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SPATIOTEMPORAL COMPLEXITY OF A
DIFFUSIVE PLANKTONIC SYSTEM WITH
PREY-TAXIS AND TOXIC EFFECTS*

Kejun Zhuang"f, Wengian You! and Gao Jia?

Abstract In this paper, we propose a three-species reaction-diffusion plank-
tonic system with prey-taxis and toxic effects, in which the zooplankton can
recognize the nontoxic and toxin-producing phytoplankton and can make proper
response. We first establish the existence and stability of the unique positive
constant equilibrium solution by utilizing the linear stability theory for partial
differential equations. Then we obtain the existence and properties of non-
constant positive solutions by detailed steady state bifurcation analysis. In
addition, we obtain that change of taxis rate will result in the appearance of
time-periodic solutions. Finally, we conduct some numerical simulations and
give the conclusions.
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1. Introduction

Plankton are drifting organisms that live in the surface layers of the ocean [24].
According to the trophic modes, plankton can be divided into autotrophic phyto-
plankton and herbivorous zooplankton. They are important in the ocean’s food
chain. The phytoplankton can consume carbon and produce oxygen [5]. The zoo-
plankton are the main source of food for almost all fish larvae as they switch from
their yolk sacs to catching prey. Basking sharks and blue whales feed on them di-
rectly; other large fish feed on them indirectly, by eating fish of smaller size, such as
herrings. So plankton play a significant role in ecological environment, fishery econ-
omy, tourist industry, and so on [12]. And it is important to study the interactive
relationship between phytoplankton and zooplankton.

Yet in another sense, some of the phytoplankton can produce toxin and contam-
inate seafood or kill fish [10]. From the field-collected samples and mathematical
modelling method, Chattopadhayay et al. [3] concluded that the toxic substance
plays one of the important role on the growth of the zooplankton population and
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have a great impact on phytoplankton-zooplankton interactions. They formulated
the new model by means of ordinary differential equations for the first time:

P _p (1— P) —af(P)Z,

dt K
(1.1)
o = B(P)Z —uZ — 09(P)2,

where P is the density of toxin-producing phytoplankton and Z is the density of
zooplankton population. All the coefficients are positive constants, » and K are the
intrinsic growth rate and environmental carrying capacity of toxic phytoplankton
population respectively, « denotes the rate of predation of zooplankton on toxic
phytoplankton population, 8 denotes the ratio of biomass consumed by zooplankton
for its growth, u is the mortality rate of zooplankton due to natural death as well as
due to higher predation, and 6 is the rate of toxin liberation by toxic phytoplankton
population. Further, f(P) represents the predation response function and g(P)
represents the distribution of toxic substances. By choosing different functional
forms, it was concluded that the toxic chemicals can result in the termination of
planktonic blooms.

Moreover, various extended models of (1.1) have been proposed and investi-
gated. For instance, Wang et al. [28] investigated the delay-induced fluctuation
phenomenon of plankton population by Hopf bifurcation analysis; Sharma et al. [20]
studied the diffusion-driven instability; Upadhyay et al. [25] explored the joint effects
of toxin production and spatial heterogeneity and displayed the complex spatiotem-
poral patterns. More related results can be found in [1,13,19,27,30, 33].

However, the previous researches only considered two planktonic populations:
the phytoplankton and zooplankton. In fact, the nontoxic phytoplankton popula-
tion and toxin-producing phytoplankton population have different growth habits
and roles in the marine system. It is necessary to consider three interacting com-
ponents consisting of the nontoxic phytoplankton, toxin-producing phytoplankton
and herbivorous zooplankton. So, Chattopadhyay et al. [4] extended (1.1) to a more
realistic situation of three populations as follows:

dP, P

ditl = T'1P1 <]. — [;) 7O£P1Z,

dpP, P 0P, Z

T2 _sp(1-22) - 22 1.2
a 2( K) Y+ P’ (1.2)
dz 0P 7

2 = BPZ — 7 — .

ar B8P o “t P

In model (1.2), P;(t) and P»(t) denote the concentrations of nontoxic phytoplank-
ton and toxin-producing phytoplankton at time ¢ respectively, Z(¢) denotes the
concentration of zooplankton at time t. The two phytoplankton populations have
the same environmental carrying capacity K and don’t compete with each other.
The grazing pressure of zooplankton is assumed to be reduced by the presence of
the toxic phytoplankton P,. The authors finally concluded that toxin-producing
phytoplankton may be used as a bio-control agent for the harmful algal bloom’s
problems.
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Generally, nontoxic phytoplankton and toxin-producing phytoplankton share
the common survival resources, such as the carbon dioxide, inorganic salt, and so
on. Combining with the assumption that the zooplankton is able to recognize the
two phytoplankton populations and tries to avoid the area filled with the thick
toxic phytoplankton species, Banerjee and Venturino [2] further proposed a novel
mathematical system to model this situation:

dP; P,

T;:rlpl <1—K11>—aP1P2—a1P127

dpP, P, s PoZ

— =P |1—- =) —bP P, — — 1.3
= (1- 1) -omm - 22 (1.3
dz 0. PZ

— =8P Z — uz — .

dt e H v+ P2

Here, the two phytoplankton populations have different environmental carrying ca-
pacities and compete with each other. The toxic phytoplankton can kill zooplankton
and the zooplankton decreases its consumption. Banerjee and Venturino [2] ana-
lyzed the stability of equilibria and numerically showed the insurgence of brown
tides. Based on model (1.3), the delayed model and reaction-diffusion model were
investigated in [17] and [23], respectively.

As the plankton can freely float near the surfaces of all aquatic environments and
the phytoplankton have the group defense against zooplankton, it is more realistic
to use the reaction-taxis-diffusion equation to describe this phenomenon. It should
be noted that although many significant results on reaction-diffusion planktonic
models have been derived, very few of them consider both three populations and
prey-taxis effect (see, for instance, [8,11,18,32]). The spatiotemporal dynamics of
predator-prey model with prey-taxis has been increasingly studied, more details can
be found in [15,21,26,29,31]. Motivated by the fore-mentioned work, the aim of this
paper is to investigate the effect of prey-taxis on the three-component planktonic
system.

The rest of this paper is organized as follows. In Section 2, we give some basic
assumptions and build our model. In Section 3, we give the sufficient condition for
existence of the unique positive constant equilibrium solution, and then analyze the
linear stability of the positive equilibrium solution. In Section 4, we establish the
existence of nonconstant positive solutions induced by steady state bifurcation. In
Section 5, we investigate the type of steady state bifurcation and stability of bifur-
cation solutions. In Section 6, we prove the existence of spatially inhomogeneous
and time-periodic solutions induced by prey-taxis. In Section 7, we numerically
study the diffusive system and illustrate the theoretical results. Finally, Section 8
is devoted to the conclusions.

2. Model formulation

Let P(x,t), T(x,t) and Z(x,t) denote the densities of nontoxic phytoplankton,
toxin-producing phytoplankton and zooplankton at location z and time t, respec-
tively. Throughout this paper, we make the following assumptions.

(i) For simplicity, we only consider the one-dimensional space 2 = (0, L), where
L denotes the depth of the water column.
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(ii) No plankton species is entering or leaving the column at the top or the bottom,
which can be described by homogeneous Neumann boundary condition.

(iii) In the absence of zooplankton, the growth of both phytoplankton follows the
logistic law. The two species of phytoplankton compete for a limited number
of nutrients.

(iv) Zooplankton ingest both kinds of phytoplankton, the nontoxic phytoplankton
can promote the growth of zooplankton, while the toxin-producing phyto-
plankton have a negative effect.

(v) The predation response function of zooplankton on nontoxic phytoplankton
is linear, and the corresponding response function on toxin-producing phyto-
plankton is of Monod-Haldane.

(vi) Zooplankton mortality in plankton population models is often represented by
the so-called closure term. The quadratic form has a specific rate dependent
on the zooplankton biomass itself. This may be interpreted as representing
either cannibalism within the zooplankton, or a predator whose biomass is
proportional to that of the zooplankton [9,22]. As such, the quadratic term
is adopted to describe the total mortality of zooplankton.

(vii) The zooplankton can recognize the helpfulness or harmfulness of phytoplank-
ton and make appropriate response. More specifically, zooplankton tend to
the high density regions of nontoxic phytoplankton, and keep away from the
high density regions of toxin-producing phytoplankton. This kind of direc-
tional movement is the so-called prey-taxis effect.

From above assumptions, we propose the following reaction-taxis-diffusion model
to describe the interactions of the three planktonic populations:

aj:dlAP—‘,—rlP l—£ —OllpT—ﬁl.PZ, (EEQ,t>0,

ot K,

orT T nTZ

— = dy AT T(1—— ) —aPT—— Q)

BN ds + 72 ( K2> Q9 ST z e ,t>0,

oz 0.,TZ

— =d3AZ-V - (£ZVP -(xZVT PZ—dZ?— Q,t>0
ot 3 \Y% (6 \% )+v (X \% )+52 ’Y"‘TQ, it >0,
oP 0T 07

%—5—5—0, $€8Q,t>0,

P(z,0) = Py(x) > 0,T(x,0) = Ty(x) > 0,Z(z,0) = Zo(z) >0, z €.

(2.1)
Here, A is the usual Laplace operator, and V is the gradient operator. In system
(2.1), all the coefficients are positive constants and their meanings can be seen in
Table 1.

To our knowledge, there is no result published for this novel model in existing
literatures. In what follows, we discuss the stability of positive constant equilibrium
solution, existence and properties of nonconstant positive steady state solutions,
existence of Hopf bifurcation periodic solutions, and so on.
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Table 1. Description of parameters in system (2.1).

Symbol  Ecological interpretation

di, do, d3  The self-diffusion rates of three planktonic populations

£ The nontoxic-phytoplankton-tactic sensitivity coefficient
X The toxic-phytoplankton-tactic sensitivity coeflicient
o] The intrinsic growth rate of nontoxic phytoplankton
) The intrinsic growth rate of toxic phytoplankton
K The environmental carrying capacity of nontoxic phytoplankton
K The environmental carrying capacity of toxic phytoplankton
ai, g The competition coefficients
51 The maximal ingestion rate of zooplankton on nontoxic phytoplankton
Ba The maximal conversion rate into zooplankton
01 The maximal ingestion rate of zooplankton on toxic phytoplankton
(23 The death rate of zooplankton due to toxic phytoplankton
~y The semi-saturation constant
d The loss rate of zooplankton due to natural mortality and higher predator

3. Linear stability of positive constant equilibrium
solution

In this section, we mainly analyze the stability of positive constant equilibrium solu-

tion. We first establish the existence of the uniqueness positive constant equilibrium

solution E* = (P*,T*, Z*) by mathematical analysis.
Consider the following algebraic equations of P,T and Z:

1
O T-p2Z=
1 e o B1 0,

) 91Z
L PN =0
T2 k2 (6] , ~ T T2 5 (31)
P—dZ - 2 =
B2 7 0
From the third equation of (3.1), we have
T
g=Pep b (3.2)

d div+1?)

Substitute (3.2) into the first two equations of (3.1) can lead to

o dKl’I“l _ dK1a1 T_ 619203[(1 T (3 3)
dri + K18182  dri+ KiB182 d(dry + K1B152) v+ T2 .
and 0.5 0.0
T2 192 102
— —T — P — =0. 4
T9 @ o) v+ 17) + A+ 1772 0 (3.4)

Then, by substituting (3.4) into (3.3), we can get the following quintic equation of
T:
a5T5 + a4T4 + a3T3 + CLQTQ +a1T +ag =0, (35)
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where
T9 dKlalag
a5 = — + ————2— >0,
T K, dr + KiBiBs
dOtQKlTl
Ay = V5 — T2,
YT dn KB
a3 = 2’77"2 Q’YdKlOllOtg Kl(agﬂleg =+ Oélﬂgog) > O
Ky dri+ Ki1B152 dri + K158152 ’
2vdos K17y 0162K1m1

g = ——= = = Qg —— 2

2T dr + K1 BB T2 e+ K182

_ 727y Y2dK o VK1 (a2f162 + 1 5202)
Ky = dri+ Ki1p152 dri + K181

o — VdasKiry ry + Y1 B2 K1y 0102518K1 616
dri + K181 82 dri+ Ki8182  dri+ K815 d

Obviously, ag > 0 implies a; > 0. In this case, equation (3.5) has the unique
positive root T™* if ag < 0 based on the Descartes’ rule of signs. Moreover, if

* dK1T1 _ dKloq * 5192(1](1 T* 3 343
P* = TR, dr1+K1B162T AT KipiF) iT2 1 positive, then we can

obtain the unique positive equilibrium solution E*.

>0,

aiy

Lemma 3.1. If ay > 0, ag < 0 and P* > 0, then system (2.1) has the unique
positive equilibrium solution E* = (P*,T*,Z*).

For convenience, we always assume that the conditions of Proposition 3.1 are
satisfied later. Next, we will conduct the stability analysis of the constant equilib-
rium solution E*. Linearizing system (2.1) at E* = (P*,T*, Z*), we can obtain the
following linear system:

oP
ot AP P
or
ot | =D | AT +A|T],
8£ AZ Z
ot
where
1 * * *
dl 0 0 —EP —0{1P —,81P
* * * GZ*(T*Qf'y)
—§Z47 XxZ" d3 B22 ST —d

Then the characteristic equation is

A3 + Ak/\2 + BpA+ Cy =0, (3.6)
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where

2’7912* ’I”QT*
(y+T3)* Ko

kr\?  r P
77) L L

Ay = (dy + da + d3) (L X

2 * 2 « «
By = |dy (kw) -l-rlP dz(kﬁ> _ 270.2 _— roT
L Ky L (,y_,'_T*Z) K>
k 2 P* k 2
+ dl(LW) + o d3<£> +d| — cayP*T"
1
+ la km 27 27912* 77"2T* J kj 2+d
L (y+12)° Ko \L
P km 2 91T*Z* kr 2 92(,.)/77"*2)
s f(L> ] I <L> e
7 (v +T+%)
km 2 ’I"1P* <kﬂ'>2 2701Z* TQT* <k7T>2
Co=|d\ 7 )+ do| — | — — ds( =) +d
’ 1( L ) Kl 2 L (’Y+T*2)2 K2 3 L
2 2 2
Z*(y—=T*
— P 041d3(kL77) +dar — xp Z" (kzr) _ 5027 (v — )
(v +T%7)

+ |dy (’”)2 ¢ 00T 2 (T —7) _6uT" XZ*(M>2
0, P*T* 273,10, P*Z* k)2 P*T™
10, A V6161 7 —ﬁlP*d2<;> +T2»31K
v+T (v +T*%) 2
k)

For convenience, some assumptions are proposed and will be useful in the fol-
lowing analysis.

Assumption 3.1. rT*(y + T"‘Q)2 > 2701 Ko Z*.
Assumption 3.2. r16; > asf1 K1(y + T*Q).
Assumption 3.3. Cy # 0.

From Assumption 3.1, we have Ay > 0. According to Routh-Hurwitz criterion,
the positive equilibrium solution E* is linearly stable if and only if By > 0, Cy, > 0
and ApBr — Cr > 0. Otherwise, the equilibrium solution E* is unstable if not
all the conditions are satisfied. In addition, under Assumption 3.1, we have By >
0if Cp, > 0 and ArBr — C;;, > 0 hold. Thus, if there exists a k¥ € NT such
that Cp, < 0 or ApyBr — (), < 0, then the equilibrium solution E* is unstable.
Specifically, system (2.1) will undergo steady state bifurcation and have spatially
inhomogeneous equilibrium solution if C changes from positive to negative; system
(2.1) will undergo Hopf bifurcation and have time-periodic solutions if A; > 0, By, >
0 and Ay By — C) changes from positive to negative.

For k € N*, solving the equations Cj = 0 and Ay By — Ci, = 0 respectively, we

have
H; g Hs

S
Xk:Ea Xk _E’
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Er\ 2
ds| — d
3<L)+
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where
kn\? rP* k> 270, Z* T*
H, = d1<7r> Al d2<7r> N e 27r2
L Kl L (’7+T*2) K2

Er\ 2 0y 7% (v — T*
a1d3<ﬂ-) +day, ~ P1022"(y ] )
L (v +T?)

km 2 ’I"1P*
dl(L) + i,

— OQP*T*

+&%T%%T*—w
(v + T+’

Lk .
§Z (L) —i—ﬁgZ

a1 P*T* 29616, P*Z* kn\®  roB P*T*
1 DTT Y8161 B () L2
VT (4T L f2

LT *Z* (kr 2 kr\? r1 P*
H, = — —
() e (E)

)

Pz (BT i
2M1 i3 )

kr\? r1 P* kr\? 2v6, Z* roT™
Hs = Ay dy () + do () - -
{ L K1 L (7+T*2)2 K2
kn\® rP* km\? . kr\”
tlal )+ e ds{ 4 | +d + 5P Z" € A + B2
Er\? 276, Z* roT™ Er\?
i d2<L> ‘<(7+T*2>2— o) |E\T) T
0,7+ Z* kn\?  Oy(y—T*
B g 2(7 : 2) iy P T
v+ T L (y + T*?)

Er\ 2
ds| — d
3<L)+

kn\> P km\” 270, Z* T*
d1<7r> ! d2<ﬂ> - 701 27?”2
L K] L (’Y+T*2> K2
2 * s
aqds <k7r) +day — p162Z (7 T )

L (y+ 172’
0,10.T*Z*(T* — ) kn\>  rP*
- 2y2 NT) xR
(y+17) !
P*T*  2v3,0,P*Z* ? P*T*
o161 " V5161 Py kr\" | b
v+ T (v +T*2) L K

L (k) .
fZ (L> —l—ﬁzZ

0Tz (m)g ke 29012 roT*
-

2
dy+dg) (=) — +—2—+d

Obviously, Hy and Hy4 are both positive if Assumptions 3.2 and 3.1 are satisfied,
respectively. Moreover, for any k € N, C < 0 if and only if xy > Xf% ArBr—C <0
if and only if x > x. Therefore, we get the conclusions on the linear stability of

equilibrium solution E* as below.

+ QQP*T*

9

Hy
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Theorem 3.1. If Assumptions 3.1 and 3.2 hold, then the equilibrium solution E*
is locally asymptotically stable when x < xo; E* is unstable when x > xo, where

Xo = mingen+ {x3, X7 }.

From Theorem 3.1, it can be found that system (2.1) may undergo steady state
bifurcation or Hopf bifurcation when y > xo. But the bifurcation type depends on
whether g is from steady state bifurcation point set or Hopf bifurcation point set.

If xo = Xfo < minkel\HXkH, then characteristic equation (3.6) has a zero root
for k = kg and x = xo. Since E* is unstable when x > xq, characteristic equation
(3.6) has at least one root with positive real part for k # ko and x = x3, in which
case Hopf bifurcation doesn’t occur.

If xo = XkHl < mingen+ X3, then equation (3.6) has a negative real root and a
pair of purely imaginary roots for k = k; and x = XkHl . And in this case, Hopf
bifurcation may occur.

If yo = Xfo = Xfl, then equation (3.6) has two zero roots. At this point,
a Hopf/steady-state mode interaction may occur, and more details can be seen
in [16]. We leave it for future research. Hence, we assume that Xf # xi for k € Nt
in the discussion that follows.

4. Existence of nonconstant positive steady state
solutions
Next, we shall focus on the existence of nonconstant positive steady state solutions

for system (2.1). To be more precise, we will study the nonconstant solutions to
the following stationary system:

P
d\P" + 1P (1 a K) —PT - pPZ=0, z€(0,L),

1

T 91TZ
dT//_|_ T(1=-—)— PT — ZO7 S O,L,
. Ty ( Kz) % S+ T2 o v €(0,L) (4.1)
dsZ' — EZP' +xZT') + poPZ — dZ? — 222 =0 0,L
(3 é- +x )+52 ’)/+T2 ) .TE(v )7
P'(z)=T'(x)=Z'(x) =0, z=0,L,

where P, T and Z are functions of z, ’ denotes the derivative with respect to z,
and all the parameters are the same as those in (2.1). Then E* = (P*,T*,Z*) is
still the constant equilibrium solution of (4.1). To study the bifurcation problem of
(4.1), we introduce the following notations:

X ={we H*0,L)|w'(0) =w'(L) =0}, Y=L*0,L),
F(P,T,Z,x)=0, (P,T,Z,x)€XxXxXxR,

where P
d1P”+7‘1P (1 K) 70&1PT*ﬂ1PZ
1
T onTZ
= dT" T|1—— | —aPT —
f(PvTvZaX) 2 + 7o ( K2> (o) ’y+T2
0.,TZ

(d3Z' — EZP + xZT") + BoPZ — dZ* — >
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It is easy to find that F(P*, 7%, Z*, x) = 0 for any x > 0and F : A x X' x X' xR —
Y x Y x Y is analytic. Furthermore, for any fixed point (P T Z) € X x X x X, the
Fréchet derivative of F is

Dpr.zyF(P, T, Z,X)(P,T,Z)

d1P” + DFi
4.2
_ doT" + DF» (4.2)

dsZ" —E(ZP' + P'Z) + x(ZT' +T'Z) + DFs

where

Df1:<r1—2ﬂp—a1T B172 ) —OélpT_ﬁlpZa

D.FQ = (T’Q - %T - OLQP - %) T — OéQTP 217:22

_popp_ 020-1) 0,7
DFy = po2P = 20001 4 (8,P — 247 — 2L ) 2.

It is not difficult to prove that D(p7T7z)J_'.(p, 1,2, X)(PT,Z): XXxXXxXXR —
Y x Y x Y is the Fredholm operator with zero index.

To establish the existence of steady state bifurcation, we first need to verify the
necessary condition N (D]: (137 T, A , X)) # {0}, where N represents the null space.

Taking (P,T, Z) = (P*,T*,Z*), we can know that the null space is composed of
the solutions of following problem:

di P’ — QP*P —aP"T =P Z=0, z€(0,L),

K,
2v01 2 T*
doT" — aT*P + Lz 2 — T T — b1 524 = 0, x¢€ (O,L),
(v+1+%)° Ko v+TI
922*(T*2 —’Y)

dsZ" — EZ*P" + xZ*T" + B Z*P + 51T —dZ =0, xe(0,L),
(v +T*%)

P(z)=T'(x)=Z'(z)=0, z=0,L.

(4.3)
Substituting the following eigen-expansions into (4.3)

(oo}

= kmx > kmx kmx
= %pk co8 ——, T(x) = %tk cos ——, Z(x) = sz cos ——,

k=0
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we obtain
Er\? 1
—dy () — Lp —oy P* —B,P*
1( L ) K, o P
* 2760, Z* ro ik km\2 6,.T*
—axT g — T = () e

Er\ 2 —
ﬁ22*+52*(ﬂ> LEL —xze (()” —ds(7)" —d

T*2 2
L (v+T+2) (4.4)
Dk 0
tr | =10
Zk 0

If k = 0, then the coefficient matrix of (4.4) is singular under the Assumption
3.3. Thus this situation can be excluded. On the other hand, if & # 0, (4.4)
has the nonzero solution (py,tx,z2x) if and only if x = x7. Moreover, we have
N (DF(P*,T*,Z*,x3)) = span{ (P, Tk, Z1)}, where

k — k — k
Py = Dy cos%, Ty = chos%, Z}. = cos %,

010 P*T™ 751P* |:d2(k7r)2 290, Z" + %T*}

Dy = E (+7+2)°
b d km)? 1 px| |d km\2 _ 296, 2" T2 ’
l(L) +K1 2(L) (’y+T*2)2+K2
. 2
a5 P*T™ — ﬁﬁ;*z {%(%ﬂ) + %P*}
F, = p 3 o] [ 2 o 2 e < 0.
()" + o] | (8) - i + 7]

Through above analysis, we can obtain the existence of steady state bifurcation
at (P*7 T, Z*, Xf), i.e., the existence of the nonconstant positive solutions.

Theorem 4.1. If Assumptions 3.1-3.3 hold, and for any positive integers k, j, X3 #
I and x3 # XJS for k # j. Then for every k € NT, there ewists a positive constant
d and a continuous function s € (—6,0) :— (Pr(s,x) Tk(3,X), Zk(s,X), xx(5)) €
X X X x X xRY such that
Xk (8) = xii +O0(s),
(Pk(sa X)aTk(’S?X)a Zk(‘SaX)) - (P*vT*a Z*) + s (?kaTlﬁZk) + 0(52)3

where
s€(=4,0), O(s?) e Z,

Z= {(P,T,Z) €XxXxx|[f (PPk+TTk+ZZk)d:c:O}.

Moreover, (Pr(s,X),Tk(s,X), Zr(s,Xx), Xk(8)) solves system (4.1) and all non-
trivial solutions of (4.1) near bifurcation point remain on the curve

Tr(s) = {(Pr(s,x), Te(s,x), Zr(s, z), xx(s))] s € (=4,6)}.
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Proof. By the Crandall-Rabinowitz local bifurcation Theorem [6], we still need
to verify
d

7D]:(P*aT*7Z*7X)(PkaTka Zk)

DF(P*,T*, Z*
i ¢ R(DF(P',T", 7", ),

X=X5

where R is the range of the operator. Assume that there exists a nontrivial solution
which satisfies

dP" — %P*P —aP'T-pPZ=0, z€(0,L),
1

270, Z* T 0.7
* *2
32" — €2 P+ 2T + oz P+ 22T "y
(v +T*%)

= Z*(’%T)Qcos ’“TTI, x € (0,L),

Px)=T(x)=2'"(z) =0, x=0,L.

krx

Multiplying both sides by cos *7* and integrating by parts over (0, L), we get

kr\® r N
—dl(L) —?llp —a, P* — B, P*
270, Z* k2 0.T*
CanT" 02" ra g d2<7r> _ 6T
(,YJFT*Q) Ky L v 4T+

Er\%  0,2°(T*2 — Er\ 2 Er\ 2
reer () L () ()

L (1 +T7%)’
L
krmx
P —d
/0 coS 17 x 0
L
/Tcosmedx = 0
0
L ma (km)Z*
Z cos —dzx 2L
0 L

The coefficient matrix is singular when y = Xf , which results in contradiction. The
proof is completed. O

5. Stability of steady state bifurcation

In this section, we further study the stability of spatially inhomogeneous solution
(Pi(s,z),Tk(s,x), Zk(s,x)) obtained in Theorem 4.1. We have the following expan-
sions:

k
s,x) = P* 4 sDy, cos % + 5201 (x) + s2pa(x) + o(s?),

Py (
(s,x) = T" + sF}, cos k%x + 521 () + 5% Pa(x) + o(s?),
(
(

=

(5.1)

N

k f
k(s,2) = Z* + scos %x + 8%y1 () + 8372 (2) + o(s?),

Xk(s) = Xf + k1 + %Ko + 0(82)7
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where (p;,%;,v;) € Z and k;(i = 1,2) are constants. If k1 # 0, then the sign of
k1 determines the stability of bifurcating solutions; if k1 = 0, then the bifurca-
tion branch I'j is of pitch-fork type and the sign of ko determines the stability of
bifurcating solutions for ko # 0, and so on.

Then we compute the values of k1 and k3. For convenience, we first give some
useful formulae:

L L L
k 2k L k 2k L
/ cosQﬂda: = / cos? e de = — / cos? 2 I cos r de = —,
0 L 0 L 0 L
L L L
kmx 2k k k L
/0 cos® —= 7 de = /0 cos ;x cos %xdx =0, /0 cos4%xdx = %,
L
| er@
0
/L ) cos %mcdx = — %J 2 /L (z) cos 2k7mdx
o ©1" 7 = 17 . P1 7 )

L 2 oL
k 2k
/0 1" (x)cos Td (;) /0 ©1(x) cos ;xdm,
L L L
k 1 1 2k
/ 71 (2)cos? mcdx = f/ v (z)dz + f/ ~1(x) cos mpdx,
0 2Jo 2 Jo L

T krnx km 2kmx
/ sm— cos de =T ; gol(a:) cos T dz.

For z € (0, L), substituting (5.1) into stationary system (4.1) and collecting the
terms of s?, we have

T kmx T
dip” = <K11D1% + o Dy Fy, + 51Dk) COSzT + P <K11801 + aoyhr + 5171) ,

(5.2)
k 0 ,T*Q 0 ~T*Z* — 0 T*3Z*
dotn” =Fieos? 22 | 2 p 4 apDy + 1(y 2) - 301 7
Lol (v+1T+%) (417
) 2v6,Z* 0,
Tt - |t ——m
<K2 T*(y+ 772" v+ T
(5.3)
* kr\®  2kmx
dsm” — €2 1" + X3 Z* " — (X Fr — €Dk) (L) cos —
e = T2 2)FI§ - = T 223 Fy, Cos2%
+ 1™ 4T
) " ) (5.4)

roT™* 2+6
dyr = Papr + | o — — 2 |
KyZ (v +T*2)

kn\®  k
—mZ*Fk(g) cos%x.
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Besides, we have ¢1'(z) = ¢1'(z) = y1/(z) = 0 for z = 0 or L. Then multiplying
both sides of (5.2)-(5.4) by cos ¥2% and integrating them over (0, L) respectively,
we can obtain

kx\*| [* k L k
IT;_IlP*—Fdl(;) /nglcos%dx—kalP*/o wlcos%dx

(5.5)

L
k
+ B P* / 1 €OS L e = 0,
0 L

L L
krmx 0.T* krmx
T* —dx + —d
o /0 1 COS T 5 - /0 ~1 coS T

roT* 2901 2% Er\? /L kmx
K2 ('Y + T*2)2 + 2 L 0 1/}1 COS L X )

2 L
BoZ* +EZ* (kﬂ> / 1 COS kﬂTxdx
0

L
L
k
/ 1 oS T (5.7)
O L

(5.6)
+

(km)?Z* Fy,
Ki———— —
2L

roT*  290,2* 5 g (m)z
Ky (y4T1%2) g L

kr\? L krx
z* — ——dz =0.
d +d3<L)]/o 71 cos Ldm 0

Moreover, from (¢1,%1,71) € Z, we also get

+

L L L
k k k
Dy, / 1 coS Lﬂde + F / 11 cos ﬂdx + / ~1 €OS ﬂdx =0. (5.8)
0 L 0 L 0 L

We combine (5.5), (5.6) and (5.8) in the following system

r k 2 1T L k T

dq rn + a1y a1 P* B1P* / p1 CoS R dz
L 0 L 0

. Er\ 2 0,T* L kmx
wr e ) ven S| [T | = ol 69
0
L
k
Dy, Fy, 1 / ~1 coS ﬂdx
L 1 LJo L |
where ayy = - P*, azn = Tig; - (ile%zz)z

Denote

kr\?
A= dl(L) + a1

k 2
do (2) + (oo
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Then the determinant of the coefficient matrix of (5.9) is
a6, P*T* k) ®
ﬁ =B P" (dz (L) + CV22>]
km\” km\?

dy <L> + a1 | |de <L) + a2
SUCIE PN 2+ — asfy PT
N+ T+ Wz a1 Q201

0, P*T* k) ® ’
101 ™
U - g d [ 22

ST B (2(L> +a22>

2
0.7 ZaN
~ _i T2 <d1 (L) + all) — a1 PTT™

Hence the coefficient matrix of (5.9) is singular and the equations only have zero
solution. It follows that k1 = 0 and the bifurcation branch obtained in Theorem
4.1 is of pitch-fork type.

Similar to the previous steps, substituting (5.1) into (4.1) and collecting the
terms of 3, we have

M| =

+

— Fk

1
= A+

L
A

> 0.

kmx
dip2” = ((B1 + a1 Fy)e1 + Di(a1yr + Biy)) cos T

(5.10)

* TP* * *
+(3P* —1) }{ @2+ a1 P*thy + By P* 7y,
1

— T2 6yT*Z* — 213 2% k
datp” = | azDy + — 501 Fy, — 2 3 V2 ) 4y cos -
(v +1T72) (v +172) L

_ =2

Y
+ |aeFrp1 + ———=Fmn
I (v +T72)°

[9T*2 7% (3y + T*2) — Z* (7 + T*2)2F 3T + T3
k— B
(v +172)" (v +172)°
2 0.2 (y—T*2)  6,2°
4| Zr2pee 012700 2)7 1z
K G+T2)E AT

01 T

COS ——— « SO
2 2 T*2 e )2

L

k
6, Frcos® %;v

V25

(5.11)

/OL ~1(x)dz
/ Y1 (x
da: / P1(x COb

2 L
Z*Fk(lm) m:@/ (a )dx+
0

k 2
5T > BoDy+ (€Dr—x3 F) <7T>

L

02F

2

(v +T+2)? (%LT*2

62+3§< )2]/; | (w)cos>
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kn\>  OsF, [ y—T*  6NT*Z* —2T*37*
. 3XE <L> + 9 2 — 3 Fk
(v +1%2) (v +1%2)

+3 (X3 Fi. — £Dy,) (?)2 = ;Bng] /OL ”yl(a:)cos%ﬁxda:

+ | BoZ* — 2" (k;) ] /OL (pQ(x)cosk%dx

ds (T) + % — o P* +3dZ*? /OL ’yg(m)cos]medx
[ra(g) e ] [t

2T*2Z*(37+T*2)—Z*(7+T*2)2F T*(3y+T72)
L
(v+T2)" (y+T+2)°

We also have ¢o'(x) = 1'(z) = 72/(z) = 0 for x = 0 or L. Integrating both
sides of (5.10) and (5.11) over (0, L), we obtain

Er\ 2 r1 P* L kmx
o P*_1 o
d1< L) + (3 ) X /0 a(x)cos T dz
L
+a1P*/ wg(x)coskﬂdx
ale l/ P1(x d:cf/ U1 (x cos :17]

+612Dk l/o 1(z )d:z:—/O 71 () cos kgxdz]
/OL w1(x)dr — /OL p1(x) cos ngxdx]

L
k
+ L P* / vg(x)cos%xdx =0,
0

3
— gegLFk2

(5.12)

n B1 +2Oz1Fk

kn\®  2rT*2 0,2%(y — T*?) 0,7*
do (W) + "2 + 1270 ! =
L K, (y+T%2)?  A+T

" (@) Lm ) cos 22T 45
[ terts = [ rtoren
/ P1(x dx—/ 1(x cos

* 7% *3 r7%
Hle _ T*Q . 6’)’T Z 201*>7Z Fk
o + T*Q

/ o (x cos—dx

OéQFk
2

1

2
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L L
2k
/ ’yl(x)dxf/ 1 (z) cos gxdx] =0, (5.13)
0 0

2
7T*
+7722Fk

20y +T+)

Since (pa,¥2,7v2) € Z, we have
L L L
k k k
Dk/ P2 COS LxderFk 1o COS ﬂder/ 2 €OS Lxdx =0. (5.14)
0 L 0 L 0 L
Integrating both sides of (5.2)-(5.4) over (0, L) may lead to

L L L
LlP*/ gold:v—i—alP*/ wldx+51P*/ yde
Ky 0 0 0

. (5.15)
r
+2’“( 8 +041Fk+61) =0,
L L L
T'QT* 2’}/01Z* / 01T*
ozT*/godx—!— — de + ——= v1dx
=) Ky (v+72)7| Jo Y+T2 Jy (5.16)
LF, 0 —T*? 30T+ Z* — 9,73 2* .
F A gy, DO =T ), 300 T2y,
2 | K2 (v +T72) (v +T+2)
L L
T* 205 Z*
dZ*/ vldx—ﬂQZ*/ prda+ |72 i / rde
0 0 K, (v + T+2)?
(5.17)

bo(y = T%2) 1 3029T"Z" — 6,T27")

— = 0.
(12 (r+12)°

d— B Dy, + Fy

Again multiplying both sides of (5.2)-(5.4) by cos 2’2’”‘ and integrating them over
(0,L), we get

p* 2k \ 2| [ 2k L 2k
n +d; (W> / 1 COS 7mda: + a1 P* / 1)1 COS mgda:
K] L 0 O
. (5.18)
2k LD D
+51P*/0 71 cos L7md$+ 4k (r}(lk +041Fk+51) =0,
T 240,2* 2k \ 2| [* 2
roT™ 296, -t dy (ﬂ) / by cos ™.
Ky (y+T*2) 0
0,7+ [ 2k L 2%k
! 5 / 1 COS ™ da + aoT™ / (1 COS " 4z (5.19)
v+T* )y 0

LF, I O1(y—1T+2 6, T*Z*(3y — T*2
k[ T2 * 4 asDy + 1(y 2)Fk_ 1 3y - ) -0,
A\ K (v +172) (v +172)
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rT*  2y6,2% 2k \> o[ 2km\’ /L 2k
z* - do | 225 =7 d
Ky (y+T%2)° ta\ ) G ) W1 cos —p—dv
2k \ 2| L 2%k
+Z% d+d3<ﬁ> ]/ ~1 COS 7Tmda:
L 0
2%\ 2| [F 2k
—Z* ,32+§(7T> ]/ 1 COS T (5.20)
L o L
L Oo(y — T2 05T Z*(3y — T*?
+ 2 |d=BoDy + 2(y 22)Fk2_ 2 (723 ) 3
4 (v +T*2) (v +T*2)

km

2
+2 (x5 Fi — €Dy,) <L> =0.

Therefore, ko can be determined by equations (5.12)-(5.20).

Theorem 5.1. If all the conditions in Theorem 4.1 are satisfied, then the following
statements hold:

(i) If xo = XEO < mingen+ X, then the bifurcation branch T, (s) is asymptot-
ically stable for ko > 0 and unstable for ko < 0; Ti(s) is unstable for any
k # ko.

(it) If xo = Xg < mingen+ Xy, then the bifurcation branch T'y(s) is always unstable
for each k € N*T.

Proof. For every k € N*, linearizing (4.1) at (Py(s,z), Ti(s,2), Zk(s,7), X3 ), we
obtain the following eigenvalue problem:

Dpr,2)F(Pi(s,2), Ti(s,2), Zi(s,2), X3 ) (P, T, Z)=X(s)(P, T, Z),

where (P,T,Z) € X x X x X. Then (Py(s,z), Ti(s, ), Zr(s,x), x3 ) is asymptoti-
cally stable if and only if each eigenvalue A(s) has negative real part. If s — 0, then
A = A(0) is the simple eigenvalue of DF(P*,T*, Z*,x%) = NP, T, Z), i.e.,

d1P" — I%P*P —aP*T — pP*Z = AP,z € (0, L),
1

20, Z* 0. T*
e e - Sz = ATz e (0, 1),
(v+T%%)° K v AT

0o 7% T*Q_
d3ZN—fZ*PH—I—XkZ*TH-l-ﬂQZ*P-F 2 ( - 2’7)
(v +T1%)

dQT” —aT*P +

T—dZ =\Z,z € (0, L),

P(x)=T(x)=2"(z) =0,2=0,L

(5.21)
has one-dimensional eigenspace N'(DF(P*,T*, Z*,x%))={(Dy, Fy,1) coskrz/L}.
Multiplying both sides of (5.21) by cos kmz/L and integrating them over (0, L), we
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can obtain that A = 0 is an eigenvalue of the following matrix:

Er\ 2 1
d1< I ) K, aq 51
Er\ 2 2v6, 2% 9 0. 7*
i afl) 20T g
L) qer?) K v
km\? kn\?  0,2%(T*% — kr\?
L L (v + T*?) L

From the proof of Theorem 3.1, for any positive integer k, the above matrix always
has an eigenvalue with positive real part for xo = xf < mingen+xj or xo = X3, <
mingen+ XH, k # ko. Based on the standard perturbation theory in [14], for s being
small, there exists an eigenvalue A(s) to the linearized problem above that has a
positive real part. Therefore the bifurcation branch (Py (s, z), Tx(s, ), Z(s, z), X7 )
is unstable for s € (-4, ).

So far, we have proved the second situation in Case (i) and Case (ii). We
continue to prove the first situation in Case (i) below. If yo = Xfo < mingen+ X7,
(5.21) has one zero root and two negative roots for k = ko. By virtue of Corollary
1.13 in [7], there exist an interval I with Xfo € I and continuously differentiable
functions (x, s) : I x (—6,8) = (1(x), A(s)) with A(0) = 0 and p(x}, ) = 0, such that
A(s) is an eigenvalue of (5.21) and pu(x) is an eigenvalue of the following eigenvalue
problem

D(P7T7Z)F(P*,T*,Z*7X)(P,T, Z2)=uw(P,T,Z), (PT,Z)e X xXxX. (522)
Again from [7], the eigenfunctions of (5.22) can be expressed by (P(x, ), T(x, ),
Z(x,)), which depend on x smoothly and are uniquely determined by

komx komx komx
(P(Xko» )y T(Xos )5 Z (X s ) = | Diy €08 =, Fiyy €O~ , COS — ;
L L L
komx T komx
(P(x,2), T(x,x), Z(x,x)) — | D, cos T,Fko CO8 ——, €08 — €z

Then (5.22) is equivalent to
d P — %P*P — i P*T — 1 P*Z = pP,z € (0, L),
2’)/91Z* 91T*

1
) T*] T— -
(v +1T*%) T
d3 2" — EZ*P" + xx Z*T" + B2 Z* P + %T —dZ = pZ,x € (0,L),

doyT" — aT*P + Z =uT,z € (0,L),

P'(z)=T'(x)=Z'(z) = 0,2 =0, L.
(5.23)
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Differentiating (5.23) with respect to y at x = Xfo, we can obtain

. 2
4 P" — K1P P— oy P*T — B1P*Z = ji(xn ) Diy cO8 |
. . 270, Z* T s 0,T* komx
W el P | | g ) o™
,y *

kom

* *2
dsZ" — €Z*P" + Z* Fy, (cos 0 —922 (r )

(v + T+2)°

T—dz

"
:c) + B2 Z*P +

komax

u(xko)cos i
P'(0)=P'(L)=T'(0)=T'(L) = Z'(0) = Z'(L) = 0,

where P = 7813(,())”)
X

. Similarly, multiplying both sides of above equations by
X=Xkq
cos komz /L and integrating them over (0, L) can lead to

kom\ 2
—dy (2) — a1 —o P* -5 P*
kom \° 0, T
—axT™ d3< z > — Qg *m
kor 2 0>2*(T*% — kor\ 2
ez* (M> + B Z* LQ’Y) —ds (OW) —d
L (v +T+%) L
/L P cos komcdx_
0 L /)'(Xko)Dko
L .
T cos koﬁxdx = (X ko ) Flig
0 L (o) + Z°F ko 2
L Xk, ) + k < )
/ Z cos dex ’ N\ L
L Jo J

Because of the singularity of coefficient matrix, to solve above equations, we must
have that

0,T* .
_v—iT*Q o N(Xko)Fko
—dz(B5) —d  fulxr,) + 27 Fko(T)
that is,
01T*Z*Fk0 (M)Z
. +T*2 L
/J’(Xko) = ’Ykoﬂ 2 0,T* 0
Fleo {d3(T) +d} BETvE

By Theorem 1.6 in [7], for s € (=4, ), the functions A(s) and —sx’, (s)/1(xk,) have
the same zeros and signs. Moreover,

= 8X 1y ()X )
lim ————7"——= =1.

s—0 )\(s)
Now, since k1 = 0, we have that sgn{A(s)} = sgn{—x2}. Hence the first situation
in Case (i) holds. This completes the proof. O
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6. Existence of time-periodic solutions

Here, we establish the existence of time-periodic solutions to system (2.1) induced
by Hopf bifurcation. In this section, we assume that x < Xf for any k € N*. If
X:X;gH and By > 0, then Ay By = C}, and equation (3.6) can be reduced to

A2 4+ A2 4+ Bp\ + Ay By, = 0,

and
A+ Ap) (M +Bi) =0,

whose roots are

A = *Ak(Xf) <0, Aok, Agp =i Bk(XkH)'

Then we claim that ddR;’\‘ > 0. In fact, regarding A = A\(x) and differen-
x=x7!
tiating both sides of (3.6) with rebkpect to x, we get
dA dA dA dB, dCy
3N? 240 =+ B A — =0
ay R TR TNy Ty
and
dx G\N+ H
dX B ?))\2'f‘214k>\'|-Bk7
where
0LT*Z* oT*Z* k
- ! D) >0, H = ! 3 d <7T> +7P* 7&2ﬁ1P*T*Z* > 0.
v+ T N+ T L Ky
Hence,
d\ B Gy/Br(x)i+ H <k7r>2
DX lmxgt =8B () + 245 () /B ()i + By () \ ©
B 1 G\/Bk(XkH)i+H (kﬂ>2
24/ Brlt) Ak =/ Bul)
- 1 (G\/Bk(XkH)iJFH) ((Ak(XkH)iJF\/Bk(XkH))) (;m>2
2¢/Br(xi)) (Ak(xl’;’)i—\/Bk(ka)) (Ak(ka)ih/Bk(ka)) L
moreover,
dRe A

—GAL X+ H - (kﬁ)2

X:XkH (A2 (Xk + Bk:

dx

et e ey
(Ai(Xk )+ Br(xf )) L .

Therefore, we can draw the conclusion on the existence of time-periodic solutions
to system (2.1).
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Theorem 6.1. If Assumptions 3.1-3.8 hold, x # Xfl and xH < xf for any
k,j € NT, k # j. Then the equilibrium solution E* of system (2.1) is unstable for

X > minkeN+ka , moreover, spatially inhomogeneous time-periodic solutions will
bifurcate from E*.

7. Numerical simulations

In this section, we mainly verify the theoretical results obtained in the previous
sections by some numerical examples.

For system (2.1), we set 11 = 0.08, ro = 0.92, « = 0.1, as = 0.2, f; = 1.35,
ﬁ2:1.65,’7=1, 91:1, 92:2and5202

Example 7.1. If K; = 1, Ky = 0.13 and d = 0.5, then system (2.1) has the
unique positive constant equilibrium solution E* = (0.155706,0.119867,0.0411532)
according to Proposition 3.1. Figure 1 shows that the equilibrium solution E* is
locally asymptotically stable for x = 0.3 with nonnegative initial functions (0.2 +
0.15sin(x + t),0.14 + 0.1sin(z + t), 0.04 + 0.03 sin(x + t)).

Example 7.2. If we reselect K1 = 1, Ko = 0.13, d = 0.003 and x = 25, then system
(2.1) has the spatially homogeneous time-periodic solution with nonnegative initial

functions (0.2 4+ 0.15sin(z +¢),0.14 4+ 0.1sin(z + ¢), 0.04 4 0.03 sin(x + t)) as shown
in Figure 2.

o
S
w &

4
o i
&

0.15

0.1

Non-toxic phytoplankton P(x.t)
o
Y
Toxin-producing phytoplankton T(xt)

0.05
10

1000

~ _
- —< 800 - < 800
5 600 5 o~ 600
\//200 400 \///% 400
Distance x ) Time t Distance x 0 o

Time t

Herbivorous zooplankton Z(x.t)

Distance x 0 o

Figure 1. The positive equilibrium solution E* is asymptotically stable.

Example 7.3. If K; =2, K5 =0.15, d = 0.15 and x = 0.8, then system (2.1) has
the spatially inhomogeneous time-periodic solution with nonnegative initial func-
tions (0.2 + 0.18sin(x + t),0.14+ 0.1sin(z + ¢), 0.04 + 0.03 sin(x + t)) as shown in
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o
=

o
w

0.1

Non-toxic phytoplankton P(x,t)
?
Toxin-producing phytoplankton T(x,t)

5 300 5 300

Distance x 0 o Time t Distance x o o

02
0.15
0.1

0.05

Herbivorous zooplankton Z(x.t)

400
5

Distance x 0 o

Figure 2. System (2.1) has the spatially homogeneous time-periodic solution.

o o
PN

Non-toxic phytoplankton P(x,t)
9
Toxin-producing phytoplankton T(x,t)

1500 —
5 1000 5

Distance x 0 o Time t Distance x 0 o

0.25
0.2
0.15
0.1
0.05

Herbivorous zooplankton Z(x,t)

-0.05
10

5 1000
500
Time t

Distance x 0 o

Figure 3. System (2.1) has the spatially inhomogeneous time-periodic solution.

Figure 3.

Example 7.4. If K; = 2.5, K5 = 0.2, d = 0.002 and x = 0.4, then system (2.1)
has the stable spatially inhomogeneous steady state solution with nonnegative initial
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functions (0.2 4 0.15sin(x +t),0.14 + 0.1sin(z + ¢), 0.04 + 0.03 sin(z + ¢)) as shown
in Figure 4.

Herbivorous zooplankton Z(x.t)

5 5

Distance x o o Distance x 0 o

Herbivorous zooplankion Z

5

Distance x oo

Figure 4. System (2.1) has the stable spatially inhomogeneous steady state solution.
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Example 7.5. If K1 = 3, Ky = 0.2, d = 0.003 and x = 0.5, then system (2.1)
has the complex spatiotemporal pattern with nonnegative initial functions (0.2 +
0.15sin(z 4 ¢),0.14 4+ 0.1sin(x + ¢), 0.04 4 0.03 sin(z + t)) as shown in Figure 5.

8. Conclusion

In this paper, we have proposed a nontoxic phytoplankton-toxic phytoplankton-
zooplankton reaction-diffusion system with prey-taxis effect. The model is based
on the fact that the zooplankton can recognize the two kinds of phytoplankton and
make proper response, which has generalized some existing mathematical models.
By regarding the tactic coefficient as bifurcation parameter, we find the crucial
threshold value xq, below which the constant equilibrium solution is stable, and
above which the equilibrium solution is unstable. We also find some more complex
spatiotemporal dynamics when the tactic coefficient is larger than the threshold
value, such as the spatially homogeneous or inhomogeneous time-periodic oscilla-
tions, spatially heterogeneous patter formation, and so on. Main results reveal that
prey-taxis effect plays a vital role in the spatiotemporal behavior of the planktonic
system.
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