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1. Introduction
The study of systems of fractional differential equations is an important area of
investigation as such systems appear in various problems of applied nature; for
instance, see [5, 6, 9]. For theoretical development (existence theory) of coupled
fractional differential equations, we refer the reader to the articles [1–3, 7, 10, 11]
and the references cited therein.

In this paper, we initiate the study of fractional order mixed nonlinear coupled
systems involving both Riemann-Liouville and Caputo fractional derivatives, sup-
plemented with coupled integro-differential boundary conditions. Precisely, we are
concerned with the existence and uniqueness of solutions for the following problem:

RLDq(CDrx(t)) = f(t, x(t), y(t)), 0 < t < T,

CDr(RLDqy(t)) = g(t, x(t), y(t)), 0 < t < T,

x′(ξ) = λ CDνy(η), x(T ) = µ Ipy(ζ), ξ, η, ζ ∈ (0, T ),

y(0) = 0, y(T ) = µ1I
p1x(ζ1), ζ1 ∈ (0, T ),

(1.1)
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where RLDq is the standard Riemann-Liouville fractional derivative of order q ∈
(0, 1), CDr,CDν are the Caputo fractional derivatives of order r ∈ (0, 1) and ν ∈
(0, 1) respectively with q + r > 1, Ip, Ip1 are the Riemann-Liouville fractional
integrals of order p > 0, p1 > 0, f, g : J × R× R → R are continuous functions and
λ, µ, µ1 ∈ R.

Here the left-hand side of the first equation in (1.1) can be interpreted as follows:
the quantity x(t), expressed as CDrx(t) = xm(t) (say), means that the input values
of x(t) appear in form of the power-weighted sum in terms of Caputo-fractional
differential operator. Thus RLDqxm(t) represents the Riemann-Liouville fractional
derivative of the input values xm(t). So the system (1.1) consists of fractional
variational functional equations. For details, we refer the reader to the text [8].

We apply Leray-Schauder alternative and Banach fixed point theorem to obtain
the existence and uniqueness results for the problem at hand. Our results are new
and significantly enhance the literature on the topic.

The rest of the paper is organized as follows. In Section 2, we recall some basic
definitions of fractional calculus and present an auxiliary lemma, which plays a
key role in obtaining the main results presented in Section 3. We also discuss an
example illustrating the existence and uniqueness result.

2. Preliminaries
We recall some basic definitions of fractional calculus.

Definition 2.1. The Riemann–Liouville fractional integral of order α ∈ R (α > 0)
for a locally integrable real-valued function g on −∞ ≤ a < t < b ≤ +∞ is defined
as

Iαa g (t) = (g ∗Kα) (t) =
1

Γ (α)

t∫
a

(t− s)
α−1

g (s)ds,

where Kα(t) =
tα−1

Γ(α) and Γ(r) =
∫∞
0

tr−1e−tdt.

Definition 2.2. Let g ∈ L1[a, b], −∞ ≤ a < t < b ≤ +∞ and g ∗ Km−α ∈
Wm,1[a, b],m = [α] + 1, α > 0, where Wm,1[a, b] is the Sobolev space defined as

Wm,1[a, b] =

{
g ∈ L1[a, b] :

dm

dtm
g ∈ L1[a, b]

}
.

The Riemann–Liouville fractional derivative Dα
a g of order α > 0 (m − 1 < α <

m, m ∈ N) is defined as

Dα
a g (t) =

dm

dtm
Im−α
a g (t) =

1

Γ (m− α)

dm

dtm

t∫
a

(t− s)
m−1−α

g (s)ds.

In terms of Riemann–Liouville fractional differential operator Dα
a , the Caputo

fractional derivative cDα
a g (t) is defined by

cDα
a g (t) = Dα

a

[
g (t)− g (a)− g′ (a)

(t− a)

1!
− . . .− g(m−1) (a)

(t− a)m−1

(m− 1)!

]
.
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Remark 2.1. If g ∈ Cm[a, b], then the Caputo fractional derivative cDα
a of order

α ∈ R (m− 1 < α < m, m ∈ N) is defined as

cDα
a [g] (t) = Im−α

a g(m) (t) =
1

Γ (m− α)

t∫
a

(t− s)
m−1−α

g(m) (s)ds.

In the sequel, the Riemann–Liouville fractional integral Iαa and the Caputo frac-
tional derivative cDα

a with a = 0 are respectively denoted by Iα and cDα.

Lemma 2.1 (see [6]). For y ∈ C(0, T ) ∩ L(0, T ) and q > 0, the following relation
holds:

RLIq
(
CDqy

)
(t) = y(t) + c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n− 1 and n = [q] + 1.

In the following lemma, we solve the linear variant of the system (1.1), which
plays a fundamental role in the forthcoming analysis.

Lemma 2.2. Let Λ := −AΓ2+B(A1Γ2−A2Γ1)+A2Γ0 ̸= 0 and f1, g1 ∈ C([0, T ],R).
Then the linear system

RLDq(CDrx(t)) = f1(t), 0 < t < T,

CDr(RLDqy(t)) = g1(t), 0 < t < T,

x′(ξ) = λ CDνy(η), x(T ) = µ Ipy(ζ), ξ, η, ζ ∈ (0, T ),

y(0) = 0, y(T ) = µ1I
p1x(ζ1), ζ1 ∈ (0, T ),

(2.1)

is equivalent to a system of integral equations:

x(t) = Iq+rf1(t) +
Γ(q)

Γ(q + r)

tq+r−1

Λ

[
− Γ2

(
Iq+rg1(T )− µ1I

p1+q+rf1(ζ1)
)

+BΓ2

(
µIq+r+pg1(ξ)− Iq+rf1(T )

)
+(Γ0 −BΓ1)

(
λIq+r−νg1(η)− Iq+r−1f1(ξ)

)]
+
1

Λ

[
(A1Γ2 −A2Γ1)

(
Iq+rg1(T )− µ1I

p1+q+rf1(ζ1)
)

+(A2Γ0 −AΓ2)
(
µIq+r+pg1(ζ)− Iq+rf1(T )

)
+(AΓ1 −A1Γ0)

(
λIq+r−νg1(η)− Iq+r−1f1(ξ)

)]
, (2.2)

y(t) = Iq+rg1(t) +
Γ(q)

Γ(q + r)

tq

Λ

[
−A2

(
Iq+rg1(T )− µ1I

p1+q+rf1(ζ1)
)

+A2B
(
µIq+r+pg1(ζ)− Iq+rf1(T )

)
+(A−A1B)

(
λIq+r−νg1(η)− Iq+r−1f1(ξ)

)]
, (2.3)

where

A = µ1
Γ(q)

Γ(q + r)
ζp1+q+r−1
1 , A1 =

Γ(q)

Γ(q + r)
T q+r−1, A2 =

Γ(q)

Γ(q + r − 1)
ξq+r−2,

B =
µ1

Γ(1 + p1)
ζp1

1 , Γ0=
1

Γ(1+q)
T q, Γ1=

µ

Γ(q+r+1)
, Γ2=λ

1

Γ(q+1−ν)
ηq−ν .
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Proof. Applying the Riemann-Liouville fractional integral of order q to both sides
of the first equation in (2.1) and using Lemma 2.1, we get

CDrx(t) = Iqf1(t) + c1t
q−1, (2.4)

where c1 ∈ R is an unknown arbitrary constant. Operating the Riemann-Liouville
fractional integral of order r on both sides (2.4) yields

x(t) = Iq+rf1(t) + c1
Γ(q)

Γ(q + r)
tq+r−1 + c2, (2.5)

where c2 ∈ R is an unknown arbitrary constant.
Now applying firstly the Riemann-Liouville fractional integral of order r to both

sides of the second equation in (2.1), and then Riemann-Liouville fractional integral
of order q to the resulting equation, we obtain

y(t) = Iq+rg1(t) + d1
1

Γ(1 + q)
tq + d2t

q−1, (2.6)

where d1, d2 ∈ R are unknown arbitrary constants. Using y(0) = 0 in (2.6) implies
that d2 = 0. Thus, from (2.5) and (2.6), we have

x′(t) = Iq+r−1f1(t) + c1
Γ(q)

Γ(q + r − 1)
tq+r−2,

CDνy(t) = Iq+r−νg1(t) + d1
Γ(q)

Γ(q + 1− ν)
tq−ν ,

Ipy(t) = Iq+r+pg1(t) + d1
Γ(q)

Γ(q + p+ 1)
tq+p,

Ip1x(t) = Iq+r+p1f1(t) + c1
Γ(q)

Γ(q + r + p1)
tq+r+p1−1 + c2

1

Γ(1 + p1)
tp1 .

Making use of the remaining boundary conditions given by (2.1) into (2.5) and (2.6)
together with above expressions, and setting

P = Iq+rg1(T )− µ1I
p1+q+rf1(ζ1),

Q = µIq+r+pg1(ξ)− Iq+rf1(T ),

R = λIq+r−νg1(η)− Iq+r−1f1(ξ),

we obtain the following system:
Ac1 +Bc2 − Γ0d1 = P,

A1c1 + c2 − Γ1d1 = Q,

A2c1 − Γ2d1 = R.

Solving the above system for the unknown constants c1, c2, and d1 yields

c1 =
1

Λ

[
− Γ2P +BΓ2Q+ (Γ0 −BΓ1)R

]
,

c2 =
1

Λ

[
(A1Γ2 −A2Γ1)P + (A2Γ0 −AΓ2)Q+ (AΓ1 −A1Γ0)R

]
,

d1 =
1

Λ

[
−A2P +A2BQ+ (A−A1B)R

]
.

Inserting the values of c1, c2 and d1 in (2.5) and (2.6), we find the required solution
given by (2.2) and (2.3). The converse follows by direct computation. The proof is
completed.
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3. Main Results
Let us introduce the space X = C([0, T ]) endowed with the norm ∥x∥ = sup{|x(t)|, t ∈
[0, T ]}. Obviously (X, ∥ · ∥) is a Banach space. Then the product space (X ×
X, ∥(x, y)∥) is also a Banach space equipped with norm ∥(x, y)∥ = ∥x∥+ ∥y∥.

In view of Lemma 2.2, we define an operator T : X ×X → X ×X by

T (x, y)(t) =

T1(x, y)(t)

T2(x, y)(t)

 , (3.1)

where

T1(x, y)(t) = Iq+rf̄(t) +
Γ(q)

Γ(q + r)

tq+r−1

Λ

[
− Γ2

(
Iq+r ḡ(T )− µ1I

p1+q+rf̄(ζ1)
)

+BΓ2

(
µIq+r+pḡ(ξ)− Iq+rf̄(T )

)
+(Γ0 −BΓ1)

(
λIq+r−ν ḡ(η)− Iq+r−1f̄(ξ)

)]
+
1

Λ

[
(A1Γ2 −A2Γ1)

(
Iq+r ḡ(T )− µ1I

p1+q+rf̄(ζ1)
)

+(A2Γ0 −AΓ2)
(
µIq+r+pḡ(ζ)− Iq+rf̄(T )

)
+(AΓ1 −A1Γ0)

(
λIq+r−ν ḡ(η)− Iq+r−1f̄(ξ)

)]
(3.2)

and

T2(x, y)(t) = Iq+rg1(t) +
Γ(q)

Γ(q + r)

tq

Λ

[
−A2

(
Iq+r ḡ(T )− µ1I

p1+q+rf̄(ζ1)
)

+A2B
(
µIq+r+pḡ(ζ)− Iq+rf̄(T )

)
+(A−A1B)

(
λIq+r−ν ḡ(η)− Iq+r−1f̄(ξ)

)]
, (3.3)

where
f̄(t) = f(t, x(t), y(t)), ḡ(t) = g(t, x(t), y(t)).

For computational convenience, we introduce the notations:

Q0 =
Γ(q)

Γ(q + r)

T q+r−1

|Λ|
, Q̄0 =

Γ(q)

Γ(q + r)

T q

|Λ|
, (3.4)

Q1 =
T q+r

Γ(q + r + 1)
+Q0

[
|µ1|

ζp1+q+r
1

Γ(p1 + q + r + 1)
+ |BΓ2|

T q+r

Γ(q + r + 1)

+|Γ0 −BΓ1|
ξq+r−1

Γ(q + r)

]
+

1

|Λ|

[
|A1Γ2 −A2Γ1||µ1|

ζp1+q+r
1

Γ(p1 + q + r + 1)
(3.5)

+|A2Γ0 −AΓ2|
T q+r

Γ(q + r + 1)
+ |AΓ1 −A1Γ|

ξq+r−1

Γ(q + r)

]
,

Q2 = Q0

[
|Γ2|

T q+r

Γ(q + r + 1)
+ |BΓ2||µ|

ξq+r+p

Γ(q + r + p+ 1)
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+|Γ0 −BΓ1||λ|
ηq+r−ν

Γ(q + r − ν + 1)

]
+

1

|Λ|

[
|A1Γ2 −A2Γ1|

T q+r

Γ(q + r + 1)
(3.6)

+|A2Γ0 −AΓ2||µ|
ζq+r+p

Γ(q + r + p+ 1)
+ |AΓ1 −A1Γ||λ|

ηq+r−ν

Γ(q + r − ν + 1)

]
,

Q3 = Q̄0

[
|A2||µ1|

ζp1+q+r
1

Γ(p1 + q + r + 1)
+ |A2B| T q+r

Γ(q + r + 1)

+|A−A1B| ξ
q+r−1

Γ(q + r)

]
, (3.7)

Q4 =
T q+r

Γ(q + r + 1)
+ Q̄0

[
|A2|

T q+r

Γ(q + r + 1)
+ |A2B||µ| ζq+r+p

Γ(q + r + p+ 1)

+|A2B||λ| ηq+r−ν

Γ(q + r − ν)

]
. (3.8)

In the following theorem, we prove the existence and uniqueness of solutions to
the system (1.1) via Banach contraction mapping principle.

Theorem 3.1. Assume that:

(H1) f, g : [0, T ]×R×R → R are continuous functions and that there exist positive
constants ℓ1 and ℓ2 such that for all t ∈ [0, T ] and xi, yi ∈ R, i = 1, 2, we
have

|f(t, x1, x2)− f(t, y1, y2)| ≤ ℓ1(|x1 − y1|+ |x2 − y2|),
|g(t, x1, x2)− g(t, y1, y2)| ≤ ℓ2(|x1 − y1|+ |x2 − y2|).

Then there exists a unique solution for the the system (1.1) on [0, T ], provided that

(Q1 +Q3)ℓ1 + (Q2 +Q4)ℓ2 < 1,

where Qi, i = 0, 1, 2, 3, 4 are given by (3.4)-(3.8).

Proof. Define supt∈[0,T ] f(t, 0, 0) = N1 < ∞, supt∈[0,T ] g(t, 0, 0) = N2 < ∞ and a
positive number r such that

r >
(Q1 +Q3)N1 + (Q2 +Q4)N2

1− (Q1 +Q3)ℓ1 − (Q2 +Q4)ℓ2
.

Then we show that TBr ⊂ Br, where Br = {(x, y) ∈ X ×X : ∥(x, y)∥ ≤ r}.
By the assumption (H1), for (u, v) ∈ Br, t ∈ [0, T ], we have

|f(t, x(t), y(t))| ≤ |f(t, x(t), y(t))− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ ℓ1(|x(t)|+ |y(t)|) +N1

≤ ℓ1(∥x∥+ ∥y∥) +N1 ≤ ℓ1r +N1

and
|g(t, x(t), y(t))| ≤ ℓ2(∥x∥+ ∥y∥) +N2 ≤ ℓ2r +N2.
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In consequence, we obtain

|T1(x, y)(t)|

≤ Iq+r|f̄(t)|+ Γ(q)

Γ(q + r)

T q+r−1

|Λ|

[
|Γ2|

(
Iq+r|ḡ(T )|+ |µ1|Ip1+q+r|f̄(ζ1)|

)
+|BΓ2|

(
|µ|Iq+r+p|ḡ(ξ)|+ Iq+r|f̄(T )|

)
+|Γ0 −BΓ1|

(
|λ|Iq+r−ν |ḡ(η)|+ Iq+r−1|f̄(ξ)|

)]
+

1

|Λ|

[
|A1Γ2 −A2Γ1|

(
Iq+r|ḡ(T )|+ |µ1|Ip1+q+r|f̄(ζ1)|

)
+|A2Γ0 −AΓ2|

(
|µ|Iq+r+p|ḡ(ζ)|+ Iq+r|f̄(T )|

)
+|AΓ1 −A1Γ0|

(
|λ|Iq+r−ν |ḡ(η)|+ Iq+r−1|f̄(ξ)|

)]
≤ T q+r

Γ(q + r + 1)
(ℓ1r +N1) +

Γ(q)

Γ(q + r)

T q+r−1

|Λ|

[
|Γ2|

T q+r

Γ(q + r + 1)
(ℓ2r +N2)

+|µ1|
ζp1+q+r
1

Γ(p1 + q + r + 1)
(ℓ1r +N1)

)
+|BΓ2|

(
|µ| ξq+r+p

Γ(q + r + p+ 1)
(ℓ2r +N2) +

T q+r

Γ(q + r + 1)
(ℓ1r +N1)

)
+|Γ0 −BΓ1|

(
|λ| ηq+r−ν

Γ(q + r − ν + 1)
(ℓ2r +N2) +

ξq+r−1

Γ(q + r)
(ℓ1r +N1)

)]
+

1

|Λ|

[
|A1Γ2−A2Γ1|

( T q+r

Γ(q+r+1)
(ℓ2r+N2)+|µ1|

ζp1+q+r
1

Γ(p1+q+r+1)
(ℓ1r+N1)

)
+|A2Γ0 −AΓ2|

(
|µ| ζq+r+p

Γ(q + r + p+ 1)
(ℓ2r +N2) +

T q+r

Γ(q + r + 1)
(ℓ1r +N1)

)
+|AΓ1 −A1Γ0|

(
|λ| ηq+r−ν

Γ(qr − ν + 1)
(ℓ2r +N2) +

ξq+r−1

Γ(q + r)
(ℓ1r +N1)

)]
= (Q1ℓ1 +Q2ℓ2)r +Q1N1 +Q2N2,

which implies that

∥T1(x, y)∥ ≤ (Q1ℓ1 +Q2ℓ2)r +Q1N1 +Q2N2.

In the same way, we can find that

∥T2(x, y)∥ ≤ (Q3ℓ1 +Q4ℓ2)r +Q3N1 +Q4N2.

From the above inequalities, it follows that

∥T (x, y)∥ ≤ [(Q1 +Q3)ℓ1 + (Q2 +Q4)ℓ2]r + (Q1 +Q3)N1 + (Q2 +Q4)N2 ≤ r.

Next, for (x2, y2), (x1, y1) ∈ X ×X, and for any t ∈ [0, T ], we get

|T1(x2, y2)(t)− T1(x1, y1)(t)|

≤ T q+r

Γ(q + r + 1)
ℓ1(∥x2 − x1∥+ ∥y2 − y1∥)



Fractional mixed coupled systems 899

+
Γ(q)

Γ(q + r)

T q+r−1

|Λ|

[
|Γ2|

( T q+r

Γ(q + r + 1)
ℓ2(∥x2 − x1∥+ ∥y2 − y1∥)

+|µ1|
ζp1+q+r
1

Γ(p1 + q + r + 1)
ℓ1(∥x2 − x1∥+ ∥y2 − y1∥)

)
+|BΓ2|

(
|µ| ξq+r+p

Γ(q + r + p+ 1)
ℓ2(∥x2 − x1∥+ ∥y2 − y1∥)

+
T q+r

Γ(q + r + 1)
ℓ1(∥x2 − x1∥+ ∥y2 − y1∥)

)
+|Γ0 −BΓ1|

(
|λ| ηq+r−ν

Γ(q + r − ν + 1)
ℓ2(∥x2 − x1∥+ ∥y2 − y1∥)

+
ξq+r−1

Γ(q + r)
ℓ1(∥x2 − x1∥+ ∥y2 − y1∥)

)]
+

1

|Λ|

[
|A1Γ2 −A2Γ1|

( T q+r

Γ(q + r + 1)
ℓ2(∥x2 − x1∥+ ∥y2 − y1∥)

+|µ1|
ζp1+q+r
1

Γ(p1 + q + r + 1)
ℓ1(∥x2 − x1∥+ ∥y2 − y1∥)

)
+|A2Γ0 −AΓ2|

(
|µ| ζq+r+p

Γ(q + r + p+ 1)
ℓ2(∥x2 − x1∥+ ∥y2 − y1∥)

+
T q+r

Γ(q + r + 1)
ℓ1(∥x2 − x1∥+ ∥y2 − y1∥)

)
+|AΓ1 −A1Γ0|

(
|λ| ηq+r−ν

Γ(qr − ν + 1)
ℓ2(∥x2 − x1∥+ ∥y2 − y1∥)

+
ξq+r−1

Γ(q + r)
ℓ1(∥x2 − x1∥+ ∥y2 − y1∥)

)]
≤ (Q1ℓ1 +Q2ℓ2)(∥x2 − x1∥+ ∥y2 − y1∥),

which leads to

∥T1(x2, y2)− T1(x1, y1)∥ ≤ (Q1ℓ1 +Q2ℓ2)(∥x2 − x1∥+ ∥y2 − y1∥). (3.9)

Similarly, one can obtain

∥T2(x2, y2)(t)− T2(x1, y1)∥ ≤ (Q3ℓ1 +Q4ℓ2)(∥x2 − x1∥+ ∥y2 − y1∥). (3.10)

From (3.9) and (3.10), we deduce that

∥T (x2, y2)− T (x1, y1)∥ ≤ [(Q1 +Q3)ℓ1 + (Q2 +Q4)ℓ2](∥x2 − x1∥+ ∥y2 − y1∥).

Since (Q1 +Q3)ℓ1 + (Q2 +Q4)ℓ2 < 1, therefore, T is a contraction. So, by Banach
fixed point theorem, the operator T has a unique fixed point, which corresponds to
a unique solution of problem (1.1). This completes the proof.

The second result is based on Leray-Schauder alternative.

Lemma 3.1 (Leray-Schauder alternative, [4] p. 4.). Let F : E → E be a completely
continuous operator (i.e., a map that restricted to any bounded set in E is compact).
Let

E(F ) = {x ∈ E : x = λF (x) for some 0 < λ < 1}.
Then either the set E(F ) is unbounded, or F has at least one fixed point.
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Theorem 3.2. Assume that:

(H3) f, g : [0, T ] × R × R → R are continuous functions and that there exist real
constants ki, γi ≥ 0, (i = 0, 1, 2) with k0 > 0, γ0 > 0 such that, ∀xi ∈ R, (i =
1, 2),

|f(t, x1, x2)| ≤ k0 + k1|x1|+ k2|x2|,
|g(t, x1, x2)| ≤ γ0 + γ1|x1|+ γ2|x2|.

If

(Q1 +Q3)k1 + (Q2 +Q4)γ1 < 1 and (Q1 +Q3)k2 + (Q2 +Q4)γ2 < 1, (3.11)

where Qi, i = 0, 1, 2, 3, 4, are given by (3.4)-(3.8), then the system (1.1) has at least
one solution on [0, T ].

Proof. Firstly we show that the operator T : X ×X → X ×X defined by (3.1) is
completely continuous. Notice that continuity of the operator T follows from that
of the functions f and g.

Let Ω ⊂ X × X be bounded. Then there exist positive constants L1 and L2

such that |f(t, x(t), y(t))| ≤ L1, |g(t, x(t), y(t))| ≤ L2, ∀(x, y) ∈ Ω. Then, for any
(x, y) ∈ Ω, we have

|T1(x, y)(t)| ≤
T q+r

Γ(q + r + 1)
L1 +

Γ(q)

Γ(q + r)

T q+r−1

|Λ|

[
|Γ2|

( T q+r

Γ(q + r + 1)
L2

+|µ1|
ζp1+q+r
1

Γ(p1 + q + r + 1)
L1

)
+|BΓ2|

(
|µ| ξq+r+p

Γ(q + r + p+ 1)
L2 +

T q+r

Γ(q + r + 1)
L1

)
+|Γ0 −BΓ1|

(
|λ| ηq+r−ν

Γ(q + r − ν + 1)
L2 +

ξq+r−1

Γ(q + r)
L1

)]
+

1

|Λ|

[
|A1Γ2 −A2Γ1|

( T q+r

Γ(q + r + 1)
L2 + |µ1|

ζp1+q+r
1

Γ(p1 + q + r + 1)
L1

)
+|A2Γ0 −AΓ2|

(
|µ| ζq+r+p

Γ(q + r + p+ 1)
L2 +

T q+r

Γ(q + r + 1)
L1

)
+|AΓ1 −A1Γ0|

(
|λ| ηq+r−ν

Γ(qr − ν + 1)
L2 +

ξq+r−1

Γ(q + r)
L1

)]
= Q1L1 +Q2L2,

which implies that
∥T1(x, y)∥ ≤ Q1L1 +Q2L2.

In a similar manner, one can find that

∥T2(x, y)∥ ≤ Q3L1 +Q4L2.

Thus, it follows from the above inequalities that the operator T is uniformly bounded,
since ∥T (x, y)|| ≤ (Q1 +Q3)L1 + (Q2 +Q4)L2.
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Next, we show that T is equicontinuous. Let t1, t2 ∈ [0, T ] with t1 < t2. Then
we have

|T1(x(t2), y(t2))− T1(x(t1), y(t1))|

≤ L1

{
1

Γ(q+r)

∫ t1

0

[(t2−s)q+r−1−(t1−s)q+r−1]ds+
1

Γ(q+r)

∫ t2

t1

(t2−s)q+r−1ds

}

+
Γ(q)

Γ(q + r)

|tq+r−1
2 − tq+r−1

1 |
|Λ|

[
|Γ2|

( T q+r

Γ(q + r + 1)
L2 + |µ1|

ζp1+q+r
1

Γ(p1 + q + r + 1)
L1

)
+|BΓ2|

(
|µ| ξq+r+p

Γ(q + r + p+ 1)
L2 +

T q+r

Γ(q + r + 1)
L1

)
+|Γ0 −BΓ1|

(
|λ| ηq+r−ν

Γ(q + r − ν + 1)
L2 +

ξq+r−1

Γ(q + r)
L1

)]
≤ L1

Γ(q + r + 1)
[2(t2 − t1)

q+r + |tq+r
2 − tq+r

1 |]

+
Γ(q)

Γ(q + r)

|tq+r−1
2 − tq+r−1

1 |
|Λ|

[
|Γ2|

( T q+r

Γ(q + r + 1)
L2 + |µ1|

ζp1+q+r
1

Γ(p1 + q + r + 1)
L1

)
+|BΓ2|

(
|µ| ξq+r+p

Γ(q + r + p+ 1)
L2 +

T q+r

Γ(q + r + 1)
L1

)
+|Γ0 −BΓ1|

(
|λ| ηq+r−ν

Γ(q + r − ν + 1)
L2 +

ξq+r−1

Γ(q + r)
L1

)]
.

Analogously, we can obtain
|T2(x(t2), y(t2))− T2(x(t1), y(t1))|

≤ L2

Γ(q + r + 1)
[2(t2 − t1)

q+r + |tq+r
2 − tq+r

1 |]

+
Γ(q)

Γ(q + r)

|tq2 − tq1|
|Λ|

[
|A2|

( T q+r

Γ(q + r + 1)
L2 + |µ1|

ζp1+q+r
1

Γ(p1 + q + r + 1)
L1

)
+|A2B|

(
|µ| ζq+r+p

Γ(q + r + p+ 1)
L2 +

T q+r

Γ(q + r + 1)
L1

)
+|A−A1B|

(
|λ| ηq+r−ν

Γ(q + r − ν)
L2 +

ξq+r−1

Γ(q + r)
L1

)]
.

Thus the operator T (x, y) is equicontinuous. In view of the foregoing arguments,
we deduce that the operator T (x, y) is completely continuous.

Finally, it will be verified that the set E = {(x, y) ∈ X×X|(x, y) = λT (x, y), 0 ≤
λ ≤ 1} is bounded. Let (x, y) ∈ E , with (x, y) = λT (x, y). For any t ∈ [0, T ], we
have

x(t) = λT1(x, y)(t), y(t) = λT2(x, y)(t).

Then
|x(t)| ≤ Q1(k0 + k1|x|+ k2|y|) +Q2(γ0 + γ1|x|+ γ2|y|)

= Q1k0 +Q2γ0 + (Q1k1 +Q2γ1)|x|+ (Q1k2 +Q2γ2)|y|

and
|y(t)| ≤ Q3(k0 + k1|x|+ k2|y|) +Q4(γ0 + γ1|x|+ γ2|y|)

= Q3k0 +Q4γ0 + (Q3k1 +Q4γ1)|x|+ (Q3k2 +Q4γ2)|y|.
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In consequence, we have

∥x∥ ≤ Q1k0 +Q2γ0 + (Q1k1 +Q2γ1)∥x∥+ (Q1k2 +Q2γ2)∥y||

and
∥y∥ ≤ Q3k0 +Q4γ0 + (Q3k1 +Q4γ1)∥x∥+ (Q3k2 +Q4γ2)∥y∥,

which imply that

∥x∥+ ∥y∥ ≤ (Q1 +Q3)k0 + (Q2 +Q4)γ0 + [(Q1 +Q3)k1 + (Q2 +Q4)γ1]∥x∥
+[(Q1 +Q3)k2 + (Q2 +Q4)γ2)]∥y∥.

Thus we have
∥(x, y)∥ ≤ (Q1 +Q3)k0 + (Q2 +Q4)γ0

M0
,

where M0 = min{1− [(Q1+Q3)k1+(Q2+Q4)γ1], 1− [(Q1+Q3)k2+(Q2+Q4)γ2)]},
which establishes that the set E is bounded. Thus, by Lemma 3.1, the operator T
has at least one fixed point. Hence the system (1.1) has at least one solution. The
proof is complete.

Example 3.1. Consider the following boundary value problem of coupled nonlinear
fractional differential equations

RLD4/5
(
CD1/2x(t)

)
(t) =

1

8(t+ 2)2
|x|

1 + |x|
+ 1 +

1

64
sin2 y, 0 < t < 3,

CD1/2(RLD4/5y(t)) =
1

64π
sin(2πx) +

|y|
32(1 + |y|)

+
1

2
, 0 < t < 3,

x′(1/2) = (1/12) CD1/2y(1/3), x(3) = 2 I2/3y(1/2),

y(0) = 0, y(3) = (1/2)I1/2x(1/4).

(3.12)

Here q = 4/5, r = 1/2, ξ = 1/2, λ = 1/12, ν = 1/2, η = 1/3, T = 3,
µ = 2, p = 2/3, ζ = 1/2, µ1 = 1/2, p1 = 1/2, ζ1 = 1/4. With these data we
find A ≈ 0.069498, A1 ≈ 1.546083, A2 ≈ 0.684503, B ≈ 0.282040, Γ0 ≈ 2.585643,
Γ1 ≈ 1.714220, Γ2 ≈ 0.092930, Λ ≈ 1.473003, Q0 ≈ 1.049991, Q̄0 ≈ 1.817985,
Q1 ≈ 6.24681, Q2 ≈ 4.728334, Q3 ≈ 1.889017, Q4 ≈ 8.732422. From f(t, x, y) =

1

8(t+ 2)2
|x|

1 + |x|
+ 1 +

1

64
sin2 y, and g(t, x, y) =

1

64π
sin(2πx) +

|y|
32(1 + |y|)

+
1

2
,

we have ℓ1 = ℓ2 = 1
32as |f(t, x1, x2) − f(t, y1, y2)| ≤ 1

32
(|x1 − x2| + |y1 − y2|),

|g(t, x1, x2)−g(t, y1, y2)| ≤
1

32
(|x1−x2|+|y1−y2|). Then (Q1+Q3)ℓ1+(Q2+Q4)ℓ2 ≈

0.674892 < 1. Thus all the conditions of Theorem 3.1 are satisfied and consequently,
its conclusion applies to the problem (3.12).

4. Conclusions
We proved the existence of solutions for a nonlinear mixed coupled system of frac-
tional differential equations involving Riemann-Liouville as well as Caputo frac-
tional derivatives, equipped with coupled integro-differential boundary conditions.
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By fixing the parameters involved in the given problem, we can obtain some new
results as special cases of the present work. For instance, if we take λ = 0, µ =
0, µ1 = 0, our results correspond to the uncoupled three-point nonlocal boundary
conditions of the form: x′(ξ) = 0, x(T ) = 0; y(0) = 0, y(T ) = 0, ξ ∈ (0, T ). Let-
ting µ1 = 0 in the results of this paper, we obtain the ones for a coupled system
of differential equations involving both Riemann-Liouville and Caputo fractional
derivatives, subject to the boundary conditions: x′(ξ) = λ CDνy(η), x(T ) =
µ Ipy(ζ); y(0) = 0, y(T ) = 0, ξ, η, ζ ∈ (0, T ).
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