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THE EXISTENCE OF GLOBAL SOLUTIONS
FOR THE FOURTH-ORDER NONLINEAR
SCHRODINGER EQUATIONS*

Chunxiao Guo'' and Boling Guo?

Abstract In this paper, the problem of a class of multidimensional fourth-
order nonlinear Schrédinger equation including the derivatives of the unknown
function in the nonlinear term is studied, and the existence of global weak
solutions of nonlinear Schrodinger equation is proved by the Galerkin method
according to the different values of .
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1. Introduction

In this paper, we consider the following multidimensional fourth-order nonlinear
Schrodinger equation (1.1) with initial boundary values (1.2) and (1.3)

"9, Ou Oou
. A2 2 20y A2 Ny = 1.1
AP NS (P ) — ol ) S =0, (0
uli=0 = uo(x), x €, (1.2)
ulpo =0, Aulpga =0, t>0, (1.3)
where Q) is a bounded smooth domain, u(x,t) = (u1(z,t), us(z,t), - ,uy(x,t)) is

a complex-valued vector function, f(s) is a real-valued function satisfying |f(s)| <
As?+ B, with A, B > 0, and ¢ > 0, @ > 0 is a real number and 3(z) is a given real-
valued bounded function. The initial data ug(z) is a given complex-valued function,
and the boundary condition is taken to be the Dirichlet boundary condition for both
u and Awu on the boundary 02.

The nonlinear Schrédinger (NLS) equation arises from the study of nonlinear
wave propagation in dispersive and inhomogeneous media, such as plasma phe-
nomena and non-uniform dielectric media [8]. In recent years, many studies have
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been devoted to the nonlinear Schrédinger equations with a variety of nonlineari-
ties. Some methods, theoretical, numerical or analytical, have been used to deal
with these problems. The fourth-order physical models occur in various areas of
physics, including nonlinear optics, plasma physics, superconductivity and quan-
tum mechanics [1,4,6]. Several exact solutions were obtained for the fourth-order
nonlinear Schrodinger equation with cubic and power law nonlinearities in [11].
Karpman investigated the stability of the soliton solutions to the fourth-order non-
linear Schrodinger equations with arbitrary power nonlinearities in different space
dimensions in [7]. Guo and Cui obtained the global existence of solutions for a
fourth-order nonlinear Schrédinger equation in [3]. Huo and Jia in [5] considered
the Cauchy problem for the fourth-order nonlinear Schrédinger equation related to
the vortex filament. In this paper, we study the global existence of weak solutions
for the initial boundary problem of the more general nonlinear Schrédinger equa-
tion. In particular, we will establish global existence of weak solutions for equations
(1.1)-(1.3), which is different from that considered in [3] in several aspects. Also, the
present results extend the results of [2] in the following aspects. Firstly, compared
to the condition n < 4 in [2], we can prove that weak solutions exist for n < 6.
Secondly, the emphasis of this paper will be the different values of \. We define

()z%uAuHLZ [ G+ IV + 5 [ )P (o))

where F(s fo 7)dr. When A < 0, the second term in energy E(t) is positive,
and we can obtaln some useful estimates. But when A > 0, we need some mathe-
matical techniques to deal with this energy in order to obtain some estimates. One
can refer to Lemma 2.2 and Lemma 2.3 for the details.

Let LP(2) be the p-times integrable function space on € with norm denoted by
|| - |lze. Of course, || -]z and || - || coincide. Let H§ be the completion of C§°(f2)
in the H* norm, and W;"? be the completion of C§°(2) in the WP norm. We use
|- |ls to denote the H® Sobolev-norm for s € R, and use || - ||w=» to denote the W*P
norm. The letter C will denote some positive constant, which may change from one
line to another.

Definition 1.1. A complex-valued vector function u(z,t) is called a global weak
solution of equations (1.1)-(1.3), if for any T > 0, w(x,t) € L*(0,T; H3(2) N
Wy P () N W20, T; H-2(Q) N W1 (Q)), p > 2, and it satisfies:

T ou O0v
—1 U, v dt—l—/ Au, Av)dt — )\/ / L 2——ddt
| e [ > |a%\ 5e 2.

—a / (Aluu, v)dt + / (B(2) £(|uf2)u, 0)dt — i(uo(x), v(0) =0, (1.4)

0
for all v(x,t) € CH(0,T; L*(Q)) N C(0,T; HZ(Q) N W, P(Q)), and v(z, T) = 0.
The main result of this paper is as follows:

Theorem 1.1. Assume that n <6, upc HYQ)NWyX(<2), and JoB(@)F(Jug(2)|?)dx <
oo, |B(x)] < M. If either (Py) or (Pa) below is satzsﬁed

(P1) A<0,and 0 < g <min{2,2 -1+ 2} p>2
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(P2) >0, 0<g< 2 and 2§p<25128,

then there exists a global weak solution for the equations (1.1)-(1.3).

This paper is organized as follows. In section 2, we give some a prior estimates
according to the different value of A; In section 3, we obtain the existence of weak
solutions by the Galerkin method.

2. A priori estimates

Lemma 2.1. Assume that ug(z) € L?(2), B(z) and f(s) are real-valued functions,
and u(z,t) is the solution of the equations (1.1)-(1.3). Then ||u(t)||® = ||uol|?.

Proof. Taking the inner product of the equation (1.1) with u, we have

) "9 5 Ou
i(ug, u) + (A%, u)+( ; 8—% Bx] |p agcj),u)
— o AfulPu,u) + (B(2) f(|ul*)u, u) = 0. (2.1)

Notice that

A _
(Azu,u):/A2u-ﬂda::/Au~Aﬂdac+/ (8 Y E—@~Au)d52||Au||2,

where we used the boundary condition (1.3).
For the third term on the left-hand side of equation (2.1), applying the integra-
tion by parts, we have

P— 2 - p—2 0
ZB&: }8x]| /\/Zé)xj |(“)xj| )dx
B 8u p—2 Ou 0u
Jj=1

:42/ |§;‘ P d. (2.2)

j=1"9
We can easily obtain the following estimates
— a(Alufu,u) = —a/ AluPutde = —a/ Alul?|ul?dz, (2.3)
Q Q
and
(B ) = [ 5@ (P (2.4)

where (x), f(s) are real-valued functions.
Hence, taking the imaginary part of the equation (2.1), we can obtain ||u(t)
luoll?.

Lemma 2.2. Let ug € HZ(Q) N W, P( )s Jo B@)F(Jug(x)?)dx < oo, and u(x,t)
be the solution of (1.1)-(1.3). Then we have

()E;muu?_fzﬂ o+ GIVIEI+ 5 [ AP (u(®)de = ),

I?

o
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where F(s) = [; f(
Proof. Taklng the inner product of (1.1) with wu;, we have
. "9, Ou p—2 Ou
Z(Ut’Ut) * (AQMutH—)\(ZaTj |85CJ aCCJ) )
j=1
— a(Alul®u,us) + (B(x) f(|ul*)u, us) = 0. (2.5)

Next, we take the real part and estimate the terms one by one. First, for the second
term on the left-hand side of equation (2.5), we get

0Au Juy
(T — =~ Du 4s = 5l dul?. (

2 _ AT
Re(A%u, uy) —Re/QAu Autdsc—i-Re/ - on =) 2 dr

o0

Applying the integration by parts, we obtain

Rex(z&% |8% 22 )ut>
o
f)\ReZ/ (|5 |p 28%) 8%(1
ff§$2/ oz, —|Pdz, (2.7)

a‘u|2 d ‘ |2

on

—aRe(Alu*u,us) = gRe/ Vul?- %V|u|2daﬁ - — /

= S 2 IVRPP, (23)

Re(3(a) (o) ) / 8w (1) 5 ulPda

=53 | B F(uP)a (29)
From (2.6)-(2.9), we deduce that
d ou
dt[ -2 Z / e+ I + /Q B(@)F(lu(t)?)dz| = o.
The proof is complete. O

Lemma 2.3. Assume that |f(s)| < As?+ B, A,B > 0. Under the assumptions in
Lemma 2.2, if either
case 1: when A <0 and0<q<mln{n,2 1+ 2}, p>2, or
2n+
case 2: when X > 0, 0§q<5, and 2 <p < el
then we have

||Au||2+Z/| |"dz < C, //3 )2)dz < C.
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Proof. From the assumed conditions, we have

| / B(x)F(|u(t) ?)dz| < O / ()2 2dz + / Ju(t) 2de),

where F(s) = [; f(
Accordmg to Lemma 2.1, the second term on the right-hand side of above in-
equality is bounded. Then

|/Qﬁ(x)F(IU(t)I2)dx| SC(/Q\U(t)IQ"”dx+1)- (2.10)

By the Gagliardo-Nirenberg inequality, we get

qn

2q+2 an
lull 3452, < Cllull ™ 2.

Noticing that ng < 4, combining Lemma 2.1 and the e-Young inequality, we have
a1
lul252 < Clau]® < 7aul? +C. (2.11)

Using the Gagliardo-Nirenberg inequality again,

49(p—n)+2(np—2n+2p)

__=2npg
lull 7557 < CllDull 3 | R

Combing with Lemma 2.1, when ¢ < & — 1 + £, we have

lul 7557 < Ol Du

S < = o ||Du||’2p +C. (2.12)
case 1: A <0, the second term in E(t) is positive. Then from Lemma 2.2, we have
1 2 @ 2|12
Flau + S =23 [ e < o

Then

1Au|? + Z/ |—|pda; <c

By (2.11), we have
/ Bz W dz < C.

In conclusion, when 0 < g < mm{n, E—1+Z}andp>2,
| Au® + §n j/ Qg <
X Q 8$ -
j=1 J

//3 Fllu(z, H))dz < C.
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case 2: A > 0, and (n — 2)p < 2n, if W < 2. Then by using the Gagliardo-
Nirenberg inequality and the e-Young inequality, we have

A np+2p 2n np+2p 2n
*Z/ |7|pd < CHDUH < pcllull [[Aull
A 2p—2n+np 2n+np
< ~Cl|Aul|
p
1
< g\|Au||2+c. (2.13)
In order to satisfy the conditions (n—2)p < 2n and (n+2)p < 8+ 2n, we only need
to have p < 27::"28. In particular, when 2 < p < 2;:"28, from (2.11), we have

1 «
gIIAUII2 + ZIIVIUFII2 <C, /QB(DJ)F(\U(t)F)dx <C.

The proof is complete. O

Lemma 2.4. Under the assumptions in Lemma 2.3, if n < 6, then the following
estimate holds
[uell -2 @)rw 10 () < C-

Proof. Vv € HZ(Q) N W, (), taking the inner product of the equation (1.1)
with v, we have

5 Ou
i v) + (A%, 0) + A Z@x |8m] i &Tj)’v)
- a(@uPuo) + G Py =0 (@21)

For the second term on the left-hand side of (2.14), we have

0A 0v
= T-Au- 5 )dS < Auf | Av]| <Cllo]l.

(A%u,v)= | A*uvdr= AuA@da:—l—/(
Q Q a0 On

For the third term, combing the conclusion of Lemma 2.3 and the Holder inequality,
we obtain

ou ou ot
E p 2 E p 1
833; 033 8g)d‘<‘)\| ‘ | |

J

p—1 97 1
<A|Z[ /|—|pd [ 2 ]
J
< Cflvllyo- (2.15)

By the integration by parts, we deduce
(Al = [ (o) - vds
Q

32{/ |u|\Vu\2|E|dx+/ |u2w|vv|dx} (2.16)
Q Q
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We estimate the terms in (2.16) respectively. Using the Holder inequality
/QIUHVUFIEIdm < lullps [Vl Zs vl s,
and the Gagliardo-Nirenberg inequality for n < 6,
lullzo < Cllull 5™ || Aull?,

6—n 64n
IVullfs < Cllull =" [|Aul|
Thus, for the first term in (2.16), we have

n+3

/ [l Vulolde < Cllull 5" | Au] 5 flo]] (| Av]|E < C.
Q

Similarly, by the Holder inequality, we obtain
[ P19l Valde < Cllulfs [Vl Tl s
Using the Gagliardo-Nirenberg inequality for n < 6,
lullfo < Cllull 5" || Aull?,

IVul| s < Cllul =" || Aul| 5"
Then we have

30—5n 64+5n —n

[P vul|velds < Cllal 5 au] T o] F 40 < C.
Q

Finally, we need to estimate the term |(3(x) f(|u|?)u, v)|. By the assumed conditions,
we get

(B F([ul?)u,v)| < C| /Q (Ajul?® + B)uvdz|
= C/ 27 ol dz + Clull o]
Q

By the Holder inequality, the estimates (2.11) and (2.12), combining with Lemma
2.3, we have

/ a7 [Blda < ul| 755 |o] p2are < C. (2.17)
Q
In conclusion, from (2.14)-(2.17), we obtain |[ut[| g-2(g)nw-1.7 (o) < C- O

3. Existence of global solutions

In this section, we give the proof of Theorem 1.1.

The proof of Theorem 1.1. Utilizing the estimates from Lemmas 2.2—2.4, we
have
Al + ||UHW01’P(Q) + HUtHH—z(Q)mw—lm’(Q) <C.
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Next we will use the Galerkin method to prove the existence of solutions. Assume
{w;}52, is a complete basis in Hg (), and let

m

U (2, 1) = Z(u, wj)w;.

Jj=1

Then w,,(z,t) is the solution of approximate problems corresponding to equations
(1.1)-(1.3). Considering the initial problem of the following ordinary differential
equations:

ou O, Ow;
mt, Wi) + (Atm, Aw; e et
i(tme, wi) + (Au wi) /Z|3x | Ox; Ox; v

- a(A|um| umawi) + (ﬂ(x)f(|um|2)umawz) =0,

U (0) = ugm ().

Assuming o, () — ug(z) in HZ N Wy as m — oo, combining the estimates of
Lemma 2.2 to Lemma 2.4, we have

(| Aupm | + ”umHW1 o) T l[tmtl| g 2Q)W -1’ () S C.

Consequently, there exits a subsequence of {u,(z,t)} (still denoted by {u,,(z,t)})
such that

Um (2, 1) — u(z,t) weakly-* in L>°(0,T; H3(Q));
U (2, 1) — u(z,t) weakly-x in L>(0,T; W, P (Q));
Ut (2, 1) — wg(,t) weakly-x in Lo(0,T; W12 (Q) N H~2()).

We obtain from [10] that there exists a subsequence of {u,(z,t)} (not relabeled)
such that wpy,(z,t) — u(z,t) strongly in L?(0,T; L*(Q)), Duy,(z,t) — Du(x,t)
strongly in L?(0,T; L?(Q2)). Then there exits a further subsequence of {u,,(z,t)}
(not relabeled again) such that u, (z,t) = u(x,t), Dumy(x,t) = Du(x,t), for almost
every (z,t) € Q x [0,T].

Next, we need to prove that u(x, t) satisfies equation (1.4). The main difficulty is

the convergence of nonlinear terms. First, since ||u,, ||W01,p(9) <C, Z?:1| % 2| %LT@‘
J J

is uniformly bounded in L>(0, T} LT (€)). Notice that Du, (z,t) — Du(z,t) a.e.
in Q x [0, 7], we have the following result from the Lemma in [9]

- aum 28um 2 dU ou .
Z'a P~ 2\8%\? o, weakly in Q x [0, 7.

Jj=1

Furthermore,

ou ou ou 0v
E m|p— 27”‘7 , E p—2 77" Z7
/ / ‘ | d dt A/ / |(’“)xj| Oz Gscjd wdt.

Next we prove foT(A|um|2um,v)dt — fOT(A|u\2u,v)dt, and

(At [Pt v) = (Aful*u,v) = (Afum]* =[], v) + (Alul* (um — w),v).
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We consider the convergence one by one.
— (A(Jum|? = [ul*)um, v) = —/ Alfum|? — [ul?)upvdz
Q

= [ V(untm — ut) (Vim0 + v, VU)de
Q

= /Q V[ (tm — W)l + (T — T) | (Vn ¥ + U V) dx

:/ V (U, — )T (VU T + Uy, VO)dx + / (U — )V, (VU + 4y, VU)dz
Q Q

+/QVu(m—ﬂ)(VumﬁJrumV@)dz+/QuV(m—ﬂ)(VumiJrumVﬂ)dx
=L+ 1L+ 13+ 1.
By the Holder inequality and Gagliardo-Nirenberg inequality, we get
Iy < |V (um — )| psl[uml Lo (vl o [ Vumll s + V]| p3][tim]] Lo );
Iy < lum — ull o[ Vum | s ([0l 2o [ Vum [ s + [Vl s lum | 2o );
I3 < ||Vullpsl[um — ull Lo ([[ V0] L3 l[tmll Lo + V]| Lo |V tim||£3);
Ly < lull o IV (um = w)l[Ls (V| s [[umll s + [0l e [[Vum | £3)-

Furthermore, by the Gagliardo-Nirenberg inequality

6—n 6+n
IV (um = w)l[Ls < Cllum —ul = {|A(um —w)l| 227,

n

6—n
[tm — ullpe < Cllum — ull 7o |A(um — w)l|*,

o

we have for n < 6, fOT(A(|um|2 — ), v)dt — 0, as m — oco.
(Aluf(tm — u),v) = / VPV ((u — w)0)dr
Q
< 2/ (1ul[Vul|¥ (s — )] + [l [Vt — ) VT .
Q
Similarly, we have fOT(A|u|2(um —u),v)dt — 0, m — oo. Then we get
T T
/ (At |ty v)dt — / (Alu)?u,v)dt.
0 0
At last, we show that
T T
| @) £ it > [ (Bl )t
0 0

Since ||ty ||f2a+2 is bounded, and

1B() f (]t | < Clum [** + Jum]),
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then we can obtain that 3(2)f (|tum|?)um is uniformly bounded in Lo(0,T'; L2#2/2aH1),
and combining the result u,,(z,t) — u(z,t) a.e.. Thus we have

B(@) f(lum|*)um — B(a) f(Jul*)u  weakly.

Finally, we obtain

/ B(2) f (|t |? umvdmdt—>/ /B F(|ul?)uvdzdt.
Q

The proof is complete. O
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