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Abstract In this paper, we consider the nonlinear viscoelastic Kirchhoff-
type equation with initial conditions and acoustic boundary conditions. Under
suitable conditions on the initial data, the relaxation function h(·) and M(·),
we prove that the solution blows up in finite time and give the upper bound
of the blow-up time T ∗.
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1. Introduction

In this paper, we consider the nonlinear viscoelastic Kirchhoff-type equation with
acoustic control boundary conditions

utt−M(‖∇u‖22)∆u+

∫ t

0

h(t−s)∆u(s)ds+a|ut|m−2ut= |u|p−2u in Ω×(0,∞), (1.1)

u = 0 on Γ1 × (0,∞), (1.2)

M(‖∇u‖22)
∂u

∂ν
−
∫ t

0

h(t−s)∂u(s)

∂ν
ds=yt on Γ0 × (0,∞), (1.3)

ut+α(x)yt+β(x)y=0 on Γ0 × (0,∞), (1.4)

u(x, 0)=u0, ut(x, 0)=u1 in Ω, (1.5)

y(x, 0)=y0 on Γ0, (1.6)

where Ω is a bounded domain in Rn(n ≥ 1) with C2 boundary Γ = Γ0 ∪Γ1, Γ0 and
Γ1 are closed and disjoint, meas(Γ0) > 0 and meas(Γ1) > 0. a ≥ 0, m ≥ 2 and p > 2

are constants. ν is the unit outward normal to Γ, ut = ∂u
∂t , yt = ∂y

∂t , ∆u =
n∑
i=1

∂2u
∂x2
i
.

M(·) is a positive C1-function and h represents the kernel of the memory term. y
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is the normal displacement to the boundary at time t with the boundary point x.
α, β will be specified later.

When h = 0 and M ≡ 1, Eq.(1.1) becomes a nonlinear wave equation which
has been extensively studied and several results concerning existence and nonex-
istence have been established. When M(·) is not a constant function, Eq.(1.1) is
the Kirchhoff-type wave equation. This type model was introduced by Kirchhoff in
order to study the nonlinear vibrations of an elastic string. Kirchhoff is the first one
to study the oscillations of stretched strings and plates. In this case the existence
and nonexistence of solutions with homogeneous Dirichlet boundary condition have
been discussed by many authors (see Wu and Tsai [36]).

For Eq.(1.1) with h 6= 0 and M ≡ 1, Cavalcanti etc [8] studied the case of m = 2,
and a localized damping a(x)ut. They obtained an exponential rate of decay with
the assumption that the kernel h is exponential decay. And they [9] also studied
the case of m ≥ 2. This work was later improved by Cavalcanti and Oquendo [10],
Berrimi and Messaoudi [6].

The homogeneous Dirichlet boundary value problems for Kirchhoff-type equa-
tions have been considered by many mathematicians. Nishihara and Yamada [31]
considered the global solvability of the homogeneous Dirichlet boundary value prob-
lem for

∂2u

∂t2
− a

(∫
Ω

|∇u|2dx
)

∆u+ 2γ
∂u

∂t
= 0

and showed the global existence, uniqueness and asymptotic decay of solutions
provided that the initial data u0 (u0 6= 0) and u1 are small and u1 is much smaller
than u0 in some sense. Aassila and Benaissa [1] extended the global existence part of
Christensen [11] to the case where ϕ(s) > 0 with ϕ(‖∇u0‖2) 6= 0 and the nonlinear
dissipative term |ut|α−2ut. Ono [32] and Ye [40] obtained the global existence of
the solution to homogeneous Dirichlet boundary value problem

utt − ϕ(‖∇u‖22)∆u− aut = b|u|β−2u,

where a, b > 0 and β > 2 are constants, ϕ(s) is a C1-class function on [0,+∞)
satisfying

ϕ(s) ≥ m0, sϕ(s) ≥
∫ s

0

ϕ(τ)dτ, ∀s ∈ [0,∞)

with m0 ≥ 1. Wu and Tsai [36] verified the general Kirchhoff-type equation

utt −M(‖∇u(t)‖22)∆u+ |ut|m−2ut = |u|p−2u

with homogeneous Dirichlet boundary condition and positive upper bounded initial
energy blows up. Applying the Banach contraction mapping principle, Gao etc [14]
obtained the local existence and blow-up property of the solution to homogeneous
Dirichlet boundary value problem for the higher-order nonlinear Kirchhoff-type e-
quation

utt +M(‖Dmu(t)‖22)(−∆)mu+ |ut|q−2ut = |u|p−2u,

where p > q ≥ 2,m ≥ 1. Using Galerkin method, Ono and Nishihara [33] proved
the global existence and decay structure of solutions of the homogeneous Dirichlet
boundary value problem for

utt − ϕ(‖∇u‖22)4u− a4ut = b|u|β−2u
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without small condition of data. In Wu [37], Wu considered the strong damping
integro-differential equation

utt −M(‖∇u‖22)∆u+

∫ t

0

h(t− s)∆u(s)ds−∆ut = |u|p−2u

with homogeneous Dirichlet boundary and showed that under some conditions on
h the solution is global in time and energy decays exponentially.

The mixed Dirichlet and Neumann homogenous boundary value problems for
Kirchhoff-type equations have been considered in Gorain [15]. Gorain [15] studied
the uniform stability of two mixed Dirichlet and Neumann homogenous boundary
value problems for

utt + 2δut =

(
a2 + b

∫
Ω

|∇u|2dx
)

∆u,

and

utt =

(
a2 + b

∫
Ω

|∇u|2dx
)

∆u+ 2λ∆ut.

Beale and Rosencrans [3] introduced acoustic boundary conditions of general
form

∂u

∂ν
= yt on Γ0 × (0,∞), (1.7)

γut +m(x)ytt + α(x)yt + β(x)y = 0 on Γ0 × (0,∞) (1.8)

and then Beale [4, 5] investigated global existence and regularity of solutions for
wave equation

utt −∆u = 0

with (1.7)-(1.8) by means of semigroup methods. Recently, wave equations with
acoustic boundary conditions have been treated by many authors. Frota and Gold-
stein [13] studied the nonlinear wave equation

utt −M
(∫

Ω

u2dx

)
∆u+ |ut|αut = 0

with (1.2), (1.7) and (1.8), proved the existence and uniqueness of global solution,
but the dynamic properties are not given. Park [34] considered a wave equation of
memory type with acoustic boundary conditions

utt −∆u+

∫ t

0

h(t− s)∆u(s)ds = 0 in Ω× (0,∞),

u = 0 on Γ1 × (0,∞),

∂u

∂ν
−
∫ t

0

h(t− s)∂u(s)

∂ν
ds = yt on Γ0 × (0,∞),

ut + α(x)yt + β(x)y = 0 on Γ0 × (0,∞),

u(x, 0) = u0, ut(x, 0) = u1 in Ω

and investigated the influence of kernel function h and proved general decay rates
of solutions when h does not necessarily decay exponentially. For the recent results
on the wave equations with acoustic boundary conditions, one can see [16,17,39].
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In Li etc [18–20], the authors proved the existence uniqueness, uniform energy
decay rates and limit behavior of the solution to nonlinear viscoelastic Marguerre-
von Kármán shallow shells system, respectively. Li etc [21,22,24,25,28,29] showed
the global existence uniqueness and decay estimates for nonlinear viscoelastic equa-
tion with boundary dissipation. The authors studied the blow-up phenomenon for
some evolution equations in Li etc [23, 26, 27, 38]. In Li and Xi [30], the authors
gave the asymptotic stability result of the solution to (1.1)-(1.6) under suitable
assumptions.

Motivated by the above work, we intend to study the blow-up property of the
solution to problem (1.1)-(1.6). To our knowledge, blow-up phenomenon of the
solution to viscoelastic Kirchhoff-type equation with acoustic boundary conditions
hasn’t been studied. By using contraction mapping principle, we will prove that
under some conditions on M,h, α, β, γ and the initial data, the problem has a unique
local solution and the solution blows up in finite time. The main contributions of
this paper are: (a) the problem considered in this paper is nonlinear viscoelastic
Kirchhoff-type equation with acoustic boundary conditions. To our knowledge, the
blow up phenomena to (1.1)-(1.6) has not been considered by predecessors and is
studied firstly as a new problem in this paper; (b) acoustic boundary conditions,
propagation velocity function M(·) and relaxation function h bring great difficulties
to the estimations; (c) the construction of auxiliary functions is ingenious, the
estimates are precise.

The present work is organized as follows. In section 2, we present some notations
and material needed for our work. Section 3 is devoted to state and prove our main
result.

2. Preliminaries

Throughout this paper, we define

V = {u ∈ H1(Ω)|u = 0 on Γ1},

and the following scalar products

(u, υ) =

∫
Ω

u(x)υ(x)dx, (u, υ)Γ0 =

∫
Γ0

u(x)υ(x)dS,

and the following norms

‖u‖Lp(Ω) =

(∫
Ω

|u|pdx
) 1
p

, ‖u‖Lp(Γ0) =

(∫
Γ0

|u|pdS
) 1
p

.

To simplify the notations, we denote ‖u‖Lp(Ω), ‖u‖Lp(Γ0) by ‖u‖p, ‖u‖p,Γ0 respec-
tively.

For h ∈ C1(R) and u ∈ H1(0, T ), the symbol h ∗ u stands for convolution, that
is

h ∗ u =

∫ t

0

h(t− s)u(s)ds,

and by ◦, we denote

h ◦ ∇u =

∫ t

0

h(t− s)
∫

Ω

|∇u(s)−∇u(t)|2dxds =

∫ t

0

h(t− s)‖∇u(s)−∇u(t)‖22ds.
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We state the general hypotheses on functions M, α, β, h and the constants
p, m, γ.
(A1) M(s) is a positive C1−function for s ≥ 0 satisfying M(s) = m0 + bsγ , m0 >

0, b ≥ 0 and γ :

0 ≤ γ < 2
n−2 , n ≥ 3,

γ ≥ 0, n = 1, 2.

(A2) h(t): [0,∞)→ [0,∞) are nonincreasing C1−function such that

m0 −
∫ ∞

0

h(s)ds = l > 0. (2.1)

(A3) For the functions α and β, we assume that α, β ∈ C(Γ0) and α(x) > 0 and
β(x) > 0 for all x ∈ Γ0. This assumptions imply that there exist positive constants
αi, βi(i = 0, 1), such that

α0 ≤ α(x) ≤ α1, β0 ≤ β(x) ≤ β1, for all x ∈ Γ0.

(A4) p > max

{
1 +

√
1 + m0−l

l , 2(γ + 1)

}
, 2 ≤ m < p ≤ 2n

n−2 , n ≥ 3, or p > m ≥
2, n = 1, 2.

Remark 2.1. If h ≡ 0, M ≡ const, then γ = 0, l = m0, the assumptions (A1)−(A4)
is the assumptions for wave equation in some known literatures.

By using contraction mapping principle and the similar procedure in [3, 14],
we can have the following existence theorem for (1.1)-(1.6) under the conditions
(A1)− (A4) as above.

Theorem 2.1. Let the assumptions (A1)−(A4) hold and (u0, u1, y0)∈
(
V ∩H2(Ω)

)
×

V × L2(Γ0). Then there exists a unique local solution u of (1.1)-(1.6) satisfying

u ∈ L∞
(
0, T ;V ∩H2(Ω)

)
, ut ∈ L∞(0, T ;V ),

utt ∈ L∞
(
0, T ;L2(Ω)

)
, y, yt ∈ L2

(
0, T ;L2(Γ0)

)
.

Moreover, we have

u ∈ C ([0, T );V ) , ut ∈ C
(
[0, T );L2(Ω)

)
.

In the following, we give some lemmas which will be used in this paper.

Lemma 2.1 (General poincaré inequality). If 2 ≤ q ≤ 2n
n−2 , n ≥ 3, or q ≥ 2,

n = 1, 2, then there exists an optimal constant B such that

‖u‖q ≤ B‖∇u‖2, ∀ u ∈ V. (2.2)

Moreover, using the trace theorem, we have

‖u‖2,Γ0
≤ c∗‖∇u‖2, ∀ u ∈ V. (2.3)

Proof. The proof can be found in [2, 12].

Lemma 2.2. If z ≥ 0, 0 < θ ≤ 1, a ≥ 0, we have the following inequality

zθ ≤
(

1 +
1

a

)
(z + a), (2.4)
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Proof. In fact,

zθ ≤ (z + 1) ≤
(

1 +
1

a

)
(z + a).

3. The main result

In order to define the energy function E(t) of the problem (1.1)-(1.6), we give
the following computation. Multiplying ut on both sides of (1.1), integrating the
resulting equation over Ω, using Green formula, (A1) and (1.2)-(1.4), we have

(utt, ut) +
(
M(‖∇u‖22)∇u,∇ut

)
−
∫ t

0

h(t− s) (∇u(s),∇ut(t)) ds+ a‖ut‖mm

−
∫

Γ0

ut

[
M(‖∇u‖22)

∂u

∂ν
−
∫ t

0

h(t− s)∂u(s)

∂ν
ds

]
dS

=
1

2

d

dt
‖ut‖22 +m0 (∇u,∇ut) + b‖∇u‖2γ2 (∇u,∇ut)

−
∫ t

0

h(t− s) (∇u(s),∇ut(t)) ds+ a‖ut‖mm

−
∫

Γ0

ut

[
M(‖∇u‖22)

∂u

∂ν
−
∫ t

0

h(t− s)∂u(s)

∂ν
ds

]
dS

=
1

2

d

dt
‖ut‖22 +

m0

2

d

dt
‖∇u‖22 +

b

2
‖∇u‖2γ2

d

dt
‖∇u‖22

−
∫ t

0

h(t− s) (∇u(s),∇ut(t)) ds+ a‖ut‖mm

−
∫

Γ0

ut

[
M(‖∇u‖22)

∂u

∂ν
−
∫ t

0

h(t− s)∂u(s)

∂ν
ds

]
dS

=
(
|u|p−2u, ut

)
=

1

p

d

dt
‖u‖pp,

that is

1

2

d

dt

(
‖ut‖22 +m0‖∇u‖22 +

b

γ + 1
‖∇u‖2γ+2

2 − 2

p
‖u‖pp

)
−
∫

Γ0

ut

(
M(‖∇u‖22)

∂u

∂ν
−
∫ t

0

h(t− s)∂u(s)

∂ν
ds

)
dS

−
∫ t

0

h(t− s) (∇u(s),∇ut(t)) ds = −a‖ut‖mm, (3.1)

for any regular solution. This result remains valid for weak solutions by a simple
density argument.

Using (1.2)-(1.4), we get

−
∫

Γ0

ut

[
M(‖∇u‖22)

∂u

∂ν
−
∫ t

0

h(t− s)∂u(s)

∂ν
ds

]
dS

=− (ut, yt)Γ0
=
(
α(x), y2

t

)
Γ0

+
1

2

d

dt

(
β(x), y2

)
Γ0
. (3.2)
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Direct calculation shows

−
∫ t

0

h(t− s)(∇u(s),∇ut(t))ds

=−
∫ t

0

h(t− s)(∇ut(t),∇u(s)−∇u(t))ds−
∫ t

0

h(t− s)(∇ut(t),∇u(t))ds

=
1

2

∫ t

0

h(t− s) d
dt
‖∇u(t)−∇u(s)‖22ds−

1

2

∫ t

0

h(s)ds
d

dt
‖∇u‖22

=
1

2

d

dt

[∫ t

0

h(t− s)‖∇u(t)−∇u(s)‖22ds
]
− 1

2

d

dt

[∫ t

0

h(s)ds‖∇u‖22
]

− 1

2

∫ t

0

h′(t− s)‖∇u(t)−∇u(s)‖22ds+
1

2
h(t)‖∇u‖22. (3.3)

Inserting (3.2) and (3.3) into (3.1), we obtain

d

dt
E(t) =

1

2

d

dt

(
‖ut‖22 +m0‖∇u‖22 +

b

γ + 1
‖∇u‖2γ+2

2 − 2

p
‖u‖pp

)
− 1

2

d

dt

[∫ t

0

h(s)ds‖∇u‖22 − h ◦ ∇u
]

+
1

2

d

dt

(
β(x), y2

)
Γ0

=− a‖ut‖mm −
1

2
h(t)‖∇u‖22 +

1

2
h′ ◦ ∇u−

(
α(x), y2

t

)
Γ0
,

where

E(t) =
1

2
‖ut‖22 +

1

2

[
m0 −

∫ t

0

h(s)ds

]
‖∇u‖22 +

b

2(γ + 1)
‖∇u‖2γ+2

2

+
1

2
h ◦ ∇u+

1

2

(
β(x), y2

)
Γ0
− 1

p
‖u‖pp. (3.4)

Lemma 3.1. E(t) is a non-increasing functional.
Proof. Note that

E′(t) = −a‖ut‖mm −
1

2
h(t)‖∇u‖22 +

1

2
h′ ◦ ∇u− (α(x), y2

t )Γ0
≤ 0. (3.5)

Theorem 3.2. Assume the assumptions in Theorem 2.1 hold. Then the local
solution of (1.1)-(1.6) with initial condition E(0) < 0 blows up in finite time. In
other words, there exists a positive constant T ∗ such that lim

t→T∗
‖u‖p =∞.

Proof. At first, we set

H(t) = −E(t).

By Lemma 3.1 we have

H ′(t) = −E′(t) = a‖ut‖mm +
1

2
h(t)‖∇u‖22 −

1

2
h′ ◦ ∇u+ (α(x), y2

t )Γ0
≥ a‖ut‖mm ≥ 0.

(3.6)
Then we obtain

0 < −E(0) = H(0) ≤ H(t). (3.7)



Dynamic properties for Kirchhoff equation 2325

Using (3.4),(3.5) and (3.7), we get

0 < H(0) ≤ H(t) =− 1

2
‖ut‖22 −

1

2

[
m0 −

∫ t

0

h(s)ds

]
‖∇u‖22 −

b

2(γ + 1)
‖∇u‖2γ+2

2

− 1

2
h ◦ ∇u− 1

2

(
β(x), y2

)
Γ0

+
1

p
‖u‖pp

≤ 1

p
‖u‖pp,

that is

0 < H(0) ≤ H(t) ≤ 1

p
‖u‖pp. (3.8)

Define

L(t) = H1−σ(t) + ε(u, ut)−
ε

2

(
α(x), y2

)
Γ0
− ε(u, y)Γ0 , (3.9)

for small ε > 0 to be chosen later and for

0 < σ ≤ min

{
1

2
− 1

p
,
p−m
p(m− 1)

}
. (3.10)

By taking the derivative of (3.9) and using (1.1)-(1.4), we obtain

L′(t)=(1−σ)H−σ(t)H ′(t)+ε‖ut‖22+ε(u, utt)−ε (α(x), yyt)Γ0
−ε(ut, y)Γ0

−ε(u, yt)Γ0

=(1− σ)H−σ(t)H ′(t) + ε
[
‖ut‖22 − a

(
u, |ut|m−2ut

)
+ ‖u‖pp +

(
β(x), y2

)
Γ0

]
+ ε

[
M(‖∇u‖22)‖(u,∆u)−

∫ t

0

h(t− s)(u(t),∆u(s))ds− (u, yt)Γ0

]
=(1− σ)H−σ(t)H ′(t) + ε

[
‖ut‖22 − a(u, |ut|m−2ut) + ‖u‖pp +

(
β(x), y2

)
Γ0

]
+ ε

[
−m0‖∇u‖22 − b‖∇u‖

2γ+2
2 +

∫ t

0

h(t− s)(∇u(t),∇u(s))ds

]
=(1− σ)H−σ(t)H ′(t) + ε

[
‖ut‖22 − a(u, |ut|m−2ut) + ‖u‖pp +

(
β(x), y2

)
Γ0

]
+ ε

[
−m0‖∇u‖22 − b‖∇u‖

2γ+2
2 +

∫ t

0

h(t− s)(∇u(t),∇u(s))ds

]
+ 2ε [H(t) + E(t))]

=(1− σ)H−σ(t)H ′(t) + ε
[
‖ut‖22 − a(u, |ut|m−2ut) + ‖u‖pp +

(
β(x), y2

)
Γ0

]
+ ε

[
−m0‖∇u‖22 − b‖∇u‖

2γ+2
2 +

∫ t

0

h(t− s)(∇u(t),∇u(s))ds

]
+ 2εH(t)

+2ε

[
1

2
‖ut‖22+

1

2

[
m0−

∫ t

0

h(s)ds

]
‖∇u‖22+

b

2(γ+1)
‖∇u‖2γ+2

2 +
1

2
h ◦ ∇u

]
+ ε

(
β(x), y2

)
Γ0
− 2ε

p
‖u‖pp

=(1− σ)H−σ(t)H ′(t) + 2εH(t)
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+ε

[
2‖ut‖22−a(u, |ut|m−2ut)+

(
1− 2

p

)
‖u‖pp−

bγ

(γ+1)
‖∇u‖2γ+2

2 +2
(
β(x), y2

)
Γ0

]
+ ε

[∫ t

0

h(t− s)(∇u(t),∇u(s))ds−
∫ t

0

h(s)ds‖∇u‖22 + h ◦ ∇u
]
. (3.11)

Next, we estimate the terms in (3.11). Applying Cauchy-Schwarz and Hölder
inequalities, we know that

− a
(
u, |ut|m−2ut

)
≥ −aδ

m

m
‖u‖mm − a

m− 1

m
δ

−m
m−1 ‖ut‖mm. (3.12)

Choosing δ−
m
m−1 = kH−σ(t) (by (3.6)), where k > 0 is a positive constant to be

specified later, and inserting (3.9) and (3.12) into (3.11), we see

L′(t) ≥
(

1− σ − εm− 1

m
k

)
H−σ(t)H ′(t) + 2εH(t)

+ ε

[
2‖ut‖22+

(
1− 2

p

)
‖u‖pp−

bγ

(γ+1)
‖∇u‖2γ+2

2 +2
(
β(x), y2

)
Γ0

+h ◦ ∇u
]

+ ε

[∫ t

0

h(t− s)(∇u(t),∇u(s))ds−
∫ t

0

h(s)ds‖∇u‖22
]

− aεk
−(m−1)Hσ(m−1)(t)

m
‖u‖mm. (3.13)

Since p > m ≥ 2 and using inequality ‖u‖mm ≤ C1‖u‖mp (where C1 = |Ω|
p−m
p , and

|Ω| denotes the Lebesgue measure of Ω, we obtain from (3.8) that

Hσ(m−1)(t)‖u‖mm ≤
(

1

p
‖u‖pp

)σ(m−1)

C1‖u‖mp =
C1

pσ(m−1)
‖u‖p(

m
p +σ(m−1))

p .

From 0 < σ ≤ min
{

p−m
p(m−1) ,

1
2 −

1
p

}
, we easily get σ(m− 1) + m

p ≤ 1. Then, using

Lemma 2.2 and (3.7) we obtain

‖u‖p(σ(m−1)+m
p )

p ≤ d
(
‖u‖pp +H(0)

)
≤ d

(
‖u‖pp +H(t)

)
, (3.14)

where d = 1 + 1
H(0) . Substituting (3.14) into (3.13), we get

L′(t) ≥
(

1− σ − εm− 1

m
k

)
H−σ(t)H ′(t) + ε

(
2− a 1

km−1m

C1

pσ(m−1)
d

)
H(t)

+ ε

[
2‖ut‖22+

(
1− 2

p
−a 1

km−1m

C1

pσ(m−1)
d

)
‖u‖pp+2

(
β(x), y2

)
Γ0

+h ◦ ∇u
]

+ ε

[∫ t

0

h(t− s)(∇u(t),∇u(s))ds−
∫ t

0

h(s)ds‖∇u‖22−
bγ

(γ + 1)
‖∇u‖2γ+2

2

]
.

(3.15)

Note that∫ t

0

h(t− s)(∇u(t),∇u(s))ds
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=

∫ t

0

h(t− s)(∇u(t),∇u(s)−∇u(t))ds+

∫ t

0

h(s)ds‖∇u‖22

≥ −
∫ t

0

h(t− s)
(
δ1
2
‖∇u(s)−∇u(t)‖22 +

1

2δ1
‖∇u‖22

)
ds+

∫ t

0

h(s)ds‖∇u‖22

= −δ1
2
h ◦ ∇u+

(
1− 1

2δ1

)∫ t

0

h(s)ds‖∇u‖22, (3.16)

and

‖u‖pp = pH(t) +
p

2
‖ut‖22 +

p

2

[
m0 −

∫ t

0

h(s)ds

]
‖∇u‖22 +

pb

2(γ + 1)
‖∇u‖2γ+2

2

+
p

2
h ◦ ∇u+

p

2

(
β(x)y2

)
Γ0
. (3.17)

Inserting the estimates (3.16)-(3.17) into (3.15), we obtain

L′(t) ≥
(

1− σ − εm− 1

m
k

)
H−σ(t)H ′(t)

+ ε

[
2− a 1

km−1m

C1

pσ(m−1)
d+ p

(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)]
H(t)

+ ε

[
p

2

(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
+ 2

](
‖ut‖22 +

(
β(x), y2

)
Γ0

)
+ ε

[
p

2

(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
+ 1− δ1

2

]
h ◦ ∇u

+ ε

[
pb

2(γ + 1)

(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
− bγ

(γ + 1)

]
‖∇u‖2γ+2

2

+

[
p

2

(
m0 −

∫ t

0

h(s)ds

)(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
− 1

2δ1

∫ t

0

h(s)ds

]
‖∇u‖22.

Noting (A1)− (A4), and choosing δ1 ∈
(
m0−l
(p−2)l , p

)
, for fixed k > 0 large enough and

fixed ε > 0 small enough, we get

1− σ − εm− 1

m
k > 0,

2− a 1

km−1m

C1

pσ(m−1)
d+ p

(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
> 0,

p

2

(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
+ 2 > 0,

p

2

(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
+ 1− δ1

2
> 0,

pb

2(γ + 1)

(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
− bγ

(γ + 1)
> 0,

p

2

(
m0 −

∫ t

0

h(s)ds

)(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
− 1

2δ1

∫ t

0

h(s)ds
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≥ p

2
l

(
1− 2

p
− a 1

km−1m

C1

pσ(m−1)
d

)
− 1

2δ1
(m0 − l) > 0.

Therefore, there exists a positive constant η > 0 such

L′(t) ≥ εη
[
H(t) + ‖ut‖22 + ‖y‖22,Γ0

+ h ◦ ∇u+ ‖∇u‖2γ+2
2 + ‖∇u‖22

]
. (3.18)

Noting
(
α(x), y2

)
Γ0
≥ 0, we obtain from (3.9) that

L(t) ≤ H1−σ(t) + ε(u, ut)− ε(u, y)Γ0
. (3.19)

Using Hölder inequalities, Lemma 2.1 and noting (A1) we know that

|(u, ut)| ≤ ‖u‖2‖ut‖2 ≤ C2‖u‖2γ+2‖ut‖2 ≤ C3‖∇u‖2‖ut‖2, (3.20)

where C2 = |Ω|
γ

2(γ+1) , C3 = BC2. Furthermore,

|(u, ut)|
1

1−σ ≤ C
1

1−σ
3 ‖∇u‖

1
1−σ
2 ‖ut‖

1
1−σ
2 .

Applying Young inequality, we see

|(u, ut)|
1

1−σ ≤ C
1

1−σ
3

(
1

µ1
‖∇u‖

µ1
1−σ
2 +

1

µ2
‖ut‖

µ2
1−σ
2

)
≤ C

1
1−σ
3

(
‖∇u‖

µ1
1−σ
2 + ‖ut‖

µ2
1−σ
2

)
,

where 1
µ1

+ 1
µ2

= 1. Then choosing µ2 = 2(1 − σ), we get µ1

1−σ = 2
1−2σ , and

substituting it into the above inequality, we have

|(u, ut)|
1

1−σ ≤C
1

1−σ
3

(
‖∇u‖

2
1−2σ

2 +‖ut‖22
)

=C
1

1−σ
3

(
‖∇u‖

(2γ+2) 1
(1−2σ)(γ+1)

2 +‖ut‖22
)
.

(3.21)

Owing to (A4) and (3.10), we see 0 < σ ≤ 1
2 −

1
p < 1

2 −
1

2(γ+1) = γ
2(γ+1) which

implies 1
(1−2σ)(γ+1) < 1. Using Lemma 2.2, we have

‖∇u‖
(2γ+2) 1

(1−2σ)(γ+1)

2 ≤ d
(
‖∇u‖2γ+2

2 +H(0)
)
≤ d

(
‖∇u‖2γ+2

2 +H(t)
)
, (3.22)

where d = 1 + 1
H(0) . Inserting (3.22) into (3.21), we get

|(u, ut)|
1

1−σ ≤ C4

(
H(t) + ‖∇u‖2γ+2

2 + ‖ut‖22
)
. (3.23)

Furthermore, applying Cauchy inequality and Lemma 2.1, we have

∣∣(u, y)Γ0

∣∣ =

∣∣∣∣∣
(

1

β(x)
u, β(x)y

)
Γ0

∣∣∣∣∣ ≤
√
‖β(x)‖∞
β0

√
(β(x), y2)Γ0

·
√

(u, u)Γ0

≤ c∗
√
‖β(x)‖∞
β0

√
(β(x), y2)Γ0

‖∇u‖2

≤ c∗
β1

√
‖β(x)‖∞
β0

‖y‖2,Γ0
‖∇u‖2.
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Imitating the above process, we have∣∣(u, y)Γ0

∣∣ 1
1−σ ≤ C5

(
H(t) + ‖∇u‖2γ+2

2 + ‖y‖22,Γ0

)
. (3.24)

Using the inequality (a1 + a2 + a3)l ≤ 3(j−1)(aj1 + aj2 + aj3), where a1 ≥ 0, a2 ≥
0, a3 ≥ 0, j ≥ 1, we can obtain

L
1

1−σ (t) ≤
(
H1−σ(t) + ε (u, ut)− ε (u, y)Γ0

) 1
1−σ

≤
(
H1−σ(t) + ε |(u, ut)|+ ε

∣∣(u, y)Γ0

∣∣) 1
1−σ

≤ C6

[
H(t) + ε

1
1−σ

(
|(u, ut)|

1
1−σ +

∣∣(u, y)Γ0

∣∣ 1
1−σ
)]

≤ C7

[
H(t) + ‖∇u‖2γ+2

2 + ‖ut‖22 + ‖y‖22,Γ0
)
]
. (3.25)

Combining (3.18) and (3.25), we conclude that for some τ > 0

L′(t) ≥ τL
1

1−σ (t), ∀ t ∈ [0, T ∗).

Integrating the above inequality from 0 to t yields

L(t) ≥

[
1

L−
σ

1−σ (0)− στ
1−σ t

] 1−σ
σ

. (3.26)

Since L(0) > 0, (3.26) shows that lim
t→T∗

L(t) =∞, where T ∗ ≤ 1−σ
στL

σ
1−σ (0)

. From

the definition of L(t), we have lim
t→T∗

H(t) =∞. According to (3.8), we obtain that

lim
t→T∗

‖u‖pp =∞, that is, the solution blows up at finite time in Lp norm.

4. Conclusions

In this paper, we consider the nonlinear viscoelastic Kirchhoff-type equation with
acoustic control boundary conditions. Under suitable conditions on the initial data,
the relaxation function h(·) and M(·), we prove that the solution blows up in finite
time and give the upper bound of the blow-up time T ∗. One can further consider
the blow-up phenomenon and the lower bound estimation of T ∗ for the solution
under the condition E(0) < E1 (E1 is some positive constant).
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