) (see, [33], p.226–227).

Firstly, based on Theorem 3.1, we give an algorithm for computing determinant
of A as following:

Algorithm 1.
Step 1: Input α1, αn, γ1, γn, β, order n and generate Mersenne number Mn−1 by
(2.1).
Step 2: Calculate and output the determinant of A by (3.1).

Based on Algorithm 1, we make a comparison of the total number operations for
determinant of A between LU decomposition and Algorithm 1 in Table 1. Specif-
ically, we get that the total number operation for the determinant of A is 2n + 1.
What’s more, this number can be reduced to O(logn) (see, [33], p.226–227).

Next, based on Theorem 3.2, we give an algorithm for computing inverse of A
as following:

Algorithm 2.
Step 1: Input α1, αn, γ1, γn, β, order n and generate Mersenne numbers by (2.1);
Step 2: By the formula (3.9), compute respectively the six elements ă1,1, ă1,2, ă2,1,
ă2,2, ă3,1, ă3,2 and then compute the remaining elements of the inverse A−1;
Step 3: Output the inverse A−1 = (ăi,j)

n
i,j=1.

Table 2. Comparison of the total number operations for inverse of A.

Algorithms Number operations

LU decomposition algorithm 5n3

6 + 3n2 + 91n
6 − 21

Algorithm 2 3n2 + n+ 20

To test the effectiveness of Algorithm 2, we firstly compare the total number
operation for the inverse of A between LU decomposition and Algorithm 2 in Table

2. The total number operation of LU decomposition is 5n3

6 +3n2 + 91n
6 −21, while

that of Algorithm 2 is 3n2 + n+ 20.

Lastly, Algorithm 3 gives the eigenpairs of A based on Theorem 3.3. The total
number operation for computing eigenpairs of A is 5n2 + 20n− 23.

Algorithm 3.

Step 1: Input α1, αn, γ1, γn, β, n, generate φ = diag
(

1, 1, 1, 2−
1
2 , 2−

2
2 , · · · , 2−n−3

2

)
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and ρ is the same as in (3.2).
Step 2: Calculate the eigenvalues λj , j = 1, 2, · · · , n by (3.24).
Step 3: Calculate ηj and the eigenvectors ϑj , j = 1, 2, · · · , n by (3.25).
Step 4: Output the eigenpairs (λj , ϑj), j = 1, 2, · · · , n.

5. Conclusions

In this paper, we present the explicit formulas for determinants, inverses and eigen-
pairs of periodic tridiagonal Toeplitz matrices with perturbed corners. The repre-
sentation of the determinant in the form of products of Mersenne number and some
initial values from matrix transformations. For inverse, our main approach in-
cludes a clever use of matrix decomposition with the Sherman-Morrison-Woodbury
formula. Besides, we calculate the eigenpairs of periodic tridiagonal Toeplitz ma-
trices with perturbed corners based on the eigenpairs of the symmetric tridiagonal
Toeplitz matrix. To test our method’s effectiveness, we propose three algorithms
for finding the determinants, inverses and eigenpairs of periodic tridiagonal Toeplitz
matrices with perturbed corners as well as compare the total number operation for
these basic quantities between different algorithms. After comparison, we draw a
conclusion that our algorithms are superior to other algorithms to some extent.
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