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Abstract In this paper, the problem of a class of multidimensional fourth-
order nonlinear Schrödinger equation including the derivatives of the unknown
function in the nonlinear term is studied, and the existence of global weak
solutions of nonlinear Schrödinger equation is proved by the Galerkin method
according to the different values of λ.
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1. Introduction

In this paper, we consider the following multidimensional fourth-order nonlinear
Schrödinger equation (1.1) with initial boundary values (1.2) and (1.3)

iut + ∆2u+ λ

n∑
j=1

∂

∂xj

(
| ∂u
∂xj
|p−2 ∂u

∂xj

)
− α∆|u|2u+ β(x)f(|u|2)u = 0, (1.1)

u|t=0 = u0(x), x ∈ Ω, (1.2)

u|∂Ω = 0, ∆u|∂Ω = 0, t ≥ 0, (1.3)

where Ω is a bounded smooth domain, u(x, t) = (u1(x, t), u2(x, t), · · · , un(x, t)) is
a complex-valued vector function, f(s) is a real-valued function satisfying |f(s)| ≤
Asq +B, with A,B > 0, and q ≥ 0, α > 0 is a real number and β(x) is a given real-
valued bounded function. The initial data u0(x) is a given complex-valued function,
and the boundary condition is taken to be the Dirichlet boundary condition for both
u and ∆u on the boundary ∂Ω.

The nonlinear Schrödinger (NLS) equation arises from the study of nonlinear
wave propagation in dispersive and inhomogeneous media, such as plasma phe-
nomena and non-uniform dielectric media [8]. In recent years, many studies have
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been devoted to the nonlinear Schrödinger equations with a variety of nonlineari-
ties. Some methods, theoretical, numerical or analytical, have been used to deal
with these problems. The fourth-order physical models occur in various areas of
physics, including nonlinear optics, plasma physics, superconductivity and quan-
tum mechanics [1, 4, 6]. Several exact solutions were obtained for the fourth-order
nonlinear Schrodinger equation with cubic and power law nonlinearities in [11].
Karpman investigated the stability of the soliton solutions to the fourth-order non-
linear Schrödinger equations with arbitrary power nonlinearities in different space
dimensions in [7]. Guo and Cui obtained the global existence of solutions for a
fourth-order nonlinear Schrödinger equation in [3]. Huo and Jia in [5] considered
the Cauchy problem for the fourth-order nonlinear Schrödinger equation related to
the vortex filament. In this paper, we study the global existence of weak solutions
for the initial boundary problem of the more general nonlinear Schrödinger equa-
tion. In particular, we will establish global existence of weak solutions for equations
(1.1)-(1.3), which is different from that considered in [3] in several aspects. Also, the
present results extend the results of [2] in the following aspects. Firstly, compared
to the condition n < 4 in [2], we can prove that weak solutions exist for n < 6.
Secondly, the emphasis of this paper will be the different values of λ. We define

E(t) ≡ 1

2
‖∆u‖2 − λ

p

n∑
j=1

∫
Ω

∣∣ ∂u
∂xj

∣∣pdx+
α

4
‖∇|u|2‖2 +

1

2

∫
Ω

β(x)F (|u(t)|2)dx,

where F (s) =
∫ s

0
f(τ)dτ. When λ < 0, the second term in energy E(t) is positive,

and we can obtain some useful estimates. But when λ > 0, we need some mathe-
matical techniques to deal with this energy in order to obtain some estimates. One
can refer to Lemma 2.2 and Lemma 2.3 for the details.

Let Lp(Ω) be the p-times integrable function space on Ω with norm denoted by
‖ · ‖Lp . Of course, ‖ · ‖L2 and ‖ · ‖ coincide. Let Hs

0 be the completion of C∞0 (Ω)
in the Hs norm, and W s,p

0 be the completion of C∞0 (Ω) in the W s,p norm. We use
‖ ·‖s to denote the Hs Sobolev-norm for s ∈ R, and use ‖ ·‖W s,p to denote the W s,p

norm. The letter C will denote some positive constant, which may change from one
line to another.

Definition 1.1. A complex-valued vector function u(x, t) is called a global weak
solution of equations (1.1)-(1.3), if for any T > 0, u(x, t) ∈ L∞(0, T ;H2

0 (Ω) ∩
W 1,p

0 (Ω)) ∩W 1,∞(0, T ;H−2(Ω) ∩W−1,p′(Ω)), p ≥ 2, and it satisfies:

− i
∫ T

0

(u, vt)dt+

∫ T

0

(∆u,∆v)dt− λ
∫ T

0

∫
Ω

(

n∑
j=1

| ∂u
∂xj
|p−2 ∂u

∂xj

∂v

∂xj
)dxdt

− α
∫ T

0

(∆|u|2u, v)dt +

∫ T

0

(β(x)f(|u|2)u, v)dt− i(u0(x), v(0)) = 0, (1.4)

for all v(x, t) ∈ C1(0, T ;L2(Ω)) ∩ C(0, T ;H2
0 (Ω) ∩W 1,p

0 (Ω)), and v(x, T ) ≡ 0.

The main result of this paper is as follows:

Theorem 1.1. Assume that n<6, u0∈H2
0(Ω)∩W 1,p

0 (Ω), and
∫

Ω
β(x)F (|u0(x)|2)dx<

∞, |β(x)| ≤M . If either (P1) or (P2) below is satisfied,

(P1) λ < 0, and 0 ≤ q < min{ 4
n ,

p
2 − 1 + p

n}, p ≥ 2,
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(P2) λ > 0, 0 ≤ q < 4
n , and 2 ≤ p < 2n+8

n+2 ,

then there exists a global weak solution for the equations (1.1)-(1.3).

This paper is organized as follows. In section 2, we give some a prior estimates
according to the different value of λ; In section 3, we obtain the existence of weak
solutions by the Galerkin method.

2. A priori estimates

Lemma 2.1. Assume that u0(x) ∈ L2(Ω), β(x) and f(s) are real-valued functions,
and u(x, t) is the solution of the equations (1.1)-(1.3). Then ‖u(t)‖2 = ‖u0‖2.

Proof. Taking the inner product of the equation (1.1) with u, we have

i(ut, u) + (∆2u, u)+λ(

n∑
j=1

∂

∂xj

(
| ∂u
∂xj
|p−2 ∂u

∂xj

)
, u)

− α(∆|u|2u, u) + (β(x)f(|u|2)u, u) = 0. (2.1)

Notice that

(∆2u, u) =

∫
Ω

∆2u · udx =

∫
Ω

∆u ·∆udx+

∫
∂Ω

(∂∆u

∂n
· u− ∂u

∂n
·∆u

)
dS = ‖∆u‖2,

where we used the boundary condition (1.3).
For the third term on the left-hand side of equation (2.1), applying the integra-

tion by parts, we have

λ
( n∑
j=1

∂

∂xj

(∣∣ ∂u
∂xj

∣∣p−2 ∂u

∂xj

)
, u
)

= λ

∫
Ω

n∑
j=1

∂

∂xj

(∣∣ ∂u
∂xj

∣∣p−2 ∂u

∂xj

)
udx

= −λ
n∑

j=1

∫
Ω

∣∣ ∂u
∂xj

∣∣p−2 ∂u

∂xj

∂u

∂xj
dx

= −λ
n∑

j=1

∫
Ω

∣∣ ∂u
∂xj

∣∣pdx. (2.2)

We can easily obtain the following estimates

− α(∆|u|2u, u) = −α
∫

Ω

∆|u|2uudx = −α
∫

Ω

∆|u|2|u|2dx, (2.3)

and (
β(x)f(|u|2)u, u

)
=

∫
Ω

β(x)f(|u|2)|u|2dx, (2.4)

where β(x), f(s) are real-valued functions.
Hence, taking the imaginary part of the equation (2.1), we can obtain ‖u(t)‖2 =

‖u0‖2.

Lemma 2.2. Let u0 ∈ H2
0 (Ω) ∩W 1,p

0 (Ω),
∫

Ω
β(x)F (|u0(x)|2)dx < ∞, and u(x, t)

be the solution of (1.1)-(1.3). Then we have

E(t) ≡ 1

2
‖∆u‖2− λ

p

n∑
j=1

∫
Ω

∣∣ ∂u
∂xj

∣∣pdx+
α

4
‖∇|u|2‖2 +

1

2

∫
Ω

β(x)F (|u(t)|2)dx = E(0),
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where F (s) =
∫ s

0
f(τ)dτ .

Proof. Taking the inner product of (1.1) with ut, we have

i(ut, ut) + (∆2u, ut)+λ

( n∑
j=1

∂

∂xj

(∣∣ ∂u
∂xj

∣∣p−2 ∂u

∂xj

)
, ut

)
− α(∆|u|2u, ut) + (β(x)f(|u|2)u, ut) = 0. (2.5)

Next, we take the real part and estimate the terms one by one. First, for the second
term on the left-hand side of equation (2.5), we get

Re(∆2u, ut) = Re

∫
Ω

∆u·∆utdx+Re

∫
∂Ω

(ut
∂∆u

∂n
−∆u

∂ut
∂n

)dS =
1

2

d

dt
‖∆u‖2. (2.6)

Applying the integration by parts, we obtain

Reλ

( n∑
j=1

∂

∂xj

(∣∣ ∂u
∂xj

∣∣p−2 ∂u

∂xj

)
, ut

)

= −λRe
n∑

j=1

∫
Ω

(∣∣ ∂u
∂xj

∣∣p−2 ∂u

∂xj

)
· ∂ut
∂xj

dx

= −λ
p

d

dt

n∑
j=1

∫
Ω

| ∂u
∂xj
|pdx, (2.7)

−αRe(∆|u|2u, ut) =
α

2
Re

∫
Ω

∇|u|2 · d
dt
∇|u|2dx− α

2
Re

∫
∂Ω

∂|u|2

∂n
· d
dt
|u|2dx

=
α

4

d

dt
‖∇|u|2‖2, (2.8)

Re(β(x)f(|u|2)u, ut) =
1

2

∫
Ω

β(x)f(|u|2)
d

dt
|u|2dx

=
1

2

d

dt

∫
Ω

β(x)F (|u|2)dx. (2.9)

From (2.6)-(2.9), we deduce that

d

dt

[
1

2
‖∆u‖2 − λ

p

n∑
j=1

∫
Ω

∣∣ ∂u
∂xj

∣∣pdx+
α

4
‖∇|u|2‖2 +

1

2

∫
Ω

β(x)F (|u(t)|2)dx

]
= 0.

The proof is complete.

Lemma 2.3. Assume that |f(s)| ≤ Asq +B, A,B > 0. Under the assumptions in
Lemma 2.2, if either
case 1: when λ < 0 and 0 ≤ q < min{ 4

n ,
p
2 − 1 + p

n}, p ≥ 2, or
case 2: when λ > 0, 0 ≤ q < 4

n , and 2 ≤ p < 2n+8
n+2 ,

then we have

‖∆u‖2 +

n∑
j=1

∫
Ω

∣∣ ∂u
∂xj

∣∣pdx ≤ C, ∫
Ω

β(x)F (|u(t)|2)dx ≤ C.
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Proof. From the assumed conditions, we have

∣∣ ∫
Ω

β(x)F (|u(t)|2)dx
∣∣ ≤ C( ∫

Ω

|u(t)|2q+2dx+

∫
Ω

|u(t)|2dx
)
,

where F (s) =
∫ s

0
f(τ)dτ.

According to Lemma 2.1, the second term on the right-hand side of above in-
equality is bounded. Then

∣∣ ∫
Ω

β(x)F (|u(t)|2)dx
∣∣ ≤ C(

∫
Ω

|u(t)|2q+2dx+ 1). (2.10)

By the Gagliardo-Nirenberg inequality, we get

‖u‖2q+2
L2q+2 ≤ C‖u‖

4+q(4−n)
2 ‖D2u‖

qn
2 .

Noticing that nq < 4, combining Lemma 2.1 and the ε-Young inequality, we have

‖u‖2q+2
L2q+2 ≤ C‖∆u‖

qn
2 ≤ 1

4
‖∆u‖2 + C. (2.11)

Using the Gagliardo-Nirenberg inequality again,

‖u‖2q+2
L2q+2 ≤ C‖Du‖

2npq
np−2n+2p

Lp ‖u‖
4q(p−n)+2(np−2n+2p)

np−2n+2p .

Combing with Lemma 2.1, when q < p
2 − 1 + p

n , we have

‖u‖2q+2
L2q+2 ≤ C‖Du‖

2npq
np−2n+2p

Lp ≤ |λ|
2p
‖Du‖pLp + C. (2.12)

case 1: λ < 0, the second term in E(t) is positive. Then from Lemma 2.2, we have

1

4
‖∆u‖2 +

α

4
‖∇|u|2‖2 − λ

p

n∑
j=1

∫
Ω

| ∂u
∂xj
|pdx ≤ C.

Then

‖∆u‖2 +
n∑

j=1

∫
Ω

| ∂u
∂xj
|pdx ≤ C.

By (2.11), we have ∫
Ω

β(x)F (|u(t)|2)dx ≤ C.

In conclusion, when 0 ≤ q < min{ 4
n ,

p
2 − 1 + p

n} and p ≥ 2,

‖∆u‖2 +

n∑
j=1

∫
Ω

| ∂u
∂xj
|pdx ≤ C,

∫
Ω

β(x)F (|u(x, t)|2)dx ≤ C.
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case 2: λ > 0, and (n− 2)p < 2n, if 2p−2n+np
4 < 2. Then by using the Gagliardo-

Nirenberg inequality and the ε-Young inequality, we have

λ

p

n∑
j=1

∫
Ω

| ∂u
∂xj
|pdx ≤ λ

p
C‖Du‖pLp ≤

λ

p
C‖u‖

np+2p−2n
4 ‖∆u‖

np+2p−2n
4

≤ λ

p
C‖∆u‖

2p−2n+np
4

≤ 1

8
‖∆u‖2 + C. (2.13)

In order to satisfy the conditions (n−2)p < 2n and (n+ 2)p < 8 + 2n, we only need
to have p < 2n+8

n+2 . In particular, when 2 ≤ p < 2n+8
n+2 , from (2.11), we have

1

8
‖∆u‖2 +

α

4
‖∇|u|2‖2 ≤ C,

∫
Ω

β(x)F (|u(t)|2)dx ≤ C.

The proof is complete.

Lemma 2.4. Under the assumptions in Lemma 2.3, if n < 6, then the following
estimate holds

‖ut‖H−2(Ω)∩W−1,p′ (Ω) ≤ C.

Proof. ∀v ∈ H2
0 (Ω) ∩ W 1,p

0 (Ω), taking the inner product of the equation (1.1)
with v, we have

i(ut, v) + (∆2u, v) + λ(

n∑
j=1

∂

∂xj

(
| ∂u
∂xj
|p−2 ∂u

∂xj

)
, v)

− α(∆|u|2u, v) + (β(x)f(|u|2)u, v) = 0. (2.14)

For the second term on the left-hand side of (2.14), we have

(∆2u, v)=

∫
Ω

∆2uvdx=

∫
Ω

∆u∆vdx+

∫
∂Ω

(
∂∆u

∂n
·v−∆u· ∂v

∂n
)dS≤‖∆u‖‖∆v‖≤C‖v‖2.

For the third term, combing the conclusion of Lemma 2.3 and the Hölder inequality,
we obtain

|λ
n∑

j=1

∂

∂xj

(
| ∂u
∂xj
|p−2 ∂u

∂xj

)
vdx| ≤ |λ|

n∑
j=1

| ∂u
∂xj
|p−1| ∂v

∂xj
|dx

≤ |λ|
n∑

j=1

[( ∫
Ω

| ∂u
∂xj
|pdx

) p−1
p
( ∫

Ω

| ∂v
∂xj
|pdx

) 1
p

]
≤ C‖v‖W 1,p

0
. (2.15)

By the integration by parts, we deduce

|(∆|u|2u, v)| = |
∫

Ω

(∆|u|2u) · vdx|

≤ 2

[ ∫
Ω

|u||∇u|2|v|dx+

∫
Ω

|u|2|∇u||∇v|dx
]
. (2.16)
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We estimate the terms in (2.16) respectively. Using the Hölder inequality∫
Ω

|u||∇u|2|v|dx ≤ ‖u‖L6‖∇u‖2L3‖v‖L6 ,

and the Gagliardo-Nirenberg inequality for n < 6,

‖u‖L6 ≤ C‖u‖
6−n
6 ‖∆u‖n

6 ,

‖∇u‖2L3 ≤ C‖u‖
6−n
6 ‖∆u‖

6+n
6 .

Thus, for the first term in (2.16), we have∫
Ω

|u||∇u|2|v|dx ≤ C‖u‖
6−n
3 ‖∆u‖

n+3
3 ‖v‖

6−n
6 ‖∆v‖n

6 ≤ C.

Similarly, by the Hölder inequality, we obtain∫
Ω

|u|2|∇u||∇v|dx ≤ C‖u‖2L6‖∇u‖L3‖∇v‖L3 .

Using the Gagliardo-Nirenberg inequality for n < 6,

‖u‖2L6 ≤ C‖u‖
6−n
3 ‖∆u‖n

3 ,

‖∇u‖L3 ≤ C‖u‖
6−n
12 ‖∆u‖

6+n
12 .

Then we have∫
Ω

|u|2|∇u||∇v|dx ≤ C‖u‖
30−5n

12 ‖∆u‖
6+5n
12 ‖v‖

6−n
12 ‖∆v‖

6+n
12 ≤ C.

Finally, we need to estimate the term |(β(x)f(|u|2)u, v)|. By the assumed conditions,
we get

|(β(x)f(|u|2)u, v)| ≤ C|
∫

Ω

(A|u|2q +B)uvdx|

≤ C
∫

Ω

|u|2q+1|v|dx+ C‖u‖‖v‖.

By the Hölder inequality, the estimates (2.11) and (2.12), combining with Lemma
2.3, we have ∫

Ω

|u|2q+1|v|dx ≤ ‖u‖2q+1
L2q+2‖v‖L2q+2 ≤ C. (2.17)

In conclusion, from (2.14)-(2.17), we obtain ‖ut‖H−2(Ω)∩W−1,p′ (Ω) ≤ C.

3. Existence of global solutions

In this section, we give the proof of Theorem 1.1.

The proof of Theorem 1.1. Utilizing the estimates from Lemmas 2.2−2.4, we
have

‖∆u‖+ ‖u‖W 1,p
0 (Ω) + ‖ut‖H−2(Ω)∩W−1,p′ (Ω) ≤ C.
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Next we will use the Galerkin method to prove the existence of solutions. Assume
{wj}∞j=1 is a complete basis in H2

0 (Ω), and let

um(x, t) =

m∑
j=1

(u,wj)wj .

Then um(x, t) is the solution of approximate problems corresponding to equations
(1.1)-(1.3). Considering the initial problem of the following ordinary differential
equations:

i(umt, wi) + (∆um,∆wi)−λ
∫

Ω

n∑
j=1

|∂um
∂xj
|p−2 ∂um

∂xj

∂wi

∂xj
dx

− α(∆|um|2um, wi) + (β(x)f(|um|2)um, wi) = 0,

um(0) = u0m(x).

Assuming u0m(x) → u0(x) in H2
0 ∩W

1,p
0 as m → ∞, combining the estimates of

Lemma 2.2 to Lemma 2.4, we have

‖∆um‖+ ‖um‖W 1,p
0 (Ω) + ‖umt‖H−2(Ω)∩W−1,p′ (Ω) ≤ C.

Consequently, there exits a subsequence of {um(x, t)} (still denoted by {um(x, t)})
such that

um(x, t)→ u(x, t) weakly-∗ in L∞(0, T ;H2
0 (Ω));

um(x, t)→ u(x, t) weakly-∗ in L∞(0, T ;W 1,p
0 (Ω));

umt(x, t)→ ut(x, t) weakly-∗ in L∞(0, T ;W−1,p′(Ω) ∩H−2(Ω)).

We obtain from [10] that there exists a subsequence of {um(x, t)} (not relabeled)
such that um(x, t) → u(x, t) strongly in L2(0, T ;L2(Ω)), Dum(x, t) → Du(x, t)
strongly in L2(0, T ;L2(Ω)). Then there exits a further subsequence of {um(x, t)}
(not relabeled again) such that um(x, t)→ u(x, t), Dum(x, t)→ Du(x, t), for almost
every (x, t) ∈ Ω× [0, T ].

Next, we need to prove that u(x, t) satisfies equation (1.4). The main difficulty is
the convergence of nonlinear terms. First, since ‖um‖W 1,p

0 (Ω)≤C,
∑n

j=1|
∂um

∂xj
|p−2|∂um

∂xj
|

is uniformly bounded in L∞(0, T ;L
p

p−1 (Ω)). Notice that Dum(x, t)→ Du(x, t) a.e.
in Ω× [0, T ], we have the following result from the Lemma in [9]

n∑
j=1

|∂um
∂xj
|p−2 ∂um

∂xj
→

n∑
j=1

| ∂u
∂xj
|p−2 ∂u

∂xj
weakly in Ω× [0, T ].

Furthermore,

λ

∫ T

0

∫
Ω

n∑
j=1

|∂um
∂xj
|p−2 ∂um

∂xj

∂v

∂xj
dxdt→ λ

∫ T

0

∫
Ω

n∑
j=1

| ∂u
∂xj
|p−2 ∂u

∂xj

∂v

∂xj
dxdt.

Next we prove
∫ T

0
(∆|um|2um, v)dt→

∫ T

0
(∆|u|2u, v)dt, and

(∆|um|2um, v)− (∆|u|2u, v) = (∆(|um|2 − |u|2)um, v) + (∆|u|2(um − u), v).
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We consider the convergence one by one.

− (∆(|um|2 − |u|2)um, v) = −
∫

Ω

∆(|um|2 − |u|2)umvdx

=

∫
Ω

∇(umum − uu)(∇umv + um∇v)dx

=

∫
Ω

∇
[
(um − u)um + u(um − u)

]
(∇umv + um∇v)dx

=

∫
Ω

∇(um − u)um(∇umv + um∇v)dx+

∫
Ω

(um − u)∇um(∇umv + um∇v)dx

+

∫
Ω

∇u(um − u)(∇umv + um∇v)dx+

∫
Ω

u∇(um − u)(∇umv + um∇v)dx

=I1 + I2 + I3 + I4.

By the Hölder inequality and Gagliardo-Nirenberg inequality, we get

I1 ≤ ‖∇(um − u)‖L3‖um‖L6(‖v‖L6‖∇um‖L3 + ‖∇v‖L3‖um‖L6);

I2 ≤ ‖um − u‖L6‖∇um‖L3(‖v‖L6‖∇um‖L3 + ‖∇v‖L3‖um‖L6);

I3 ≤ ‖∇u‖L3‖um − u‖L6(‖∇v‖L3‖um‖L6 + ‖v‖L6‖∇um‖L3);

I4 ≤ ‖u‖L6‖∇(um − u)‖L3(‖∇v‖L3‖um‖L6 + ‖v‖L6‖∇um‖L3).

Furthermore, by the Gagliardo-Nirenberg inequality

‖∇(um − u)‖L3 ≤ C‖um − u‖
6−n
12 ‖∆(um − u)‖

6+n
12 ,

‖um − u‖L6 ≤ C‖um − u‖
6−n
6 ‖∆(um − u)‖n

6 ,

we have for n < 6,
∫ T

0
(∆(|um|2 − |u|2)um, v)dt→ 0, as m→∞.

(∆|u|2(um − u), v) =

∫
Ω

∇|u|2∇((um − u)v)dx

≤ 2

∫
Ω

(
|u||∇u||∇(um − u)v|+ |u||∇u||(um − u)∇v|

)
dx.

Similarly, we have
∫ T

0
(∆|u|2(um − u), v)dt→ 0, m→∞. Then we get∫ T

0

(∆|um|2um, v)dt→
∫ T

0

(∆|u|2u, v)dt.

At last, we show that∫ T

0

(β(x)f(|um|2)um, v)dt→
∫ T

0

(β(x)f(|u|2)u, v)dt.

Since ‖um‖L2q+2 is bounded, and

|β(x)f(|um|2)um| ≤ C(|um|2q+1 + |um|),
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then we can obtain that β(x)f(|um|2)um is uniformly bounded in L∞(0,T ;L2q+2/2q+1),
and combining the result um(x, t)→ u(x, t) a.e.. Thus we have

β(x)f(|um|2)um → β(x)f(|u|2)u weakly.

Finally, we obtain∫ T

0

∫
Ω

β(x)f(|um|2)umvdxdt→
∫ T

0

∫
Ω

β(x)f(|u|2)uvdxdt.

The proof is complete.
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