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Abstract This article studies the probability distributions of solutions in
the phase space for the discrete Zakharov equations. The authors first prove
that the generated process of the solutions operators possesses a pullback-D
attractor, and then they establish that there exists a unique family of invariant
Borel probability measures supported by the pullback attractor.
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1. Introduction

This article studies the following non-autonomous system of discrete Zakharov e-
quations

iψ̇m + (Aψ)m − h2(Dψ)m − umψm + iγψm = fm(t), m ∈ Z, t > τ, (1.1)

üm − (Au)m + h2(Du)m − (A|ψ|2)m + αu̇m + µum = gm(t), m ∈ Z, t > τ,
(1.2)

with initial values

ψm(τ) = ψm,τ , um(τ) = um,τ , u̇m(τ) = u1m,τ , m ∈ Z, τ ∈ R, (1.3)

where the unknown functions ψm(·) ∈ C, um(·) ∈ R, C, R and Z are the sets of
complex, real and integer numbers, respectively. In addition, h, γ, α, µ are positive
constants and i is the unit of the imaginary numbers such that i2 = −1. In equations
(1.1)-(1.2), |ψ|2 = (|ψm|2)m∈Z, A and D are linear operators defined as

(Au)m = um+1 − 2um + um−1, ∀u = (um)m∈Z,

(Du)m = um+2 − 4um+1 + 6um − 4um−1 + um−2, ∀u = (um)m∈Z.
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Equations (1.1)-(1.2) can be regarded as a discrete analogue of the following
non-autonomous Zakharov equations on R: iψt + ψxx − h2ψxxxx − ψu+ iγψ = f(x, t),

utt − uxx + h2uxxxx − (|ψ|2)xx + αut + µu = g(x, t),

where the complex function ψ(x, t) denotes the envelope of the high-frequency elec-
tric field and the real function u(x, t) represents the plasmas density measured from
its equilibrium value (see [15, 28]). The dissipative mechanism of the system is in-
troduced by the terms iγψ, αut and µu. The external forces f(x, t) and g(x, t) are
complex-valued and real-valued functions which are dependent of the time t, re-
spectively. The quantum parameter h expresses the ratio between the ion plasmon
energy and electron thermal energy.

There are some works studying the Cauchy problem and the initial boundary
value problem of the continuous model of Zakharov equations or its related version,
see [11,12,14,15] and the references therein. Also, there are some articles investigat-
ing the discrete Zakharov equations (see [24,25,34]). In [34], the authors proved the
existence of the global attractor; in [24, 25] the authors established the existence,
finite dimensionality and upper semi-continuity of the kernel sections for the lattice
system (1.1)-(1.2).

Lattice dynamical systems (LDSs for short) are spatiotemporal systems with
discretization in some variables including coupled ordinary differential equation-
s (ODEs for short) and coupled map lattices and cellular automata [9]. In some
cases, LDSs occur as spatial discretizations of partial differential equations on un-
bounded (or bounded) domains. LDSs arise in a wide variety of applications, rang-
ing from electrical engineering [7] to image processing and pattern recognition [8],
laser systems [10], biology [20], chemical reaction theory [21], etc. There are many
articles investigating the asymptotic behavior of LDSs, including the existence of
various attractors (such as global attractor, uniform attractor, kernel sections, ex-
ponential attractor, uniform exponential attractor and random attractor), estima-
tions of fractal dimension, Hausdorrf dimension and Kolmogorov ε-entropy, see e.
g. [1–5,16,17,29,31,38–43].

In this article, we are interested in the probability distributions of solutions in
the phase space for equations (1.1)-(1.2). Precisely, we will investigate the invariant
measure for the process generated by the solutions operators of equations (1.1)-(1.2).
The invariant measures have been proven to be very useful in the understanding
of turbulence (see Foias et al. [13]). The main reason is that the measurements
of several aspects of turbulent flows are actually measurements of time-average
quantities.

The invariant measures and statistical properties of dissipative systems were
studied in a series of references. For instance, Wang investigated the upper semi-
continuity of stationary statistical properties of dissipative systems in [30].  Lukasze-
wicz, Real and Robinson [26] used the notion of Generalized Banach limit to con-
struct the invariant measures for general continuous dynamical systems on metric
spaces. Later, Chekroun and Glatt-Holtz [6] improved the results of [30] and [26]
to construct invariant measures for a broad class of dissipative autonomous dynam-
ical systems. Recently,  Lukaszewicz and Robinson [27] extended the result of [6] to
construct invariant measures for dissipative non-autonomous dynamical systems.
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Now, the ideas and approaches of [6, 27] have been successfully extended and
applied to some concrete equations. For example, Zhao and Yang used the theory
of [27] to construct the invariant Borel probability measures for the non-autonomous
globally modified Navier-Stokes equations in [35] and for the regularized MHD e-
quations in [44]; Zhao and Caraballo [36] extended the idea of [6] and constructed
the trajectory statistical solutions for the globally modified Navier-Stokes equation-
s; In [32,37], Zhao and  Lukaszewicz et al. used the approaches of [27] to investigate
the invariant measures for the discrete long-wave-short-wave resonance equations
and discrete Klein-Gordon-Schrödinger equations.

In this article, we will borrow the ideas of [27, 37] to prove the existence and
uniqueness of the invariant Borel probability measures for the discrete Zakharov
equations (1.1)-(1.2). To this end, we first prove the existence of the pullback-D
attractor for the process {U(t, τ)}t>τ associated to the solutions operators in the
phase space Eµ (see notation in Section 2). Then we verify the τ -continuity of
{U(t, τ)}t>τ in the sense that for every fixed z∗ ∈ Eµ and every fixed t ∈ R, the Eµ-
valued function τ 7−→ U(t, τ)z∗ is continuous and bounded on (−∞, t]. Combining
these results, we can obtain the existence and uniqueness of a family of invariant
Borel probability measures supported by the pullback-D attractor.

The key steps are proving the pullback-D asymptotic nullness and the τ -continuity
of {U(t, τ)}t>τ . The main difficulty comes from the nonlinear terms (A|ψ|2)m and
the higher-order derivative terms (Dψ)m and (Du)m. This difficulty requires us to
use some technical estimates and do some delicate computations. At the same time,
recall that [24, 25] proved the existence and upper-semicontinuity of the compact
kernel for the problem (1.1)-(1.3), with the conditions that the external forces such
as (fm(t))m∈Z satisfies

For each τ ∈ R and ∀ ε > 0, ∃M(ε, τ) ∈ N such that∑
|m|>M(ε,τ)

|fm(s)|2 6 ε for any s 6 τ
(1.4)

and

sup
t∈R
‖f(t)‖2 = sup

t∈R

∑
m∈Z
|fm(t)|2 < +∞. (1.5)

Compared to the kernel sections discussed in [24], on the one hand, the pullback-D
attractor we will discuss here possesses more general basins of attraction, which are
referred to a given universe D rather than only fixed bounded sets. Different uni-
verses provide different basins of attraction and will give rise to different pullback
attractor, reflecting different aspects of the dynamics. Indeed, any fixed bounded
sets lie in the universe D. On the other hand, we remove conditions (1.4) and (1.5)
imposed on the external forces. Condition (1.5) implies that f(t) is continuous and
uniformly bounded on R. In this article we will just require that f(t) is continuous
on R and is unnecessary bounded. Indeed, we allow that f(t) is unbounded and
even can be exponentially growing with respect to time t. Without using the con-
ditions (1.4) and (1.5), we shall also perform some technical estimates and delicate
computations.

The rest of this article is arranged as follows. In the next section, we first
introduce some notations, then we prove some estimates and show the global well-
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posedness of problem (1.1)-(1.3). In section 3, we establish the pullback-D asymp-
totic nullness of the process {U(t, τ)}t>τ and get the existence of the pullback-D
attractor. In the last section, we prove the τ -continuity of {U(t, τ)}t>τ and obtain
the existence of a unique family of invariant Borel probability measures supported
by the pullback-D attractor.

2. Estimates and global well-posedness of solutions

In this section, we first introduce some notations and prove some estimates. Then
we show the global well-posedness of solutions to problem (1.1)-(1.3), which implies
its solutions operators generate a continuous process.

Set

`2 =
{
v = (vm)m∈Z, vm ∈ C,

∑
m∈Z
|vm|2 < +∞

}
,

l2 =
{
v = (vm)m∈Z, vm ∈ R,

∑
m∈Z

v2m < +∞
}
.

For brevity we denote X = `2 or l2 in the sequel and equip it with the inner product
and norm as

(u, v) =
∑
m∈Z

umv̄m, ‖u‖2 = (u, u), u = (um)m∈Z, v = (vm)m∈Z ∈ X,

where v̄m denotes the conjugate of vm. We define two linear operators B and B∗

from X to X as

(Bu)m = um+1 − um, ∀m ∈ Z, ∀u = (um)m∈Z ∈ X,
(B∗u)m = um−1 − um, ∀m ∈ Z, ∀u = (um)m∈Z ∈ X.

Also we define a linear form (·, ·) on l2 by

(u, v)µ = (Bu,Bv) + µ(u, v). (2.1)

By some directly computations, we see both B and B∗ are bounded from X to X,
and B∗ is the adjoint operator of B, moreover,

(Au, v) = −(Bu,Bv), (Du, v) = (Au,Av), ∀u, v ∈ X,
‖Au‖2 6 16‖u‖2, ‖Du‖2 6 256‖u‖2, ∀u ∈ X.

At the same time, we see from (2.1) that the bilinear form (·, ·)µ induces an inner
product in l2. In fact,

µ‖u‖2 6 ‖Bu‖2 + µ‖u‖2 = ‖u‖2µ 6 (4 + µ)‖u‖2, ∀u = (um)m∈Z ∈ l2,

which implies that the norm ‖ · ‖µ induced by (·, ·)µ is equivalent to the norm ‖ · ‖.
In this article, we denote by

`2 = (`2, (·, ·), ‖ · ‖), l2µ = (l2, (·, ·)µ, ‖ · ‖µ), l2 = (l2, (·, ·), ‖ · ‖).

Then `2, l2µ and l2 are all Hilbert spaces. Write

Eµ = `2 × l2µ × l2,
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and for z(k) = (ψ(k), u(k), ϕ(k))T ∈ Eµ, k = 1, 2, we define the inner product and
norm of Eµ by

(z(1), z(2))Eµ = (ψ(1), ψ(2)) + (u(1), u(2))µ + (ϕ(1), ϕ(2))

= ψ(1)
m ψ

(2)
m +

∑
m∈Z

(
(Bu(1))m(Bu(2))m + µu(1)m u(2)m

)
+ ϕ(1)

m ϕ(2)
m ,

‖z‖Eµ =
√

(z, z)Eµ , ∀ z ∈ Eµ.

For the reason of technical computations, we shall choose Eµ = (Eµ, (·, ·)Eµ , ‖ ·‖Eµ)
as the phase space of problem (1.1)-(1.3).

To write equations (1.1)-(1.2) as an abstract first-order ODE with respect to
time t in space Eµ, we denote

ψ = (ψm)m∈Z, u = (um)m∈Z, f(t) = (fm(t))m∈Z, g(t) = (gm(t))m∈Z,

ψu = (ψmum)m∈Z, A|ψ|2 =
(
(A|ψ|2)m

)
m∈Z ,

and take

ϕ = u̇+ λu, where λ =
µα

α2 + 4µ
∈ (0,

α

4
). (2.2)

Then equations (1.1)-(1.2) are equivalent to
ψ̇ + (γI − iA+ ih2D)ψ = −iψu− if(t),

u̇+ λu− ϕ = 0,

ϕ̇+
(
λ(λ− α)I + µI −A+ h2D

)
u+ (α− λ)ϕ = A|ψ|2 + g(t).

Further, we set z = (ψ, u, ϕ)T , F (z, t) = (−iψu− if(t), 0, g(t) +A|ψ|2)T and

Θ =


γI − iA+ ih2D 0 0

0 λI −I

0 λ(λ− α)I + µI −A+ h2D (α− λ)I

 , (2.3)

then problem (1.1)-(1.3) is equivalent to ż + Θz = F (z, t), t > τ,

z(τ) = zτ = (ψτ , uτ , ϕτ )T = (ψτ , uτ , u1τ + λuτ )T ,
(2.4)

where ψτ = (ψm,τ )m∈Z, uτ = (um,τ )m∈Z, u1τ = (u1m,τ )m∈Z, I is the identity
operator and (·, ·, ·)T the transposition of a vector.

We next investigate the well-posedness of problem (2.4). In this article we denote
C(R, l2) and C(R, `2) the spaces of continuous functions from R into l2 and `2,
respectively. Then for a function f(·) ∈ C(R, l2) (or C(R, `2)) and t ∈ R, we have

‖f(t)‖2 =
∑
m∈Z
|fm(t)|2 < +∞. (2.5)

Obviously, the condition (2.5) is weaker than (1.5).
For the local existence and uniqueness of solutions to problem (2.4), we have
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Lemma 2.1. Let f(t) = (fm(t))m∈Z ∈ C(R, `2) and g(t) = (gm(t))m∈Z ∈ C(R, l2).
Then for any initial value zτ = (ψτ , uτ , ϕτ )T ∈ Eµ, there is a unique local solution
z(t) = (ψ(t), u(t), ϕ(t))T ∈ Eµ of problem (2.4) such that z(·) ∈ C([τ, T0), Eµ) ∩
C1((τ, T0), Eµ) for some T0 > τ . Moreover, if T0 < +∞, then lim

t→T−0
‖z(t)‖Eµ = +∞.

The proof of above lemma is similar to that of [24, Lemma 2.2], and we omit
the details here. Next, we estimate the solutions. For brevity, we will employ in the
sequel the notation a . b (similarly &) to mean that a 6 cb (similarly a > cb) for
a universal constant c > 0 that only depends on the parameters coming from the
problem.

Lemma 2.2. Let f(t) = (fm(t))m∈Z ∈ C(R, `2), g(t) = (gm(t))m∈Z ∈ C(R, l2). Let
z(t) = (ψ(t), u(t), ϕ(t))T ∈ Eµ be the solution of problem (2.4) corresponding to the
initial value zτ = (ψτ , uτ , ϕτ )T ∈ Eµ. Then

‖ψ(t)‖2 . ‖ψτ‖2e−γ(t−τ) + e−γt
∫ t

τ

eγs‖f(s)‖2ds, t > τ. (2.6)

Proof. We write equation (1.1) as

iψ̇ +Aψ − h2Dψ + iγψ − ψu = f(t), ∀ t > τ. (2.7)

Taking the imaginary part of the inner product (`2, (·, ·)) of (2.7) with ψ yields

d

dt
‖ψ(t)‖2 + γ‖ψ(t)‖2 . ‖f(t)‖2, ∀ t > τ. (2.8)

Applying Gronwall’s inequality to (2.8), we obtain (2.6). The proof is completed.

To estimate the solution z(t) = (ψ(t), u(t), ϕ(t))T , we shall use the coercivity of
the operator Θ defined by (2.3).

Lemma 2.3 ( [24]). For any z = (ψ, u, ϕ)T ∈ Eµ, there holds

Re(Θz, z)Eµ > δ(‖u‖2µ + ‖ϕ‖2) +
α

2
‖ϕ‖2 + γ‖ψ‖2, (2.9)

where

δ = µα
(√

α2 + 4µ(
√
α2 + 4µ+ α)

)−1
.

Lemma 2.4. Let f(t) = (fm(t))m∈Z ∈ C(R, `2) and g(t) = (gm(t))m∈Z ∈ C(R, l2).
Then the solution z(t) = (ψ(t), u(t), v(t))T ∈ Eµ of problem (2.4) corresponding to
the initial value zτ = (ψτ , uτ , vτ )T ∈ Eµ satisfies

‖z(t)‖2Eµ .‖zτ‖2Eµe
−σ(t−τ) + e−σt

∫ t

τ

eσs
(
‖f(s)‖2 + ‖g(s)‖2

)
ds

+ e−σt
∫ t

τ

eσs‖ψ(s)‖4ds, ∀ t > τ, (2.10)

where

σ = min{δ, γ}. (2.11)
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Proof. Taking the real part of the inner product (·, ·)Eµ of the equation in (2.4)
with z(t) gives

1

2

d

dt
‖z(t)‖2Eµ + Re

(
Θz(t), z(t)

)
Eµ

= Re
(
F (z, t), z(t)

)
Eµ
, t > τ. (2.12)

We need estimate the term Re
(
F (z, t), z(t)

)
Eµ

. In fact,

Re
(
F (z, t), z(t)

)
Eµ

= Re
(
− if(t), ψ(t)

)
+
(
g(t), ϕ(t)

)
+
(
A|ψ(t)|2, ϕ(t)

)
. (2.13)

By Cauchy inequality and some simple computations, we have

Re
(
− if(t), ψ

)
.
γ

2
‖ψ‖2 + ‖f(t)‖2, (2.14)(

g(t), ϕ(t)
)
.
α

4
‖ϕ‖2 + ‖g(t)‖2, (2.15)(

A|ψ|2, ϕ) =
(
B|ψ|2, Bϕ

)
6 ‖B|ψ|2‖ ‖Bϕ‖ 6 4‖|ψ|2‖‖ϕ‖

64

[
α

16
‖ϕ(t)‖2 +

4

α
‖ψ(t)‖4

]
.
α

4
‖ϕ‖2 + ||ψ||4. (2.16)

Inserting (2.9) and (2.13)-(2.16) into (2.12) gives

d

dt
‖z(t)‖2Eµ + 2δ(‖u‖2µ + ‖ϕ‖2) + γ‖ψ‖2 . ‖g(t)‖2 + ‖f(t)‖+ ‖ψ‖4.

Let σ be chosen as in (2.11), then we get for any t > τ that

d

dt
‖z(t)‖2Eµ + σ‖z(t)‖2Eµ .‖f(t)‖2 + ‖g(t)‖2 + ‖ψ(t)‖4. (2.17)

Applying Gronwall’s inequality to (2.17) gives (2.10). This ends the proof.
From estimates (2.6) and (2.10) we conclude that for any zτ = (ψτ , uτ , ϕτ )T ∈

Eµ, the corresponding solution z(t) = (ψ(t), u(t), ϕ(t))T ∈ Eµ of problem (2.4)
exists globally on [τ,+∞). Moreover, from Lemma 2.1 we see that

z(·) ∈ C([τ,+∞), Eµ) ∩ C1((τ,+∞), Eµ). (2.18)

Therefore, in view of Lemma 2.1, the maps of solutions operators

U(t, τ) : zτ = (ψτ , uτ , ϕτ )T ∈ Eµ 7−→ z(t) = (ψ(t), u(t), ϕ(t))T ∈ Eµ, ∀ t > τ,

generate a continuous process {U(t, τ)}t>τ on Eµ.

3. Existence of the pullback-D attractor

The purpose of this section is to prove the existence of the pullback-D attractor for
the process {U(t, τ)}t>τ on Eµ. For this purpose, we need some natural assumptions
on the initial values and on the external forces f(t) and g(t).

Firstly, we consider the basins of attraction which the initial values lie in. In
this article we denote by P(Eµ) the family of all nonempty subsets of Eµ and by

Dσ the class of families of nonempty subsets D̂ = {D(s)| s ∈ R} ⊆ P(Eµ) satisfying

lim
s→−∞

(
e
σs
2 sup
z∈D(s)

‖z‖2Eµ
)

= 0.
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Hereinafter, the constant σ comes from (2.11), the class Dσ will be called a universe
in P(Eµ). Obviously, all fixed bounded subsets of Eµ lie in Dσ.

Secondly, we give the assumptions on the external forces f(t) and g(t) necessary
to the existence of a bounded pullback absorbing set for the process {U(t, τ)}t>τ .

(H) Assume f(t) = (fm(t))m∈Z ∈ C(R, `2) and g(t) = (gm(t))m∈Z ∈ C(R, l2).
Moreover, let ∫ s

−∞
eση‖f(η)‖2dη < e(

σ
2 +ω)sK(s), (3.1)

for some continuous function K(·) on the real line, bounded on intervals of the form
(−∞, t), with 0 < ω < σ

2 , and let∫ s

−∞
eση‖g(η)‖2dη < +∞, for each s ∈ R. (3.2)

The following example shows that the functions satisfying above assumption
(H) do exist.

Example 3.1. Let ‖f(η)‖2 6 Me%η for all real η, with constant M > 0 and
% > ω − σ

2 . Then ∫ s

−∞
eση‖f(η)‖2dη < e(

σ
2 +ω)sK(s),

with K(s) =
M

σ + %
e(
σ
2 +%−ω)s. Thus, choosing % < 0, % = 0 or % > 0, we allow

different behavior of f near infinities.

Lemma 3.1. Let assumption (H) hold. Then the process {U(t, τ)}t>τ possesses a

bounded pullback-Dσ absorbing set B̂0 = {B0(s)|s ∈ R} ⊆ P(Eµ) in the sense that

for any t ∈ R and any D̂ = {D(s)| s ∈ R} ∈ Dσ, there exists a τ0 = τ0(t, D̂) 6 t
such that U(t, τ)D(τ) ⊆ B0(t) for all τ 6 τ0, where B0(s) = B(0, Rσ(s)) ⊂ Eµ is
the closed ball of radius Rσ(s) and centered at zero.

Proof. For any zτ ∈ D(τ) with D̂ = {D(s)| s ∈ R} ∈ Dσ, we have

lim
τ→−∞

e
σ
2 τ‖zτ‖2Eµ = 0. (3.3)

Also, (3.1) and (3.2) give∫ t

−∞
eσs
(
‖f(s)‖2 + ‖g(s)‖2

)
ds < +∞, for each t ∈ R. (3.4)

We shall estimate the third term on the right-hand side of (2.10). In fact, it follows
from (2.6) that ∫ t

τ

eσs‖ψ(s)‖4ds 6 %1(t, τ) + %2(t, τ) + %3(t, τ), (3.5)
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where 

%1(t, τ) =

∫ t

τ

eσs‖ψτ‖4e−2γ(s−τ)ds,

%2(t, τ) .
∫ t

τ

eσs‖ψτ‖2eγτe−2γs
∫ s

τ

eγη‖f(η)‖2dηds,

%3(t, τ) .
∫ t

τ

e(σ−2γ)s
(∫ s

τ

eγη‖f(η)‖2dη
)2

ds.

By (3.3), we have lim
τ→−∞

‖ψτ‖4eστ = 0 and then by the Lebesgue’s Dominated

Convergence Theorem,

lim
τ→−∞

%1(t, τ) = 0. (3.6)

We write the bound of %2(t, τ) in the form

‖ψτ‖2e
σ
2 τ

∫ t

τ

(
eσse(γ−

σ
2 )τe−2γs

∫ s

τ

eγη‖f(η)‖2dη
)

ds, (3.7)

and then by assumption (H), e(
σ
2−γ)s

∫ s

−∞
eγη‖f(η)‖2dη 6 K(s), where K(s) is a

continuous function on the real line which is bounded on every interval of the form
(−∞, t). Hence,

lim
τ→−∞

%2(t, τ) = 0, (3.8)

since the integral in (3.7) stays bounded as τ → −∞. Similarly, we obtain from
(3.1) ∫ s

−∞
eγη‖f(η)‖2dη 6 e(γ−σ)s

∫ s

−∞
eση‖f(η)‖2ds 6 e(γ−

σ
2 +ω)sK(s), (3.9)

for some ω ∈ (0, σ/2). Thus e(
σ
2−γ−ω)s

∫ s

−∞
eγη‖f(η)‖2dη 6 K̃(s) for some function

K̃(·) possessing the same properties as the function K(·) above. Since K̃(s) is
bounded on every interval of the form (−∞, t), we can assume that K̃2(s) 6 B(t)
for some quantity B(t) depending only on t. Hence

%3(t, τ) .
∫ t

τ

e(σ−2γ)s
(∫ s

τ

eγη‖f(η)‖2dη
)2

ds 6 B(t)

∫ t

τ

eωsds . B(t)eωt.

Also by the Lebesgue’s Dominated Convergence Theorem, we have

lim
τ→−∞

%3(t, τ) .
∫ t

−∞
e(σ−2γ)s

(∫ s

−∞
eγη‖f(η)‖2dη

)2
ds, (3.10)

and the right-hand side of (3.10) is bounded by a quantity depending only on t. By
(3.5), (3.6), (3.8) and (3.10) we see that if f(t) = (fm(t))m∈Z satisfies the conditions
in assumption (H), then the third term on the right-hand side of (2.10) is bounded
as

lim
τ→−∞

e−σt
∫ t

τ

eσs‖ψ(s)‖4ds . e−σt
∫ t

−∞
e(σ−2γ)s

(∫ s

−∞
eγη‖f(η)‖2dη

)2
ds. (3.11)
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Now set

R2
σ(t) .1 + e−σt

∫ t

−∞
eσs
(
‖f(s)‖2 + ‖g(s)‖2

)
ds

+ e−σt
∫ t

−∞
e(σ−2γ)s

(∫ s

−∞
eγη‖f(η)‖2dη

)2
ds, t ∈ R. (3.12)

Then from (2.10), (3.3), (3.4) and (3.11), we see that the family B̂0 = {B(0, Rσ(s)) |s ∈
R} is the desired bounded pullback-Dσ absorbing set for {U(t, τ)}t>τ in Eµ. The
proof is completed.

Next, we are going to investigate the pullback-Dσ asymptotic nullness of the
process {U(t, τ)}t>τ in Eµ.

Define a smooth function χ(x) ∈ C1(R+,R+) such that

χ(x) = 0 for 0 6 x 6 1,

0 6 χ(x) 6 1 for 1 6 x 6 2,

χ(x) = 1 for x > 2,

|χ′(x)| 6 χ0 (positive constant), for x > 0.

(3.13)

Let D̂ = {D(s)| s ∈ R} ∈ Dσ and t, τ ∈ R with t > τ . Let

z(t) = z(t; τ, zτ ) = U(t, τ)zτ = (ψ(t), u(t), ϕ(t))T = (ψm(t), um(t), ϕm(t))Tm∈Z ∈ Eµ

be a solution of problem (2.4) with initial value zτ ∈ D(τ). Let M be some positive
integer and define ξm(t) = χ(

|m|
M

)ψm(t), vm(t) = χ(
|m|
M

)um(t), wm(t) = χ(
|m|
M

)ϕm(t),

y(t) = (ym(t))m∈Z with ym(t) =
(
ξm(t), vm(t), wm(t)

)T
.

Taking the real part of the inner product (·, ·)Eµ of the equation in (2.3) with y(t)
yields

Re
(
ż(t), y(t)

)
Eµ

+ Re
(
Θz(t), y(t)

)
Eµ

= Re
(
F (z, t), y(t)

)
Eµ
, ∀ t > τ. (3.14)

We next estimate the three terms of (3.14) in three auxiliary lemmas.

Lemma 3.2. The term Re
(
ż(t), y(t)

)
Eµ

in (3.14) satisfies

Re
(
ż(t), y(t)

)
Eµ
− 1

2

d

dt

∑
m∈Z

χ(
|m|
M

)|zm(t)|2Eµ & −Rσ(t)

M
, ∀ τ 6 τ0 6 t, (3.15)

hereinafter Rσ(t) is the radius of the bounded pullback-Dσ absorbing set obtained in

Lemma 3.1, τ0 = τ0(t, D̂) is the pullback absorbing time and

|zm|2Eµ = |ψm|2 + |(Bu)m|2 +µu2m +ϕ2
m, z = (zm)m∈Z = (ψm, um, ϕm)Tm∈Z. (3.16)
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Proof. By direct computations, we have

Re
(
ż(t), y(t)

)
Eµ

=
∑
m∈Z

(Bu̇)m(Bv)m + µ(u̇, v) + (ψ̇, ξ) + (ϕ̇, w)

=
∑
m∈Z

(Bu̇)m

[
χ(
|m+ 1|
M

)um+1 − χ(
|m|
M

)um

]
+

1

2

d

dt

∑
m∈Z

χ(
|m|
M

)
[
µu2m + ϕ2

m + |ψm|2
]

=
∑
m∈Z

χ(
|m|
M

)(Bu̇)m(Bu)m+
1

2

d

dt

∑
m∈Z

χ(
|m|
M

)
[
µu2m+ϕ2

m+|ψm|2
]

+
∑
m∈Z

[
χ(
|m+ 1|
M

)− χ(
|m|
M

)
]
(u̇m+1 − u̇m)um+1

=
1

2

d

dt

∑
m∈Z

χ(
|m|
M

)|zm|2Eµ

+
∑
m∈Z

[
χ(
|m+1|
M

)−χ(
|m|
M

)
]
(ϕm+1−λum+1−ϕm+λum)um+1,

where |zm|2Eµ is defined by (3.16). Thus, combining Lemma 3.1, the Mean Value
Theorem and (3.13), we obtain

Re
(
ż(t), y(t)

)
Eµ
− 1

2

d

dt

∑
m∈Z

χ(
|m|
M

)|zm(t)|2Eµ

=
∑
m∈Z

[
χ(
|m+ 1|
M

)− χ(
|m|
M

)
]
(ϕm+1 − λum+1 − ϕm + λum)um+1

=
∑
m∈Z

χ′(
m̃

M
)

1

M
(ϕm+1 − λum+1 − ϕm + λum)um+1

&− Rσ(t)

M
, ∀ τ 6 τ0 6 t,

hereinafter m̃ is a positive constant locating between |m+ 1| and |m|.

Lemma 3.3. The term Re
(
Θz(t), y(t)

)
Eµ

in (3.14) satisfies

Re
(
Θz(t), y(t)

)
Eµ

−
∑
m∈Z

χ(
|m|
M

)
[
δ
(
(Bu)2m + µu2m + ϕ2

m

)
+
α

2
ϕ2
m + γ|ψm|2

]
− h2

2

d

dt

∑
m∈Z

χ(
|m|
M

)(Au)2m −
λh2

2

∑
m∈Z

χ(
|m|
M

)(Au)2m

&− Rσ(t)

M
, ∀ τ 6 τ0 6 t. (3.17)

Proof. We first perform some computations. In fact,

Re(Θz, y)Eµ =γ(ψ, ξ) + λ(Bu,Bv) + µλ(u, v) + λ(λ− α)(u,w)
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+ (Bu,Bw)− (Bϕ,Bv) + h2(Du,w) + (α− λ)(ϕ,w)

+ Im(Aψ, ξ)− Im(h2Dψ, ξ), (3.18)

(ψ, ξ) =
∑
m∈Z

χ(
|m|
M

)|ψm|2, (u, v) =
∑
m∈Z

χ(
|m|
M

)u2m, (3.19)

(u,w) =
∑
m∈Z

χ(
|m|
M

)umϕm, (ϕ,w) =
∑
m∈Z

χ(
|m|
M

)ϕ2
m, (3.20)

(Bu,Bv) =
∑
m∈Z

(Bu)m(Bv)m =
∑
m∈Z

(Bu)m

[
χ(
|m+ 1|
M

)um+1 − χ(
|m|
M

)um

]
=
∑
m∈Z

(Bu)m

[
(Bu)mχ(

|m|
M

) +
(
χ(
|m+ 1|
M

− χ(
|m|
M

)
)
um+1

]
=
∑
m∈Z

χ(
|m|
M

)(Bu)2m +
∑
m∈Z

χ′(
m̃

M
)

1

M
(um+1 − um)um+1

&
∑
m∈Z

χ(
|m|
M

)(Bu)2m −
Rσ(t)

M
, ∀ τ 6 τ(t, D̂), (3.21)

and also by the Mean Value Theorem and (3.13), we have

(Bu,Bw)− (Bϕ,Bv) =
∑
m∈Z

(Bu)m(Bw)m −
∑
m∈Z

(Bϕ)m(Bv)m

=
∑
m∈Z

(um+1 − um)
(
χ(
|m+ 1|
M

)ϕm+1 − χ(
|m|
M

)ϕm

)
−
∑
m∈Z

(ϕm+1 − ϕm)
(
χ(
|m+ 1|
M

)um+1 − χ(
|m|
M

)um

)
=
∑
m∈Z

(
χ(
|m+ 1|
M

)− χ(
|m|
M

)
(um+1ϕm − umϕm+1)

=
∑
m∈Z

χ′(
m̃

M
)

1

M
(um+1ϕm − umϕm+1)

&− Rσ(t)

M
, ∀ τ 6 τ(t, D̂), (3.22)

Im(Aψ, ξ) =− Im(Bψ,Bξ)

=− Im
(∑
m∈Z

(ψm+1 − ψm)
(
χ(
|m+ 1|
M

)ψ̄m+1 − χ(
|m|
M

)ψ̄m
))

=Im
(∑
m∈Z

(
χ(
|m|
M

)ψm+1ψ̄m + χ(
|m+ 1|
M

)ψ̄m+1ψm
))

>−
∑
m∈Z

∣∣∣χ(
|m+ 1|
M

)− χ(
|m|
M

)
∣∣∣|ψm+1||ψm|

&− Rσ(t)

M
, ∀ τ 6 τ0 6 t. (3.23)

For the term h2(Du,w) in (3.18), we have

(Du,w) = (Du, v̇) + λ(Du, v), (3.24)
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and

(Du, v̇) =(Au,Av̇)

=
∑
m∈Z

(Au)m(Av̇)m

=
∑
m∈Z

(Au)m

[
χ(
|m|
M

)(Au̇)m + (Av̇)m − χ(
|m|
M

)(Au̇)m

]
=

1

2

d

dt

∑
m∈Z

χ(
|m|
M

)(Au)2m +
∑
m∈Z

(Au)m

[
(Av̇)m − χ(

|m|
M

)(Au̇)m

]
.

Since ∑
m∈Z

(Au)m

[
(Av̇)m − χ(

|m|
M

)(Au̇)m

]
=
∑
m∈Z

(Au)m

[(
χ(
|m+ 1|
M

)− χ(
|m|
M

)
)
u̇m+1 +

(
χ(
|m− 1|
M

)− χ(
|m|
M

)
)
u̇m−1

]
&− 1

M

∑
m∈Z
|(Au)m|(|u̇m+1|+ |u̇m−1|)

&− 1

M

∑
m∈Z
|um+1(t)− 2um + um−1|

(
|ϕm+1 − λum+1|+ |ϕm−1 − λum−1|

)
&− Rσ(t)

M
, ∀ τ 6 τ0 6 t,

we have

(Du, v̇)− 1

2

d

dt

∑
m∈Z

χ(
|m|
M

)(Au)2m & −Rσ(t)

M
, ∀ τ 6 τ0 6 t. (3.25)

Similarly,

(Du, v) =(Au,Av)

=
∑
m∈Z

(Au)m

(
χ(
|m|
M

)(Au)m + (Av)m − χ(
|m|
M

)(Au)m

)
&

1

2

∑
m∈Z

χ(
|m|
M

)(Au)2m −
Rσ(t)

M
, ∀ τ 6 τ0 6 t. (3.26)

From (3.24)-(3.26), we obtain

(Du,w) &
1

2

d

dt

∑
m∈Z

χ(
|m|
M

)(Au)2m +
λ

2

∑
m∈Z

χ(
|m|
M

)(Au)2m
Rσ(t)

M
, ∀ τ 6 τ0 6 t.

(3.27)

For the term Im(Dψ, ξ) in (3.18), we have by Lemma 3.1, the Mean Value
Theorem and (3.13) that

− Im(Dψ, ξ) = −Im(Aψ,Aξ)



2346 Z. Zhu, Y. Sang & C. Zhao

=Im

(∑
m∈Z

2

(
χ(
|m+1|
M

)−χ(
|m|
M

)

)
ψ̄m+1ψm+2

(
χ(
|m− 1|
M

)−χ(
|m|
M

)

)
ψ̄m−1ψm

+

(
χ(
|m+ 1|
M

) −χ(
|m− 1|
M

)

)
ψm+1ψ̄m−1

)
>−2

∑
m∈Z

∣∣∣∣χ(
|m+ 1|
M

)−χ(
|m|
M

)

∣∣∣∣ ∣∣ψ̄m+1ψm
∣∣−2

∑
m∈Z

∣∣∣∣χ(
|m−1|
M

)−χ(
|m|
M

)

∣∣∣∣ ∣∣ψ̄m−1ψm∣∣
−
∑
m∈Z

∣∣∣∣χ(
|m+ 1|
M

)− χ(
|m− 1|
M

)

∣∣∣∣ ∣∣ψm+1ψ̄m−1
∣∣

&
−Rσ(t)

M
, ∀ τ 6 τ0 6 t. (3.28)

Taking (3.18)-(3.23) and (3.26)-(3.28) into account, we get

Re(Θz, y)Eµ −
h2

2

d

dt

∑
m∈Z

χ(
|m|
M

)(Au)2m −
λh2

2

∑
m∈Z

χ(
|m|
M

)(Au)2m

−
∑
m∈Z

χ(
|m|
M

)
[
δ
(
(Bu)2m + µu2m + ϕ2

m

)
+
α

2
ϕ2
m + γ|ψm|2

]
&
∑
m∈Z

χ(
|m|
M

)
[
(λ− δ)

(
(Bu)2m + µu2m

)
+
(α

2
− λ− δ

)
ϕ2
m + λ(λ− α)umϕm

]
− Rσ(t)

M
, ∀ τ 6 τ0 6 t. (3.29)

At the same time, by some computations we find∑
m∈Z

χ(
|m|
M

)
[
(λ− δ)

(
(Bu)2m + µu2m

)
+
(α

2
− λ− δ

)
ϕ2
m + λ(λ− α)umϕm

]
>
∑
m∈Z

χ(
|m|
M

)
[
µ(λ− δ)u2m +

(α
2
− λ− δ

)
ϕ2
m − λα|um||ϕm|

]
=
∑
m∈Z

χ(
|m|
M

)
(√

µ(λ− δ)|um| −
√
α

2
− λ− δ|ϕm|

)2
> 0. (3.30)

Inserting (3.30) into (3.29) gives (3.17).

Lemma 3.4. The term Re
(
F (z, t), y(t)

)
Eµ

in (3.14) satisfies

Re
(
F (z, t), y(t)

)
Eµ

.
γ

2

∑
|m|>M

χ
( |m|
M

)
|ψm|2 +

α

2

∑
|m|>M

χ
( |m|
M

)
ϕ2
m +

∑
|m|>M

|gm(t)|2

+
∑
|m|>M

|fm(t)|2+Rσ(t)e−γ(t−s)
∑
|m|>M

χ(
|m|
M

)
(
|ψm+1(τ)|2+|ψm(τ)|2+|ψm−1(τ)|2

)
+Rσ(t)

∫ t

τ

∑
|m|>M

(
|fm+1(s)|2 + |fm(s)|2 + |fm−1(s)|2

)
ds

+
Rσ(t)

M

∫ t

τ

Rσ(s)e−γ(t−s)ds, ∀τ 6 τ0 6 t. (3.31)
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Proof. Direct computations give

Re
(
F (z, t), y(t)

)
Eµ

= Im
(
f(t), ξ

)
+
(
g(t), w(t)

)
+
(
A|ψ|2(t), w(t)

)
. (3.32)

At the same time, for each τ 6 τ0 6 t, we have

Im(f(t), ξ) .
γ

2

∑
|m|>M

χ(
|m|
M

)|ψm|2 +
∑
|m|>M

|fm(t)|2, (3.33)

(
g(t), w

)
.
α

4

∑
|m|>M

χ(
|m|
M

)ϕ2
m +

∑
|m|>M

|gm(t)|2, (3.34)

and (
A|ψ|2, w

)
=
∑
m∈Z

(
|ψm+1|2 − 2|ψm|2 + |ψm−1|2

)
χ(
|m|
M

)ϕm

.
α

4

∑
|m|>M

χ(
|m|
M

)ϕ2
m +Rσ(t)(I1 + I2 + I3), (3.35)

where 

I1 =
∑
|m|>M

χ( |m|M )|ψm+1|2,

I2 =
∑
|m|>M

χ( |m|M )|ψm|2,

I3 =
∑
|m|>M

χ( |m|M )|ψm−1|2.

Next we need estimate the terms I1, I2 and I3 in (3.35). To this end, we let

ζ = (ζm+1)m∈Z =
(
χ(
|m|
M

)ψm+1

)
m∈Z.

Taking the imaginary part of the inner product (·, ·) of equation (2.7) with ζ gives

1

2

d

dt

∑
|m|>M

χ(
|m|
M

)|ψm+1|2 + γ
∑
|m|>M

χ(
|m|
M

)|ψm+1|2

=Im
∑
|m|>M

χ(
|m|
M

)ψ̄m+1fm+1(t)− Im(Aψ, ζ) + h2Im(Dψ, ζ)

.
γ

2

∑
|m|>M

χ(
|m|
M

)|ψm+1|2 +
∑
|m|>M

|fm+1(t)|2 − Im(Aψ, ζ)

+ Im(Dψ, ζ), ∀ τ 6 τ0 6 t. (3.36)

At the same time, by Lemma 3.1 and some computations, we have

−Im(Aψ, ζ) =Im(Bψ,Bζ) .
Rσ(t)

M
, ∀ τ 6 τ0 6 t, (3.37)

Im(Dψ, ζ) =Im(Aψ,Aζ)
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62
∑
m∈Z

∣∣∣χ(
|m|
M

)− χ(
|m+ 1|
M

)
∣∣∣|ψm+1||ψm|

+
∑
m∈Z

∣∣∣χ(
|m− 1|
M

)− χ(
|m+ 1|
M

)
∣∣∣|ψm−1||ψm+1|

+ 2
∑
m∈Z

∣∣∣χ(
|m|
M

)− χ(
|m− 1|
M

)
∣∣∣|ψm||ψm−1|

.
Rσ(t)

M
, ∀ τ 6 τ0 6 t. (3.38)

It then follows from (3.36)-(3.38) that

d

dt

∑
|m|>M

χ(
|m|
M

)|ψm+1|2 + γ
∑
|m|>M

χ(
|m|
M

)|ψm+1|2

.
∑
|m|>M

|fm+1(t)|2 +
Rσ(t)

M
, ∀ τ 6 τ0 6 t. (3.39)

Applying Gronwall inequality to (3.39) yields

I1 .
∫ t

τ

( ∑
|m|>M

|fm+1(s)|2 +
Rσ(s)

M

)
e−γ(t−s)ds

+ e−γ(t−τ)
( ∑
|m|>M

χ(
|m|
M

)|ψm+1(τ)|2
)
, ∀ τ 6 τ0 6 t. (3.40)

Similarly, set

p = (pm)m∈Z = χ(
|m|
M

)ψm, q = (qm−1)m∈Z = χ

(
|m|
M

)
ψm−1.

Taking the imaginary part of the inner product (·, ·) of equation (2.7), respectively
with p and q yields

I2 .
∫ t

τ

( ∑
|m|>M

|fm(s)|2 +
Rσ(s)

M

)
e−γ(t−s)ds

+ e−γ(t−τ)
( ∑
|m|>M

χ(
|m|
M

)|ψm(τ)|2
)
, ∀ τ 6 τ0 6 t, (3.41)

and

I3 .
∫ t

τ

( ∑
|m|>M

|fm−1(s)|2 +
Rσ(s)

M

)
e−γ(t−s)ds

+ e−γ(t−τ)
( ∑
|m|>M

χ(
|m|
M

)|ψm−1(τ)|2
)
, ∀ τ 6 τ0 6 t. (3.42)

Combining (3.32)-(3.35) and (3.40)-(3.42), we obtain (3.31).
Now we begin to prove the pullback-Dσ asymptotic nullness of {U(t, τ)}t>τ in

Eµ.
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Lemma 3.5. Let assumption (H) hold. Then for any given t ∈ R, ∀ε > 0 and D̂ =

{D(s)|s ∈ R} ∈ Dσ, there exist some M∗ = M∗(t, ε, D̂) ∈ N and τ∗ = τ∗(t, ε, D̂) 6 t
such that

sup
z(τ)∈D(τ)

∑
|m|>M∗

∣∣(U(t, τ)z(τ))m
∣∣2
Eµ

6 ε2, ∀τ 6 τ∗. (3.43)

Proof. We conclude from (3.14) and Lemma 3.2-Lemma 3.4 that

d

dt

∑
m∈Z

χ(
|m|
M

)
[
|zm|2Eµ + h2(Au)2m

]
+ σ

∑
m∈Z

χ(
|m|
M

)
[
|zm|2Eµ + h2(Au)2m

]
.
Rσ(t)

M
+

∑
|m|>M

|fm(t)|2 +
∑
|m|>M

|gm(t)|2

+Rσ(t)e−γ(t−τ)
∑
|m|>M

χ(
|m|
M

)
(
|ψm+1(τ)|2 + |ψm(τ)|2 + |ψm−1(τ)|2

)
+Rσ(t)

∫ t

τ

∑
|m|>M

(
|fm+1(s)|2 + |fm(s)|2 + |fm−1(s)|2

)
+
Rσ(t)

M

∫ t

τ

Rσ(s)e−γ(t−s)ds, ∀ τ 6 τ0 6 t. (3.44)

Now, for each given ε > 0 and given t ∈ R, there exists obviously a positive number
M1 = M1(t, ε) ∈ N such that

Rσ(t)

M
6
σε2

12
, ∀M > M1. (3.45)

Also we can pick some τ1 = τ1(t, ε) ∈ N such that

Rσ(t)e−γ(t−τ)
∑
|m|>M

χ(
|m|
M

)
(
|ψm+1(τ)|2 + |ψm(τ)|2 + |ψm−1(τ)|2

)
.Rσ(t)e−γ(t−τ)‖ψτ‖2 6 Rσ(t)e−γ(t−τ)‖zτ‖2Eµ 6

σε2

12
, τ 6 τ1 6 τ0 6 t. (3.46)

At the same time,

Rσ(t)

t∫
τ

( ∑
|m|>M

|fm(s)|2
)
e−γ(t−s)ds =Rσ(t)e−γt

∫ t

τ

eγs
( ∑
|m|>M

|fm(s)|2
)
ds.

By (3.4), (3.12) and the assumption (H), we see Rσ(t)e−γt is a constant depending
only on t. We also see from (3.9) that∫ t

−∞
eγη‖f(η)‖2dη < +∞, for each t ∈ R.

Consequently there is some M2 = M2(t, ε) ∈ N such that

Rσ(t)

∫ t

τ

( ∑
|m|>M

|fm(s)|2
)
e−γ(t−s)ds 6Rσ(t)e−γt

∑
|m|>M

∫ t

−∞
eγs|fm(s)|2ds
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6
σε2

12
, M > M2. (3.47)

Now, by (3.12), we have∫ t

τ

Rσ(s)

M
e−γ(t−s)ds

=
1

M

∫ t

τ

e−γ(t−s)ds+
1

M

∫ t

τ

e−γ(t−s)
∫ s

−∞
e(σ−2γ)ρ(

∫ ρ

τ

eγη‖f(η)‖2dη)2dρds

+
1

M

∫ t

τ

e−γ(t−s)e−σs
∫ s

−∞
eσθ(‖f(θ)‖2 + ‖g(θ)‖2)dθds

6
1

M
+

1

M

∫ t

τ

e−γ(t−s)ds

∫ t

−∞
e(σ−2γ)ρdρ(

∫ t

τ

eγη‖f(η)‖2dη)2

+
e−γt

M

∫ t

τ

e(γ−σ)sds

∫ t

−∞
eσθ(‖f(θ)‖2 + ‖g(θ)‖2)dθ

.
1

M
+
e(σ−2γ)t

M

∫ t

−∞
eγη‖f(η)‖2dη +

e−σt

M

∫ t

−∞
eσθ(‖f(θ)‖2 + ‖g(θ)‖2)dθ.

Hence, by (3.1) and (3.2), for above t and ε, we see that there exists some M3 =
M3(t, ε) ∈ N such that

Rσ(t)

M

∫ t

τ

Rσ(s)e−γ(t−s)ds 6
σε2

12
, ∀M > M3. (3.48)

At this stage, we take (3.44), (3.45), (3.47), (3.48) into account and obtain

d

dt

∑
m∈Z

χ(
|m|
M

)
[
|zm(t)|2Eµ + h2 (A (u(t)))

2
m

]
+ σ

∑
m∈Z

χ(
|m|
M

)
[
|zm(t)|2Eµ + h2 (A (u(t)))

2
m

]
.
∑
|m|>M

|gm(t)|2 +
∑
|m|>M

|fm(t)|2 +
σε2

3
. (3.49)

Applying Gronwall inequality to (3.49) and using the fact

h2
∑
m∈Z

χ(
|m|
M

)((Au(τ))m)2 . ‖uτ‖2 6 ‖zτ‖2Eµ ,

we have∑
m∈Z

χ(
|m|
M

)
(
|zm(t)|2Eµ + h2 (A (u(t)))

2
m

)
.‖zτ‖2Eµe

−σ(t−τ) + e−σt
∫ t

τ

eσs
∑
|m|>M

(
|fm(s)|2 + |gm(s)|2

)
ds+

ε2

3
. (3.50)

From (3.4) we see that there exists some M4 = M4(t, ε) ∈ N such that

e−σt
∫ t

τ

eσs
∑
|m|>M

|(gm(s)|2 + |fm(s)|2)ds
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6 e−σt
∑
|m|>M

∫ t

−∞
eσs(|gm(s)|2 + |fm(s)|2)ds

6
ε2

3
, ∀M > M4. (3.51)

By (3.3), there is some τ2 = τ2(t, ε, D̂) such that,

e−σt · eστ sup
zτ∈D(τ)

‖zτ‖2Eµ 6
ε2

3
, ∀ τ 6 τ2. (3.52)

Now we choose

M∗ = max{M1,M2,M3,M4}, τ∗ = min{τ0, τ1, τ2},

and then follows from (3.50)-(3.52) that∑
|m|>2M∗

|zm(t)|2Eµ 6
∑
m∈Z

χ(
|m|
M

)
[
|zm(t)|2Eµ + h2

(
A
(
u(t)

))2
m

]
6 ε2.

Hence

sup
zτ∈D(τ)

∑
|m|>2M∗

|(U(t, τ)zτ )m|2Eµ = sup
zτ∈D(τ)

∑
|m|>2M∗

|zm(t)|2Eµ 6 ε2, ∀τ 6 τ∗.

The proof of Lemma 3.5 is completed.
Combining Lemma 3.1 and Lemma 3.5, we can obtain, using [37, Theorem 2.1],

the main result of this section as follows.

Theorem 3.1. Let assumption (H) hold. Then the process {U(t, τ)}t>τ possesses

a pullback-Dσ attractor ÂDσ = {ADσ (t)|t ∈ R} satisfying

(a) Compactness: for each t ∈ R, ADσ (t) is a nonempty compact subset of Eµ;

(b) Invariance: U(t, τ)ADσ (τ) = ADσ (t), ∀ τ 6 t;

(c) Pullback attracting: ÂDσ (t) is pullback-Dσ attracting in the following sense

lim
τ→−∞

distEµ
(
U(t, τ)D(τ),ADσ (t)

)
= 0, ∀ D̂ = {D(t)| t ∈ R} ∈ Dσ, t ∈ R.

4. Invariant measures supported by the pullback at-
tractor

In this section, we will apply the theory of  Lukaszewicz and Robinson [27] to prove
the existence of a unique family of invariant Borel probability measures supported
by the pullback-Dσ attractor ÂDσ obtained in Theorem 3.1.

We first introduce two definitions.

Definition 4.1 ( [13]). A generalized Banach limit is any linear functional, which
we denote by LIMT→∞, defined on the space of all bounded real-valued functions
on [0,+∞) that satisfies

(i) LIMT→∞φ(T ) > 0 for nonnegative functions φ(·);
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(ii) LIMT→∞φ(T ) = lim
T→∞

φ(T ) if the usual limit lim
T→∞

φ(T ) exists.

Definition 4.2 ( [27]). A process {U(t, τ)}t>τ is said to be τ -continuous on a metric
space X if for every fixed x0 ∈ X and every fixed t ∈ R, the X-valued function
τ 7−→ U(t, τ)x0 is continuous and bounded on (−∞, t].

Remark 4.1. Notice that we consider the “pullback” asymptotic behavior and we
require generalized limits as τ → −∞. For a given real-valued function φ defined
on (−∞, 0] and a given Banach limit LIMT→∞, we define

LIMt→−∞φ(t) = LIMt→∞φ(−t).

The following result was proved by  Lukaszewicz and Robinson in [27].

Proposition 4.1 ( [27]). Let {U(t, τ)}t>τ be a τ -continuous process in a complete
metric space X that has a pullback-D attractor A(·). Fix a generalized Banach limit
LIMT→∞ and let κ : R 7−→ X be a continuous map such that κ(·) ∈ D. Then there
exists a unique family of Borel probability measures {µt}t∈R in X such the support
of the measure µt is contained in A(t) and

LIMτ→−∞
1

t− τ

∫ t

τ

φ(U(t, s)κ(s))ds =

∫
A(t)

φ(v)dµt(v),

for any real-valued continuous functional φ on X. In addition, µt is invariant in
the sense that ∫

A(t)

φ(v)dµt(v) =

∫
A(τ)

φ(U(t, τ)v)dµτ (v), t > τ.

In order to apply the above result to the pullback-Dσ attractor ÂDσ obtained in
Theorem 3.1, we shall prove the τ -continuous property of the process {U(t, τ)}t>τ
in the space Eµ. We begin with the following estimate.

Lemma 4.1. Let z(k)(t) = z(k)(t; τ, zτ ) = (ψ(k)(t), u(k)(t), ϕ(k)(t))T (k = 1, 2) be

two solutions of problem (2.4) with initial values z
(k)
τ ∈ Eµ, respectively. Then

‖z(1)(t)− z(2)(t)‖2Eµ

.‖z(1)τ − z(2)τ ‖2Eµ exp
{∫ t

τ

(
‖ψ(1)(s)‖2 + ‖ψ(2)(s)‖2 + ‖u(2)(s)‖2

)
ds
}
. (4.1)

Proof. Let z(k)(t) = z(k)(t; τ, z
(k)
τ ) = (ψ(k)(t), u(k)(t), ϕ(k)(t))T , k = 1, 2, be two

solutions of problem (2.4) corresponding to initial data z
(1)
τ , z

(2)
τ ∈ Eµ, respectively.

Set 

ψ̃(t) = ψ(1)(t)− ψ(2)(t),

ũ(t) = u(1)(t)− u(2)(t),

ϕ̃(t) = ϕ(1)(t)− ϕ(2)(t),

z̃(t) = z(1)(t)− z(2)(t).

It is easy to see that z̃(t) satisfies
d
dt z̃(t) + Θz̃(t) = F (z(1)(t), t)− F (z(2)(t), t), ∀ t > τ,

z̃|t=τ = z̃(τ) = z
(1)
τ − z(2)τ .

(4.2)
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From (2.9), we deduce that

Re(Θz̃, z̃)Eµ > δ(‖ũ‖2µ + ‖ϕ̃‖2) +
α

2
‖ϕ̃‖2 + γ‖ψ̃‖2. (4.3)

At the same time, direct computations show that

‖F (z(1), t)− F (z(2), t)‖2Eµ

=

∥∥∥∥(−i(ψ(1)u(1) − ψ(2)u(2)), 0, A|ψ(1)|2 −A|ψ(2)|2
)T∥∥∥∥2

Eµ

6‖ψ(1)(u(1) − u(2)) + u(2)(ψ(1) − ψ(2))‖2 + 16
∥∥|ψ(1)|+ |ψ(2)|

∥∥2∥∥|ψ(1)| − |ψ(2)|
∥∥2

.
(
‖ψ(1)‖2 + ‖ψ(2)‖2 + ‖u(2)‖2

)
‖z̃‖2Eµ . (4.4)

Taking the real part of the inner product (·, ·)Eµ of the equation in (4.2) with z̃ and
then using (4.3)-(4.4), we find

d

ds
‖z̃(s)‖2Eµ + σ‖z̃(s)‖2Eµ

.
(
‖ψ(1)(s)‖2 + ‖ψ(2)(s)‖2 + ‖u(2)(s)‖2

)
‖z̃(s)‖2Eµ , ∀ s > τ. (4.5)

Integrating (4.5) over [τ, t] yields

‖z̃(t)‖2Eµ . ‖z̃(τ)‖2Eµ +

∫ t

τ

(
‖ψ(1)(s)‖2 + ‖ψ(2)(s)‖2 + ‖u(2)(s)‖2

)
‖z̃(s)‖2Eµds.

(4.6)

Applying Gronwall inequality to (4.6) gives

‖z̃(t)‖2Eµ . ‖z̃(τ)‖2Eµ exp
{∫ t

τ

(
‖ψ(1)(s)‖2 + ‖ψ(2)(s)‖2 + ‖u(2)(s)‖2

)
ds
}
.

The proof of Lemma 4.1 is completed.

Lemma 4.2. Let the assumption (H) hold. Then for every fixed z∗ ∈ Eµ and every
fixed t ∈ R, the Eµ-valued function τ 7−→ U(t, τ)z∗ is continuous and bounded on
(−∞, t].

Proof. Let z∗ = (ψ∗, u∗, ϕ∗)
T ∈ Eµ and t ∈ R be given. First we shall prove that

for each fixed s∗ ∈ (−∞, t], the Eµ-valued function τ 7−→ U(t, τ)z∗ is continuous at
τ = s∗. To this end, we will show that for any ε > 0, there exists some δ = δ(ε, s∗) >
0, such that if r < t, s∗ < t and |r − s∗| < δ, then ‖U(t, r)z∗ − U(t, s∗)z∗‖Eµ < ε.
Without loss of generality, we assume r < s∗. SetU(·, s∗)U(s∗, r)z∗ = (ψ

(1)
∗ (·), u(1)∗ (·), ϕ(1)

∗ (·))T ,

U(·, s∗)U(r, r)z∗ = (ψ
(2)
∗ (·), u(2)∗ (·), ϕ(2)

∗ (·))T ,

then we get from (4.1) that

‖U(t, r)z∗ − U(t, s∗)z∗‖2Eµ
=‖U(t, s∗)U(s∗, r)z∗ − U(t, s∗)U(r, r)z∗‖2Eµ
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.‖U(s∗, r)z∗ − U(r, r)z∗‖2Eµ exp
{∫ t

s∗

(
‖ψ(1)
∗ (θ)‖2 + ‖ψ(2)

∗ (θ)‖2 + ‖u(2)∗ (θ)‖2
)
dθ
}
.

(4.7)

Now, from (2.18) find that the solutions of problem (2.4) belong to C([τ,+∞), Eµ).
Thus for above s∗, we have

exp
{∫ t

s∗

(
‖ψ(1)
∗ (θ)‖2 + ‖ψ(2)

∗ (θ)‖2 + ‖u(2)∗ (θ)‖2
)

dθ
}
< B(t, s∗), (4.8)

where the bound B(t, s∗) is independent of r. Therefore, we conclude from (2.18)
and (4.8) that if |r − s| is sufficiently small, then the right hand side of (4.7) is
as small as needed. Thus, the Eµ-valued function τ 7−→ U(t, τ)z∗ is continuous at
τ = s∗.

Secondly, for above z∗ ∈ Eµ and t ∈ R, we deduce from (2.10), (3.1), (3.3) and
(3.11) that

lim
τ→−∞

‖U(t, τ)z∗‖2Eµ

. lim
τ→−∞

‖zτ‖2Eµe
−σ(t−τ) + lim

τ→−∞
e−σt

∫ t

τ

eσθ
(
‖f(θ)‖2 + ‖g(θ)‖2

)
dθ

+ lim
τ→−∞

e−σt
∫ t

τ

eσθ‖ψ(θ)‖4dθ

=e−σt
∫ t

−∞
eσθ
(
‖f(θ)‖2 + ‖g(θ)‖2

)
dθ +

∫ t

−∞
e(σ−2γ)s

(∫ s

τ

eγη‖f(η)‖2dη
)2

ds

(4.9)

<+∞,

and the expression of (4.9) is independent of τ . Remember that we have proved that
the Eµ-valued function τ 7−→ U(t, τ)z∗ is continuous with respect to τ ∈ (−∞, t]
in the space Eµ. Therefore the Eµ-valued function τ 7−→ U(t, τ)z∗ is bounded on
(−∞, t]. The proof of this lemma is completed.

At this stage, we conclude from Theorem 3.1, Proposition 4.1 and Lemma 4.2
the main result of this section.

Theorem 4.1. Let the assumption (H) hold. Let {U(t, τ)}t>τ be the process gen-

erated by the solutions operators of problem (2.4), and ÂDσ = {ADσ (t) |t ∈ R}
the pullback-Dσ attractor obtained in Theorem 3.1. Fix a generalized Banach limit
LIMT→∞ and let φ : R 7→ Eµ be a given continuous map with φ(·) ∈ Dσ. Then
there exists a unique family of Borel probability measures {mt}t∈R in the space Eµ
such that the support of the measure mt is contained in ADσ (t) and

LIMτ→−∞
1

t− τ

∫ t

τ

κ(U(t, s)φ(s))ds =

∫
ADσ (t)

κ(z)dmt(z),

for any real-valued continuous functional κ on Eµ. Moreover, mt is invariant in the
sense that ∫

ADσ (t)
κ(z)dmt(z) =

∫
ADσ (τ)

κ(U(t, τ)z)dmτ (z), t > τ.
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We end this article with two remarks.

Remark 4.2. The obtained invariant measure in Theorem 4.1 depends merely on
the specific generalized limit and the given continuous map κ(·) ∈ Dσ. It is unique
in this sense. We can not prove that the invariant measure is the same for different
generalized Banach limit and differential continuous map κ(·) ∈ Dσ. The support
of the invariant measure is contained in the pullback attractor AD(t) but we can
not establish that the support is the whole pullback attractor.

Remark 4.3. If we rewrite the equation in (2.4) as

dz

dt
= G(z, t),

where G(z, t) = −Θz + F (z, t), then we can prove the following Liouville-type
equation in Statistical Mechanics∫
AD(t)

Φ(z)dmt(z)−
∫
AD(τ)

Φ(z)dmτ (z) =

∫ t

τ

∫
AD(s)

(
G(z, s),Φ′(z)

)
dms(z)ds,

for all “test” functions Φ (cf. [13, P178, Definition 1.2]). We will investigate this
problem in another paper.

Acknowledgements. The authors warmly thanks the anonymous referee for his/her
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