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Abstract A stochastic prey-predator model with functional response is in-
vestigated in this paper. A complete threshold analysis of coexistence and
extinction is obtained. Moreover, we point out that the stochastic predator-
prey model undergoes a stochastic Hopf bifurcation from the viewpoint of
numerical simulations. Some numerical simulations are carried out to support
our results.

Keywords Strong stochastic persistence, stochastic Hopf bifurcation, extinc-
tion, Crowley-Martin functional response.

MSC(2010) 60H10, 37A99, 65P30.

1. Introduction
Predator-prey dynamics is one of the dominant fields in both theoretical and applied
ecology, which has encouraged numerous researchers to develop various mathemati-
cal models to better understand it over the last few decades [2,22,25]. In population
dynamics, the functional response is one of the nonlinear components in biological
systems, which describes the feeding rate of prey consumption by predators, and
plays a key role in understanding the dynamical complexity of the systems [16,18].

In fact, there are many works based on functional responses, see [1,5,6,11,18,33]
and the references cited therein. Especially, Crowley, Martin [5] introduced the
Crowley-Martin functional response: p(x, y) = fx(t)y(t)

1+α1x(t)+α2y(t)+α3x(t)y(t)
. It is a

modified form of the Holling type and Beddington-DeAngelis functional responses.
Obviously, the Crowley-Martin functional response becomes a Holling type I func-
tional response if α1 = α2 = α3 = 0, the functional response is simplified to a
Holling type II functional response when α2 = α3 = 0, and it is a Beddington-
DeAngelis functional response when α3 = 0.

A predator-prey model with the Crowley-Martin functional response is described
as follows: 

dx
dt =

(
r − ax− ωy

1+α1x+α2y+α3xy

)
x,

dy
dt =

(
c− by + fx

1+α1x+α2y+α3xy

)
y,

(1.1)

where x, y designate the population densities of prey and predator. The parameters
r, a, b, ω, f are positive constants and α1, α2, α3 are non-negative constants, r is the
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growth rate of prey, c represents the growth rate of predator when it’s positive and
the death rate when it’s negative. f stands for the conversion rate of nutrients into
predator production, while a, b measure the competition strength among individ-
uals of prey and predator respectively. In recent years, there were some relevant
predator-prey models with this type of functional response [3, 20,24,26,32].

As a matter of fact, environmental noises play an inevitable role in population
dynamics and always contribute to random fluctuations on parameters appearing
in ecosystems [9, 10, 21]. Therefore, we take the influence of randomly fluctuating
environment into account. After incorporating white noise into the system (1.1),
we consider the following stochastic system:dx =

(
r − ax− ωy

1+α1x+α2y+α3xy

)
xdt+ σ1xdB1(t), x(0) > 0,

dy =
(
c− by + fx

1+α1x+α2y+α3xy

)
ydt+ σ2ydB2(t), y(0) > 0,

(1.2)

where B1(t), B2(t) are mutually independent Brownian motions, σ2
1 and σ2

2 repre-
sent the intensities of white noise.

As this kind of stochastic model accommodates interference among predators
and preys and is a better fit to the experimental data, we believe it deserves further
attention. Some literatures used the corresponding stochastic model to describe the
dynamic properties [18, 19, 27, 28]. Liu et al [18] studied stochastic boundedness,
stochastic permanence and extinction for a corresponding stochastic system with
Crowley-Martin functional response. Zhang et al [28] showed the existence, bound-
edness and uniform continuity of the positive solution for a stochastic population
system with this kind of functional response.

The threshold analysis of strong stochastic persistence and extinction is given for
some stochastic population models [29–31]. However, to the best of our knowledge,
literatures on the threshold analysis of coexistence and extinction, stochastic Hopf
bifurcation for the stochastic predator-prey system (1.2) have not yet appeared.
The Crowley-Martin functional response is a generalization of Holling type and
Beddington-DeAngelis functional responses. And the parameter c may be positive
or negative. If c > 0, the species y has extra source of food except x, however, if
c < 0, the species y has no extra source of food except x. Both the two cases are
considered in this paper. The aim of this paper is to investigate these issues for the
system (1.2).

In Section 2, we obtain a complete threshold analysis of coexistence and extinc-
tion. Section 3 considers stochastic Hopf bifurcation of the stochastic predator-prey
model (1.2) from the viewpoint of numerical simulations. A final discussion con-
cludes the paper in Section 4.

2. Coexistence and extinction
2.1. Threshold analysis of persistence and extinction
Motivated by [12, 13], we will consider strong stochastic persistence and extinction
of the stochastic system (1.2). To characterize these properties, we introduce the
notation

Π̃t(·) :=
1

t

∫ t

0

1{(x(s),y(s))∈·}ds, t > 0,
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Table 1. The threshold analysis of coexistence and extinction of the solution when c < 0

λ1(δ
∗) µx(·) λ2(µx) distributions

< 0 ∄ - Π̃t(·) → δ∗

> 0 ∃ < 0 Π̃t(·) →
µx(·)

> 0 Π̃t(·) → π(·)

to denote a random normalized occupation measure [12].
For the following equation

dx = x (a1 − b1x) dt+ σ1xdB1(t). (2.1)

For the system (2.1), [8] implies that the system (2.1) has a unique stationary
distribution µx(·) with the density function

ρ∗(x) =
Aqxq−1e−Ax

Γ(q)
, x > 0, A =

2b1
σ2
1

> 0, q =
2a1
σ2
1

− 1 > 0.

It’s easy to verify that Assumptions 1.1 and 1.4 presented in [12] are satisfied
if we choose c1 = 1, c2 = ω

f . Besides, we can obtain that λ1(δ
∗) = r − σ2

1

2 ,
λ2(δ

∗) = c− σ2
2

2 .
Furthermore, In view of Theorems 1.1, 1.2, 1.3 in [12], we discuss the following

cases.
Case A: If c < 0, i.e. y has no extra source of food except x, then λ2(δ

∗) < 0.
Under this assumption, we have the results as follows.
(A1). If λ1(δ

∗) = r − σ2
1

2 < 0, then the random normalized occupation measure
Π̃t(·) converges to δ∗ for any initial value (x0, y0) ∈ R2

+ almost surely, which implies
x(t) converges to 0 and y(t) converges to 0 almost surely.

If λ1(δ
∗) = r− σ2

1

2 > 0, there exists a unique invariant probability measure µx(·)
on R+

1 = {(x, 0), x > 0}, such that

λ1(µx) =

∫ +∞

0

(r − σ2
1

2
− ax)µx(dx) = r − σ2

1

2
− a

∫ +∞

0

xµx(dx) = 0,

that is,
∫ +∞
0

xµx(dx) =
1
a (r −

σ2
1

2 ). Hence

λ2(µx) =

∫ +∞

0

(c− σ2
2

2
+

fx

1 + α1x
)µx(dx) = c− σ2

2

2
+

∫ +∞

0

fx

1 + α1x
µx(dx).

(A2). If λ2(µx) < 0, then Π̃t(·) converges weakly to µx(·) for any initial value
(x0, y0) ∈ R2

+ almost surely, which implies y(t) converges to 0 almost surely.
(A3). If λ2(µx) > 0, then there exists a uniquely ergodic stationary distribution
π(·) in the interior of the first quadrant.

To illustrate the asymptotic behaviors of the sample paths of the solution dis-
cussed above clearly, we show them in Table 1.
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Case B: If c > 0, i.e. y has extra source of food besides x, situations under this
condition are more complicated. Recall that λ1(δ

∗) = r − σ2
1

2 , λ2(δ
∗) = c− σ2

2

2 , we
have the properties as follows.
(B1). If λ1(δ

∗) < 0, λ2(δ
∗) < 0, then the random normalized occupation measure

Π̃t(·) converges to δ∗ for any initial value (x0, y0) ∈ R2
+ almost surely, which implies

x(t) and y(t) both converge to 0 almost surely.
(B2). If λ1(δ

∗) > 0, λ2(δ
∗) < 0, µx(·) exists, then the discussions are similar to

those appearing in (A2) and (A3) of Case A.
(B3). If λ1(δ

∗) < 0, λ2(δ
∗) > 0, there is a unique invariant probability measure

µy(·) on R+
2 = {(0, y), y > 0}, such that

λ2(µy) = c− σ2
2

2
− b

∫ +∞

0

yµy(dy) = 0,

then ∫ +∞

0

yµy(dy) =
1

b
(c− σ2

2

2
).

In addition,

λ1(µy) = r − σ2
1

2
−
∫ +∞

0

ωy

1 + α2y
µy(dy).

Under the above assumptions, it follows from λ1(δ
∗) = r− σ2

1

2 < 0 that λ1(µy) < 0,
then the random normalized occupation measure Π̃t(·) converges weakly to µy(·)
for any initial value (x0, y0) ∈ R2

+ almost surely, and x(t) converges to 0.
(B4). If λ1(δ

∗) > 0, λ2(δ
∗) > 0, both µx(·) and µy(·) exist, obviously, we have

λ1(µx) = 0, λ2(µy) = 0. Under the assumption λ2(δ
∗) = c− σ2

2

2 > 0, we obtain that

λ2(µx) = c− σ2
2

2
+

∫ +∞

0

fx

1 + α1x
µx(dx) > 0.

We only need to discuss signs of λ1(µy).
If λ1(µy) > 0, then there exists a uniquely ergodic stationary distribution π(·)

in the interior of the first quadrant.
If λ1(µy) < 0, then Π̃t(·) converges to µy(·) for any initial value (x0, y0) ∈ R2

+

almost surely, and x(t) converges to 0 almost surely.
Similarly, we show the discussions in Table 2 (Blue parts stand for those who

have been deduced by the previous conditions).

Remark 2.1. It is necessary to point out that there exist mistakes in our proofs of
Lemma 3

[
Xiaoling Zou, Jingliang Lv, A new idea on almost sure permanence and

uniform boundedness for a stochastic predator-prey model, Journal of the Franklin
Institute, 354 (2017) 6119-6137

]
[J1] and Lemma 4.1.2

[
Jingliang Lv, Xiaoling Zou,

Luhua Tian, A geometric method for asymptotic properties of the stochastic Lotka-
Volterra model, Communications in Nonlinear Science and Numerical Simulation,
67 (2019) 449-459

]
[J2]. This paper considers the strong stochastic persistence of

the system (1.2) and the complete threshold analysis of coexistence and extinction.
The method used in this paper improves the method of the references [J1],[J2]. For
the detailed revisions of the stochastic Lotka-Volterra model [J2], the readers may
refer to the reference [12]. And we give the subsequent corrections in our next work
for the revisions of the stochastic predator-prey model with response function [J1].
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Table 2. The threshold analysis of coexistence and extinction of the solution when c > 0

λ1(δ
∗) λ2(δ

∗) µx(·) µy(·) λ2(µx) λ1(µy) distributions

< 0 < 0 ∄ ∄ - - Π̃t(·) → δ∗

> 0 < 0 ∃ ∄ < 0 - Π̃t(·) → µx(·)

> 0 - Π̃t(·) → π(·)

< 0 > 0 ∄ ∃ - < 0 Π̃t(·) → µy(·)

> 0 > 0 ∃ ∃ > 0 < 0 Π̃t(·) → µy(·)

> 0 > 0 Π̃t(·) → π(·)

2.2. Simulations of persistence and extinction
Three examples are introduced to illustrate Table 1:

Example 2.1. We choose r = 0.2, a = 0.9, ω = 0.9, α1 = 0.04, α2 = 0.5, α3 =
0.001, c = −0.4, f = 0.4, σ1 = 0.9, σ2 = 0.9, b = 0.4, Tmax = 100, we deduce that
λ1(δ

∗) = r − σ2
1

2 = −0.205 < 0, λ2(δ
∗) = c − σ2

2

2 = −0.805 < 0, then Π̃t(·) → δ∗.
Figure 1 shows that both x and y go extinct.

Example 2.2. Let r = 0.5, a = 0.9, ω = 0.9, α1 = 0.04, α2 = 0.5, α3 = 0.05, c =
−0.9, f = 0.4, σ1 = 0.1, σ2 = 0.8, b = 0.4, Tmax = 500, we have A = 2a

σ2
1
= 18, q =

2r
σ2
1
−1 = 99. we imply that λ1(δ

∗) = r− σ2
1

2 = 0.495 > 0, λ2(δ
∗) = c− σ2

2

2 = −1.22 <

0,

λ2(µx) = c− σ2
2

2
+

∫ +∞

0

fx

1 + α1x
µx(dx)

= −0.9− 0.82

2
+

∫ +∞

0

0.4x

1 + 0.04x

1899x98e−18x

Γ(99)
dx.

Mathematical software can compute λ2(µx) < 0, thus Π̃t(·) → µx(·). Figure 2
stands for that x is persistent and y go extinct.

Figure 1. both x and y go extinct Figure 2. x is persistent and y goes extinct
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Example 2.3. Let r = 0.7, a = 0.4, ω = 0.7, α1 = 0.04, α2 = 0.5, α3 = 0.05, c =
−0.5, f = 0.9, σ1 = 0.4, σ2 = 0.04, b = 0.02, Tmax = 500, then A = 2a

σ2
1
= 5, q =

2r
σ2
1
− 1 = 7.75. And we obtain that

λ1(δ
∗) = r − σ2

1

2
= 0.54 > 0, λ2(δ

∗) = c− σ2
2

2
= −0.5016 < 0,

λ2(µx) = c− σ2
2

2
+

∫ +∞

0

fx

1 + α1x
µx(dx)

= −0.5− 0.042

2
+

∫ +∞

0

0.9x

1 + 0.04x

57.75x6.75e−5x

Γ(7.75)
dx.

By virtue of mathematical software, we can compute that λ2(µx) > 0, hence Π̃t(·) →
π(·). It is verified by Figure 3.

And six examples are listed to demonstrate Table 2:

Example 2.4. We choose r = 0.3, a = 0.8, ω = 0.7, α1 = 0.5, α2 = 0.05, α3 =
0.001, c = 0.2, f = 0.5, σ1 = 0.9, σ2 = 0.8, b = 0.8, Tmax = 100, thus

λ1(δ
∗) = r − σ2

1

2
= −0.105 < 0, λ2(δ

∗) = c− σ2
2

2
= −0.12 < 0.

Under the conditions, both x and y go extinct, see Figure 4.

Figure 3. both x and y are persistent Figure 4. both x and y go extinct

Example 2.5. Let r = 0.9, a = 0.9, ω = 0.7, α1 = 0.4, α2 = 0.5, α3 = 0.05, c =
0.01, f = 0.4, σ1 = 0.5, σ2 = 0.9, b = 0.8, Tmax = 500, we can compute

λ1(δ
∗) = r − σ2

1

2
= 0.65 > 0, λ2(δ

∗) = c− σ2
2

2
= −0.8 < 0.

Meanwhile,

λ2(µx) = c− σ2
2

2
+

∫ +∞

0

fx

1 + α1x
µx(dx)

= 0.01− 0.92

2
+

∫ +∞

0

0.4x

1 + 0.4x

7.26.2x5.2e−7.2x

Γ(6.2)
dx.



1248 J. Lv, X. Zou & Y. Li

In view of mathematical software, we compute that λ2(µx) < 0, hence Π̃t(·) → µx(·).
Figure 5 supports the result.

Example 2.6. Choose r = 0.9, a = 0.9, ω = 0.7, α1 = 0.04, α2 = 0.5, α3 = 0.05, c =
0.01, f = 0.5, σ1 = 0.5, σ2 = 0.5, b = 0.7, Tmax = 500, we obtain that

λ1(δ
∗) = r − σ2

1

2
= 0.775 > 0, λ2(δ

∗) = c− σ2
2

2
= −0.115 < 0.

Meanwhile,

λ2(µx) = c− σ2
2

2
+

∫ +∞

0

fx

1 + α1x
µx(dx)

= 0.01− 0.52

2
+

∫ +∞

0

0.5x

1 + 0.04x

7.26.2x5.2e−7.2x

Γ(6.2)
dx.

Mathematical software can compute that λ2(µx) > 0, hence Π̃t(·) → π(·). Figure 6
shows that both x and y are persistent.

Figure 5. x is persistent and y goes extinct Figure 6. both x and y are persistent

Example 2.7. Let r = 0.2, a = 0.7, ω = 0.5, α1 = 2.1, α2 = 0.7, α3 = 0.1, c =
0.8, f = 0.9, σ1 = 0.9, σ2 = 0.7, b = 0.1, Tmax = 500, we obtain that

λ1(δ
∗) = r − σ2

1

2
= −0.205 < 0, λ2(δ

∗) = c− σ2
2

2
= 0.555 > 0

and

λ1(µy) = r − σ2
1

2
−
∫ +∞

0

ωy

1 + α2y
µy(dy) = 0.2− 0.92

2
−

∫ +∞

0

0.5y

1 + 0.7y
µy(dy).

It is obvious that λ1(µy) < 0, hence Π̃t(·) → µy(·). We can see from Figure 7 that
the prey x goes extinct, however the predator y is persistent. This support the
point that y has extra source of food besides x.

Example 2.8. Choose r = 0.5, a = 0.9, ω = 0.9, α1 = 0.04, α2 = 0.1, α3 = 0.05, c =
0.9, f = 0.9, σ1 = 0.5, σ2 = 0.8, b = 0.8, Tmax = 500, we get

λ1(δ
∗) = r − σ2

1

2
= 0.375 > 0, λ2(δ

∗) = c− σ2
2

2
= 0.58 > 0,
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λ2(µx) = c− σ2
2

2
+

∫ +∞

0

fx

1 + α1x
µx(dx) = 0.58 +

∫ +∞

0

0.9x

1 + 0.04x
µx(dx) > 0.

And

λ1(µy) = r − σ2
1

2
−
∫ +∞

0

ωy

1 + α2y
µy(dy)

= 0.375−
∫ +∞

0

0.9y

1 + 0.1y

2.52.81y1.81e−2.5y

Γ(2.81)
dy.

By mathematical software, we compute that λ1(µy) < 0, hence Π̃t(·) → µy(·). The
prey x goes extinct, however the predator y is persistent, this is, y also has extra
source of food besides x. See Figure 8.

Figure 7. x goes extinct and y is persistent Figure 8. x goes extinct and y is persistent

Example 2.9. Let r = 0.9, a = 0.9, ω = 0.9, α1 = 0.04, α2 = 0.5, α3 = 0.05, c =
0.5, f = 0.7, σ1 = 0.5, σ2 = 0.8, b = 0.9, Tmax = 500, we get

λ1(δ
∗) = r − σ2

1

2
= 0.775 > 0, λ2(δ

∗) = c− σ2
2

2
= 0.18 > 0,

λ2(µx) = c− σ2
2

2
+

∫ +∞

0

fx

1 + α1x
µx(dx) = 0.18 +

∫ +∞

0

0.7x

1 + 0.04x
µx(dx) > 0.

And

λ1(µy) = r − σ2
1

2
−

∫ +∞

0

ωy

1 + α2y
µy(dy)

= 0.775−
∫ +∞

0

0.9y

1 + 0.1y

2.50.56y−0.44e−2.5y

Γ(0.56)
dy.

Mathematical software can compute that λ1(µy) > 0, hence Π̃t(·) → π(·). Figure 9
shows that both x and y are persistent.
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Figure 9. both x and y are persistent

3. Stochastic Hopf bifurcation
It follows from Section 2 that when t is sufficiently large, the statistical properties
of sample paths can be used to replace spatial ones. Therefore, in this section, we
will use numerical simulations of sample paths to study stochastic Hopf bifurcation
of the system (1.2).

Now, we will use numerical simulations to illustrate that the stochastic predator-
prey model can undergo a stochastic Hopf bifurcation phenomenon. Let r = 1, a =
1, w = 10, α1 = 2.1, α2 = 1.1, α3 = 0.001, c = −0.4, f = 5, σ1 = 0.05, σ2 =
0.03, x(0) = 0.2, y(0) = 0.16. Let b = 0.5 × 10−11 and b = 2 respectively, then
the system (1.2) becomes the systems (3.1) and (3.2) respectively:dx =

(
1− x− 10y

1+2.1x+1.1y+0.001xy

)
xdt+ 0.05xdB1(t),

dy =
(
−0.4− 0.5× 10−11y + 5x

1+2.1x+1.1y+0.001xy

)
ydt+ 0.03ydB2(t),

(3.1)

and dx =
(
1− x− 10y

1+2.1x+1.1y+0.001xy

)
xdt+ 0.05xdB1(t),

dy =
(
−0.4− 2y + 5x

1+2.1x+1.1y+0.001xy

)
ydt+ 0.03ydB2(t).

(3.2)

The deterministic system for the system (3.1) becomesdx =
(
1− x− 10y

1+2.1x+1.1y+0.001xy

)
xdt,

dy =
(
−0.4− 0.5× 10−11y + 5x

1+2.1x+1.1y+0.001xy

)
ydt.

(3.3)

The deterministic system (3.3) exists a stable limit cycle according to the literature
[26] (see Figures 10-12). Here, Figures 10-12 are given in comparison with the
stochastic system (3.1).

The deterministic system for the system (3.2) becomesdx =
(
1− x− 10y

1+2.1x+1.1y+0.001xy

)
xdt,

dy =
(
−0.4− 2y + 5x

1+2.1x+1.1y+0.001xy

)
ydt.

(3.4)
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Figure 10. Periodic solution for the system
(3.3).

Figure 11. A stable limit cycle for the system
(3.3) in phase space.

Figure 12. A stable limit cycle for the sys-
tem (3.3) in three-dimensional space introduc-
ing time axis.
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Figure 13. A stable positive equilibrium point
for the system (3.4).
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Figure 14. A stable positive equilibrium point
for the system (3.4) in phase space.

Figure 15. A stable positive equilibrium point
for the system (3.4) in three-dimensional space
introducing time axis.
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The deterministic system (3.4) exists a stable positive equilibrium point according to
the literature [26] (see Figures 13-15). Here, Figures 13-15 are given in comparison
with stochastic system (3.2). It is observed that the deterministic system exists
Hopf bifurcation phenomenon.

Figure 16 is the stationary distribution of the system (3.1) in the phase space.
Figure 17 shows a stochastic limit cycle for the system (3.1) in three-dimensional
space introducing time axis. Figure 18 implies that there is a crater-like stationary
distribution for the stochastic system (3.1). Figure 19 is the stationary distribution
of the system (3.2) in the phase space. Figure 20 shows the stochastic solution for
the system (3.2) in three-dimensional space introducing time axis. Figure 21 implies
that there is a peak-like stationary distribution for the stochastic system (3.2).

Now, from the viewpoint of numerical simulations, Figures 16-18 show the
stochastic system (1.2) exists a crater-like stationary distribution, and Figures
19-21 show the stochastic system (1.2) exists a peak-like stationary distribution.
Overall, the shapes of stationary distributions change from crater-like to peak-like.
Therefore, the stochastic model (1.2) undergoes a stochastic Hopf-bifurcation phe-
nomenon [4, 7, 14,15,17,23,34].

Figure 16. A stochastic limit cycle for the
system (3.1) in phase space.

Figure 17. A stochastic limit cycle for the
system (3.1) in three-dimensional space intro-
ducing time axis.

Figure 18. A crater-like stationary distribu-
tion for the system (3.1) in three-dimensional
space.

Figure 19. A stochastic solution process for
the system (3.2) in phase space.
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Figure 20. A stochastic solution process for
the system (3.2) in three-dimensional space in-
troducing time axis.

Figure 21. A peak-like stationary distribution
for the system (3.2) in three-dimensional space.

4. Concluding remarks
Here, we consider a stochastic predator-prey model with Crowley-Martin functional
response. The main results are as follows:

• We obtain the complete threshold analysis of coexistence and extinction of
the stochastic system (1.2). Moreover, numerical simulations are introduced
to support each conclusion in Table 1 and Table 2.

• From the perspective of numerical simulations, the stochastic model (1.2)
exists peak-like stationary distribution and crater-like stationary distribution,
that is, it undergoes a stochastic Hopf bifurcation.

Some interesting topics deserve further investigation. It will be interesting to
study the stochastic high-order nonlinear systems. We will discuss these issues in
the near future.
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