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SPATIAL PATTERN FORMATIONS IN
DIFFUSIVE PREDATOR-PREY SYSTEMS
WITH NON-HOMOGENEOUS DIRICHLET

BOUNDARY CONDITIONS∗

Yingwei Song1,2 and Tie Zhang1,†

Abstract A reaction-diffusion predator-prey system with non-homogeneous
Dirichlet boundary conditions describes the persistence of predator and prey
species on the boundary. Compared with homogeneous Neumann boundary
conditions, the former conditions may prompt or prevent the spatial patterns
produced through diffusion-induced instability. The spatial pattern formation
induced by non-homogeneous Dirichlet boundary conditions is characterized
by the Turing type linear instability of homogeneous state and bifurcation
theory. Furthermore, transient spatiotemporal behaviors are observed through
numerical simulations.
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1. Introduction

Predator-prey interaction systems with ratio-dependent functional response have
been paid great attention by both applied mathematicians and ecologists, e.g. [2,4,
13, 16, 18, 19, 29, 32, 33, 35, 39]. Ratio-dependent functional response shows that the
growth rate of capital predator should be a function of the ratio of prey to predator
abundance [1, 3, 30]. Since diffusive predator-prey systems play an important role
in population dynamics, the existence and non-existence of non-constant positive
solutions, periodic solutions and traveling wave solutions have been investigated
extensively [7, 8].

Most analyses of diffusive predator-prey systems are restricted to Neumann
boundary conditions [37,40], which indicates no flux on the boundary. One interest-
ing question is that the exterior environment is friendly and the species can move
across the boundary of environment, with the number of species being constant
on the boundary [10, 17, 27, 28, 31]. For example, in fish migratory behaviour [28],
fishes were found to be dispersed between areas and [34] suggests an extensive
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drift of cod larvae from the North Sea into coastal Skagerrak. Moreover, non-
homogeneous Dirichlet boundary value problem has attracted much attention in
recent years [5,14]. In this paper, we consider the following diffusive predator-prey
model with non-homogenous Dirichlet boundary conditions and ratio-dependent
functional response:

∂u

∂t
− d1∆u = ug(u)− p(u)v, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = vσ(1− v

u
), x ∈ Ω, t > 0,

u(x, t) = v(x, t) = u∗, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω, t = 0,

(1.1)

where the habitat of both species Ω is a bounded domain in RN (N ≥ 1) with a s-
mooth boundary ∂Ω; u(x, t) and v(x, t) represent the densities of prey and predator
at the location x and time t, respectively, and d1, d2 are the rescaled diffusion coef-
ficient for the prey and the predator, respectively, the parameter σ is the intrinsic
growth rate of predator, typically it admits that the carrying capacity of predator
is proportional to the densities of prey. Moreover, p, g are assumed to satisfy the
following hypotheses:

(a1) p ∈ C1(R+), p(0) = 0; p(u) > 0 for u > 0 and pu(u) > 0 for u ≥ 0, moreover,
there exists N > 0, such that pu(u) ≤ N for all u > 0;

(a2) g ∈ C1(R+), there exists K > 0, such that for any u > 0, u 6= K, g(u)(u −
K) < 0 and g(K) = 0; gu(u) ≤ −ĝ, where ĝ > 0 , u > 0.

The condition (a1) on the functional response p(u) includes the classical Leslie-
Gower type, Holling-Tanner type, Sigmodial type and Ivlev type. Here ug(u) is
the net growth rate of the prey, the prey u has a growth which is reflected from
the assumption (a2). Note that (1.1) has a unique constant positive equilibrium
e∗ = (u∗, v∗) under assumptions (a1) and (a2), where u∗ satisfies g(u∗) = p(u∗),
and non-homogeneous Dirichlet boundary conditions u(x, t) = v(x, t) = u∗ indicate
that species are free to penetrate and cross borders. In some cases, the number of
predators is the same as the number of prey on the boundary.

When ug(u) is of a logistic growth on the prey, the kinetics of system (1.1)
with Leslie-Gower type functional response has a globally asymptotically stable e-
quilibrium [22]. For the kinetics of system (1.1) with logistic growth on the prey
and Holling-Tanner type functional response, a complete dynamical analysis can be
obtained in [6,11,20,24,25,39]. With homogeneous Neumann boundary conditions
and under suitable conditions, there is a positive steady state solution which indi-
cates that the predator and prey species coexist see [9, 12, 26] and the references
therein. In these work, specific forms of function g(u) were used. For system (1.1)
with homogeneous Neumann boundary conditions, Ko [21] investigated the exis-
tence and non-existence of non-constant positive solutions under some conditions.
In [38], Wang studied a diffusive plant-herbivore system with homogeneous and
non-homogeneous Dirichlet boundary conditions, which shows more richer dynam-
ical behaviors.

Our purpose here is to investigate the spatiotemporal dynamics of system (1.1).
We identify an explicit difference of the stability of equilibrium e∗ between non-
homogeneous Dirichlet boundary conditions and homogeneous Neumann boundary
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conditions for p(u∗) in some ranges. The paper is organized as follows. In Section
2, we study the linear stability and instability of the positive spatially homogeneous
steady state of system (1.1). The difference between the former boundary conditions
and the latter boundary conditions on the stability of system (1.1) is discussed. We
investigate the occurrence of steady state bifurcation and Hopf bifurcation in Section
3. Some numerical results are given in Section 4.

2. The stability of the unique constant steady state
solution

For such diffusive predator-prey model (1.1), it is normal to obtain the existence
and boundedness of the unique solution by using the maximum principle and the
comparison principle [23, 41]. It is clear that e∗ = (u∗, v∗) is the only constant
positive equilibrium of system (1.1). In this section, we discuss the stability of the
unique constant steady state.

Linearizing the reaction-diffusion system (1.1) about e∗ = (u∗, v∗) givesφt
ψt

=L

φ
ψ

=D

∆φ

∆ψ

+J

φ
ψ

,

where

D=

d1 0

0 d2

, J=

A(u∗, v∗) B(u∗, v∗)

C(u∗, v∗) D(u∗, v∗)

,

then

L:=

d1∆ +A(u∗, v∗) B(u∗, v∗)

C(u∗, v∗) d2∆ +D(u∗, v∗)

,

where

A(u∗, v∗) = g(u∗) + u∗gu(u∗)− pu(u∗)v∗ := M, B(u∗, v∗) = −p(u∗),
C(u∗, v∗) = σ, D(u∗, v∗) = −σ.

(2.1)

Let µi be the sequence of eigenvalues of −∆ with Dirichlet boundary conditions
such that 0 < µ1 ≤ µ2 ≤ . . . and lim

t→∞
µi =∞ and φi be the normalized eigenfunc-

tions corresponding to µi. After Fourier series expansions, the eigenvalues of L are
determined by the characteristic equation:

Det(δI − Ji) = δ2 − tr(Ji)δ + det(Ji), i = 1, 2, · · · (2.2)

where

Ji:=

−d1µi +A(u∗, v∗) B(u∗, v∗)

C(u∗, v∗) −d2µi +D(u∗, v∗)

,
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and

Tr(Ji) = −µi(d1 + d2) +A(u∗, v∗) +D(u∗, v∗),

Det(Ji) = d1d2µ
2
i − µi(d2A(u∗, v∗) + d1D(u∗, v∗)) + detJ.

Therefore, all the eigenvalues of the operator L can be the union of the eigenvalues
of Ji for i ≥ 1.

Denote

Ti = Tr(Ji) = M − σ − µi(d1 + d2), (2.3)

Di = Det(Ji) = d1d2µ
2
i − µi(d2M − d1σ)−Mσ + p(u∗)σ. (2.4)

The linear stability of the steady state e∗ = (u∗, v∗) of system (1.1) is determined
by the eigenvalues of the characteristic equation (2.3) and (2.4), if Ti < 0 and Di > 0
for all i = 1, 2, 3, · · · , then e∗ = (u∗, v∗) is locally asymptotically stable. Otherwise,
e∗ = (u∗, v∗) is unstable [36,42].

Case I: M ≤ 0

Theorem 2.1. Suppose that d1, d2 > 0 and Ω is a bounded domain with smooth
boundary. If M ≤ 0, then the constant positive equilibrium solution (u∗, v∗) of
system (1.1) is locally asymptotically stable.

Proof. It is easy to find Ti < 0, i = 1, 2, 3, · · · for M ≤ 0 from (2.3) and Di >
0, i = 1, 2, 3, · · · for M ≤ 0 from (2.4), which implies the desired conclusion.

Remark 2.1. In fact, compared with homogenous Neumann boundary conditions,
the stability of e∗ = (u∗, v∗) does not change for M ≤ 0, see [21], but it is very
different for M > 0.

Case II: M > 0

Now we study the stability change of e∗ = (u∗, v∗) when M > 0.

Lemma 2.1. If

(A1) σ > M − µ1(d1 + d2),

then Ti < 0 for all i = 1, 2, 3, · · ·.

Proof. From (2.3), Ti < T1 for i = 2, 3, · · ·. If σ > M − µ1(d1 + d2), then T1 < 0.
Thus we have Ti < 0 for all i = 1, 2, 3, · · ·.

Based on Lemma 2.3, we further justify the sign of Di for all i = 1, 2, 3, · · ·. To

simplify, we denote M̃ =
(d2M + d1σ)2

4d1d2σ
> 0, then M̃ > M > 0.

Theorem 2.2. Let M,d1, d2 > 0 and Ω be a bounded domain with smooth boundary.
Suppose (A1) holds. If p(u∗) > M̃ , then the constant positive equilibrium (u∗, v∗)
of system (1.1) is locally asymptotically stable.

Proof. Note that Di = d1d2µ
2
i −µi(d2A(u, v)+d1D(u, v))+detJ can be regarded

as a quadratic polynomial of µi with the discriminant

ζ(Di) :=(d2A(u∗, v∗) + d1D(u∗, v∗))2 − 4d1d2det(J(u∗,v∗))



Spatial pattern formations in diffusive predator-prey systems 169

=(d2M − d1σ)2 − 4d1d2[p(u∗)−M ]σ, (2.5)

conditions p(u∗) > M̃ > 0 implies that ζ(Di) < 0. Combined with the condition
(A1), (u∗, v∗) is locally asymptotically stable for (1.1).

Remark 2.2. Here we show that if σ > M − µ1(d1 + d2) and p(u∗) > M̃ , the
coexistent equilibrium of system (1.1) with non-homogeneous Dirichlet boundary
conditions is locally asymptotically stable for i = 1, 2, 3, · · ·. The stability of the
coexistence equilibrium to the diffusive predator-prey system (1.1) with Neumann
boundary conditions can be founded in [21].

Theorem 2.3. Let M,d1, d2 > 0 and Ω be a bounded domain with smooth bound-
ary. Suppose (A1) holds, if M < p(u∗) < M , then the constant positive equilibrium

(u∗, v∗) of system (1.1) is locally asymptotically stable, where M = (M−d1µ1)(d2µ1+σ)
σ .

Proof. In order to determine the sign of Di in (2.4), we need to consider the term
of −Mσ + p(u∗)σ. If p(u∗) < M , one can easily see that −Mσ + p(u∗)σ < 0 and
ζ(Di) > 0. We recall from Lemma 2.3, if σ > M − µ1(d1 + d2), then Ti < 0. Note

D1 = d1d2µ
2
1 − µ1(d2M + d1σ) + (p(u∗)−M)σ, if p(u∗) > (M−d1µ1)(d2µ1+σ)

σ = M ,
then D1 > 0 and Di > 0, i = 2, 3, · · ·. Hence the constant positive equilibrium
(u∗, v∗) of system (1.1) is locally asymptotically stable.

Remark 2.3. Theorem 2.6 shows that if σ > M − µ1(d1 + d2) and M < p(u∗) <
M , the coexistence equilibrium of system (1.1) with non-homogeneous Dirichlet
boundary conditions is locally asymptotically stable. Compared with Neumann
boundary conditions, when M < p(u∗) < M , it is easy to check that D0 < 0, then
there exists at least some i such that Di < 0, the constant positive equilibrium
e∗ = (u∗, v∗) is unstable. The change of boundary conditions alters the stable
possibility of e∗ = (u∗, v∗).

At here, we investigate the unstability for the positive equilibrium e∗ = (u∗, v∗)
with hypothesis ζ(Di) > 0. Solving Di = 0 for σ gives the critical point of neutral
stability:

σ = σ(µi) =
d1d2µ

2
i − d2Mµi

M − p(u∗)− d1µi
. (2.6)

Since
dσ

dµi
=
−d2[d1µi − (M − p(u∗))]2 + d2[M − p(u∗)][−p(u∗)]

[d1µi − (M − p(u∗))]2
,

where p(u∗) > M , σ(µi) is increasing with respect to µi for 0 < µi < µi and

decreasing for µi > µi, with µi =

√
[M−p(u∗)][−p(u∗)]+[M−p(u∗)]

d1
. At this critical

wave number µi,

σ(µi) = max{σ(µi), i = 1, 2, · · · n}.

Theorem 2.4. Let M,d1, d2 > 0 and Ω be a bounded domain with smooth boundary.
Suppose that (A1) holds and M < p(u∗) < M̃ .

1 If

σ > σ(µi),

then the constant equilibrium (u∗, v∗) is locally asymptotically stable for system
(1.1).
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2 If

0 < σ < σ(µi),

then the constant equilibrium (u∗, v∗) is unstable for system (1.1).

Proof. If p(u∗) < M̃ , then ζ(Di) > 0. Note that p(u∗) > M and

∂Di

∂σ
= d1µi + p(u∗)−M > 0. (2.7)

So, for i ∈ N , if

σ > σ(µi), (2.8)

then Di > 0 for all i = 1, 2 · · · . So the constant positive equilibrium solution (u∗, v∗)
of system (1.1) is locally asymptotically stable. Moreover, if

0 < σ < σ(µi), (2.9)

then there exists at least one i as Di < 0, then the constant positive equilibrium
solution (u∗, v∗) of system (1.1) is unstable.

3. Steady state bifurcation and Hopf bifurcation

In this section we consider non-constant steady state solutions of (1.1) bifurcating
from the positive constant equilibrium (u∗, v∗), using the predator intrinsic growth
coefficient σ as the main bifurcation parameter while d1 > 0, d2 > 0, σ > 0 and
Ω are fixed. It is clear that the positive constant coexistence steady state (u∗, v∗)
exists and the precise stability information of (u∗, v∗) is determined by the trace and
determinant of Ji(i ≥ 0), which are defined in (2.3) and (2.4). From Theorem 2.8,
the steady state bifurcation occurs at σ = σ(µi). Take σ as the main parameter,
we try to find the steady state bifurcation values σS and Hopf bifurcation values
σH . For simplicity, we rewrite formula (2.3) and (2.4) as

T (σ, q) = −σ − q(d1 + d2) +M, (3.1)

D(σ, q) = d1d2q
2 − d2Mq + [d1q −M + p(u∗)]σ. (3.2)

Then the sets ℵ = {(σ, q) ∈ R+ : T (σ, q) = 0} and < = {(σ, q) ∈ R+ : D(σ, q) =
0} are potential Hopf bifurcation and steady state bifurcation curves sets. The
studies in [15,36,42] show that the geometric properties of ℵ and < play an important
role in the bifurcation analysis of system (1.1).

3.1. Steady state bifurcation

In this subsection, we explore the occurrence of steady state bifurcation at the
steady state (u∗, v∗). Applying the abstract bifurcation theorem in [42], we know
that a steady state bifurcation occurs if there exists a critical value σS for some
integer i ≥ 1, at which

(S1) Di(σ
S) = 0, Ti(σ

S) 6= 0, and Dj(σ
S) 6= 0, for j 6= i;

(S2) ∂Di

∂σ |σS 6= 0.
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Now we claim that there exists some i≥1, such that σSi =σS(µi)=
d1d2µ

2
i−d2Mµi

M−p(u∗)−d1µi

is a steady state bifurcation value. From Di(σ) = 0, we can obtain that σ = σSi =
d1d2µ

2
i−d2Mµi

M−p(u∗)−d1µi
, Then Tj(σ

S) 6= 0, Dj(σ
S) 6= 0 for j 6= i.

Next we verify ∂Di

∂σ |σS
i

= d1µi + p(u∗)−M 6= 0.

Assume ∂Di

∂σ |σS
i

= 0, it is easy to see that d1µi −M + p(u∗) = 0, which implies

that Di(σ
S
i ) = d2µi[d1µi −M ] = −d2µip(u∗) < 0. Indeed one has Di(σ

S
i ) = 0,

therefore ∂Di

∂σ |σS
i
6= 0. Summarizing the discussions above, we obtain the main

result of this section on the global bifurcation of steady state solutions:

Theorem 3.1. Assume that M,d1, d2 > 0 and all eigenvalues µi are simple for
i ≥ 1. If M < p(u∗) < M̃ and there exists some i ≥ 1 such that

σSi = σS(µi) =
d1d2µ

2
i − d2Mµi

M − p(u∗)− d1µi
, (3.3)

then there exists a branch of non-constant positive solutions of system (1.1) bifur-
cating from (u∗, v∗) when σ = σSi , where µi satisfies that µ1 < µ2 < · · · < M/d1
to make sure that σi > 0.

3.2. Hopf bifurcation

In this subsection, we analyze the properties of Hopf bifurcations for (1.1). To
identify Hopf bifurcation values σH , we recall the following sufficient condition
from [42]: (Ti(σ) and Di(σ) are defined in (3.1) and (3.2)).

(H1) : There exists i ≥ 1 such that

Ti(σ
H) = 0, Di(σ

H) > 0 and Tj(σ
H) 6= 0, Dj(σ

H) 6= 0 for j 6= i

for the unique pair of complex eigenvalues near the imaginary axis α(σ)±
iβ(σ),

α′(σH) 6= 0 and β(σH) > 0.

Firstly σHi = σH(µi) = M − µi(d1 + d2) is a Hopf bifurcation point since
Ti(σ

H
i ) = 0, and Tj(σ

H
i ) 6= 0 for any j 6= i. Next we verify that Di(σ

H
i ) > 0. In

fact, from d1 > 0, d2 > 0 and M(p(u∗) −M) > 0, we denote µ± be the two roots
of −d1µ2

i − [2d1M + (d1 + d2)p(u∗)]µi + M(p(u∗) −M) = 0, then µ− < 0 < µ+.
Therefore, for any σ ∈ (0, σ1(µi)), if µi satisfy

µi < µ+, (3.4)

then

Di(σ
H
i ) = d1d2µ

2
i − d2Mµi + [d1µi −M + p(u∗)][M − (d1 + d2)µi] (3.5)

= −d1µ2
i − [2d1M + (d1 + d2)p(u∗)]µi +M(p(u∗)−M) > 0.

Finally Dj(σ
H
i ) 6= 0 if σHi 6= σSj , which also implies that a Hopf bifurcation

point and a steady state bifurcation point do not overlap.
Summarizing our analysis above and applying Theorem 2.1 in [42], we obtain

the following results on the Hopf bifurcations:
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Theorem 3.2. Assume that M,d1, d2 > 0, all eigenvalues µi are simple for i ≥ 1
and µi satisfies condition (3.4). Let σHi = M − µi(d1 + d2), i ≥ 1. If M <

p(u∗) < M̃ , then Hopf bifurcation occurs at σ = σHi and there exists a branch of
nonconstant solutions of system (1.1) bifurcating from (u∗, v∗) for σ = σHi , where
σH1 > σH2 > · · · > 0.

4. Conclusions and numerical simulations

Figure 1. The u-component and v-component of a numerical solution of system (1.1) with
non-homogeneous Dirichlet boundary conditions. Parameter values: p = 0.3, a = 0.1, b =
0.3 × 10−14, d1 = 1000, d2 = 0.1 and the initial condition: (u0(x), v0(x)) = (0.0185 +
0.005 sin(4x), 0.0185 + 0.003 sin(6x)). The positive equilibrium (u∗, v∗) is stable and the solution
converges to (u∗, v∗) = (0.0185, 0.0185).

Figure 2. The u-component and v-component of a numerical solution of system (1.1) with
homogeneous Neumann boundary conditions. Parameter values: p = 0.3, a = 0.1, b = 0.3 ×
10−14, d1 = 1000, d2 = 0.1 and initial condition: (u0(x), v0(x)) = (0.0185 + 0.005 sin(4x), 0.0185 +
0.003 sin(6x)). When only the boundary conditions are changed and the same parameters and
initial value are kept the same as in Figure 1, the solution does not converge to (u∗, v∗) =
(0.0185, 0.0185).

In this paper, we discuss a diffusive predator-prey model with ratio-dependent
functional response subject to non-homogeneous Dirichlet boundary conditions. We
consider the case of linear functional response g(u) = p − bu and Holling-Tanner
type p(u) = u

u+a , where g(u) and p(u) satisfy (a1)-(a2). From Theorems 2.1, 2.4,
2.6, 2.8, 3.1 and 3.2, we obtain a complete picture of the dynamics of system (1.1).
Furthermore, we use some numerical simulations to illustrate our analytical results.
Three sets of parameter were used: (i) p = 0.3, a = 0.1, b = 0.3 × 10−14, σ =
0.001, d1 = 1000, d2 = 0.1; (ii) p = 0.8, a = 0.1, b = 0.3, d1 = 1, d2 = 0.7; (iii)
p = 0.8, a = 0.1, b = 0.3, d1 = 0.002, d2 = 0.001.

With parameter set (i), (A1) and M < p(u∗) < M hold, (u∗, v∗) of system
(1.1) with non-homogeneous Dirichlet boundary conditions is locally asymptotically
stable, as is shown in Figure 1, which confirms the analysis of Theorem 2.6. When
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Figure 3. The u-component and v-component of a numerical solution of system (1.1) with pa-
rameter values: σ = 0.065, p = 0.8, a = 0.1, b = 0.3, d1 = 1, d2 = 0.7 and the initial condition:
(u0(x), v0(x)) = (0.2598 + 0.005 sin(4x), 0.2598 + 0.003 sin(6x)). Since σ = 0.065 > σ(µi) = 0.064,
the positive equilibrium (u∗, v∗) = (0.2598, 0.2598) is stable.

Figure 4. The u-component and v-component of a numerical solution of system (1.1) with pa-
rameter values: σ = 0.063, p = 0.8, a = 0.1, b = 0.3, d1 = 1, d2 = 0.7 and the initial condition:
(u0(x), v0(x)) = (0.2598 + 0.005 sin(4x), 0.2598 + 0.003 sin(6x)). Since σ = 0.063 < σ(µi) = 0.064,
steady state bifurcation occurs resulting non-constant steady states.
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Figure 5. The u-component and v-component of a numerical solution of system (1.1) with param-
eter values: σ = 0.51, p = 0.8, a = 0.1, b = 0.3, d1 = 0.002, d2 = 0.001 and the initial condition:
(u0(x), v0(x)) = (0.2598 + 0.005 sin(4x), 0.2598 + 0.003 sin(6x)). Since σ = 0.51 > σH

1 = 0.4427,
the positive equilibrium (u∗, v∗) is stable and the solution converges to (u∗, v∗) = (0.2598, 0.2598).

σ > M−µ1(d1+d2) and M < p(u∗) < M , (u∗, v∗) of system (1.1) with homogeneous
Neumann boundary conditions becomes unstable, see Figure 2. As shown in Figure
1 and Figure 2, under the same parameters and initial value, compared the former
conditions with the latter conditions, the change of boundary conditions alters the
stability of (u∗, v∗).

With parameter set (ii), (A1) and M < p(u∗) < M̃ hold, there is one steady
state bifurcation value σS1 = 0.064. When σ = 0.065, i.e., σ > σS1 = 0.064, (u∗, v∗)
is stable for system (1.1) (see Figure 3). When σ = 0.063, i.e., σ < σS1 = 0.064,
(u∗, v∗) is unstable and steady state bifurcation occurs, as shown in Figure 4, which
illustrates Theorem 2.8 and Theorem 3.1. We fix p = 0.8, a = 0.1, b = 0.3, d1 =
1, d2 = 0.7 and consider σ as the bifurcation parameter, note that (u∗, v∗) is stable,
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Figure 6. The u-component and v-component of a numerical solution of system (1.1) with pa-
rameter values: σ = 0.4426, p = 0.8, a = 0.1, b = 0.3, d1 = 0.002, d2 = 0.001 and the initial
condition: (u0(x), v0(x)) = (0.2598 + 0.1 sin(x), 0.2598 + 0.1 sin(x)). Since σ = 0.4426 is near
the Hopf bifurcation value σH

1 = 0.4427, the solution converges to a spatially non-homogeneous
periodic orbit.

if σ > 0.064 and becomes unstable if σ ∈ (0, 0.064). Choosing σ = 0.063 < σS1 =
0.064, our numerical simulation confirms that (u∗, v∗) becomes unstable. Moreover,
simulation suggests that there is one spatially non-homogeneous steady state and
it is stable, the solution with σ = 0.063 < σS1 converges to one spatially non-
homogeneous steady state, see Figure 4.

With parameter set (iii), M < p(u∗) < M̃ holds, there are 25 Hopf bifurcation
values. When σ = 0.51, i.e. σ > σH1 = 0.4427, (u∗, v∗) is stable for system
(1.1), see Figure 5. When σ < σH1 , (u∗, v∗) is unstable, for σ decreases the first
bifurcation point encountered is σH1 , and Hopf bifurcation occurs, and spatially
non-homogeneous periodic orbit exists, which illustrates Theorem 3.2. Choose σ =
0.4426 which is near the Hopf bifurcation value σH1 = 0.4427, as is shown in Figure
6, the solution converges to a spatially non-homogeneous periodic orbit.

Remark 4.1. Since T0 and D0 are strictly greater or less than zero, there is no
spatially homogeneous Hopf/steady state bifurcation considered in the paper. But
we obtain spatially non-homogeneous Hopf bifurcation, also as shown in Figure 5,
Figure 6.
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