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ANALYSIS OF AN HIV MODEL WITH
POST-TREATMENT CONTROL

Shaoli Wang1 and Fei Xu2,†

Abstract Recent investigation indicated that latent reservoir and immune
impairment are responsible for the post-treatment control of HIV infection.
In this paper, we simplify the disease model with latent reservoir and immune
impairment and perform a series of mathematical analysis. We obtain the
basic infection reproductive number R0 to characterize the viral dynamics. We
prove that when R0 < 1, the uninfected equilibrium of the proposed model is
globally asymptotically stable. When R0 > 1, we obtain two thresholds, the
post-treatment immune control threshold and the elite control threshold. The
model has bistable behaviors in the interval between the two thresholds. If
the proliferation rate of CTLs is less than the post-treatment immune control
threshold, the model does not have positive equilibria. In this case, the immune
free equilibrium is stable and the system will have virus rebound. On the other
hand, when the proliferation rate of CTLs is greater than the elite control
threshold, the system has stable positive immune equilibrium and unstable
immune free equilibrium. Thus, the system is under elite control.

Keywords HIV infection, mathematical model, bistable behavior, post-treatment
immune control, elite control.
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1. Introduction
In 2010, an HIV-infected mother gave birth to a baby prematurely in a Mississippi
clinic. The infant was known as the ‘Mississippi baby’. Before delivery, the mother
was not diagnosed with HIV infection did not receive antiretroviral treatment [1].
At the age of 30 hours, the baby received liquid, triple-drug antiretroviral treatment.
Such treatment was terminated at the age of 18 months and since then, the virus
level in the baby remains undetectable. Though it was thought that the baby was
cured of HIV, a routine clinical test on July 10, 2014 showed that the level of virus
in the ‘Mississippi baby’ became detectable (16,750 copies/ml) [1].

Antiretroviral therapy (ART) is effective in inhibiting the HIV infection and
prolongs the life of infected individuals. However, due to the existence of latent
reservoirs, it is unable to totally eliminate the virus infection [10, 11, 14, 15, 51].
The time it takes the virus to rebound varies. For example, the virus level of the
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Mississippi baby remains undetectable for years before the virus rebound [1, 31].
Sometimes, a host may have low virus load after antiretroviral therapy. Inves-
tigations have been carried out to reveal the causes of low virus level and virus
rebound [12,31,39].

Conway and Perelson constructed a mathematical model to investigate the dy-
namics of virus rebound [12]. Their investigation reveals the interplay between
immune response and latent reservoir, and shows that post-treatment control may
appear. Recent investigations indicated that early antiretroviral therapy may be
responsible for the development of post-treatment control with plasma virus remain-
ing undetectable after the cessation of treatment. However, only a small proportion
of patients receiving early antiretroviral therapy developed post-treatment control.
Further investigations are to be carried out to reveal the reasons behind this.

Treasure et al investigated the HIV rebound in patients who terminated the
antiretroviral therapy. They showed that a patient who discontinued the antiretro-
viral therapy may or may not undergo immediate HIV rebound [39].

As an important approach to investigate disease transmission, mathematical
modeling provides insights into interactions between viral and host factors. Sys-
tem of differential equations have been used to model the behavior of ecological
systems [9] as well as within-host virus systems [2]. Evaluating the behaviors of
the viral models yields a better understanding of the disease and is beneficial to
the development of appropriate therapy strategies. In the literature, mathematical
models of within-host viral dynamics have been designed [2, 4, 8, 13, 17, 28–30, 43,
44, 46, 48, 49]. Immune response has also been integrated into within host models
to investigate the combined effects of viral dynamics and immune process of the
host [7, 18,25,37,41–45,52].

Regoes et al. [33] incorporated immune impairment into viral models to consider
the effects that target cell limitation and immune responses have on the evolution
of virus. Their investigations indicated that the immune system of the host may
collapse when the impairment rate of HIV surpasses its threshold value. Iwami et al.
[19,20] investigated the HIV dynamics with immune impairment using mathematical
models. The authors got the ‘risky threshold’ and ‘immunodeficiency threshold’ by
performing analysis. The results implied that the immune system always collapses
when the impairment rate is greater than the threshold value. Immune impairment
in within-host virus models have received much attention in the literature [3,38,47].

HIV latent reservoir is responsible for the rebound in HIV viral load. As a
major barrier to the eradication of HIV-1 virus, latent reservoir poses persistent
risks to the hosts. The infected cells in the latent reservoir remain undetectable to
the immune system and can be reactivated to produce virions with the termination
of drug therapy [21, 22, 34, 35, 40]. Investigations showed that the size of the virus
reservoir is relatively stable [40]. For a patient under sufficient antiretroviral therapy
(ART), ongoing viral replication rate in the reservoir remains low [22]. However,
for infected individuals under ART of lower efficiency, there might be coexistence
of latent reservoir and virus. Rong and Perelson [35] performed a thorough study
on the replenishment of the latent reservoir induced by latently infected cells that
are occasionally reactivated. The authors indicated that such scenario corresponds
to the half-life of the latent reservoir.

Post-treatment control of HIV attracted the attention of researchers. Conway
and Perelson integrated the post treatment into an HIV model and performed anal-
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ysis [12]. Here, we simplify the model proposed in [12] to obtain

dx(t)
dt = s− dx(t)− (1− ϵ)βx(t)y(t),

dL(t)
dt = αL(1− ϵ)βx(t)y(t) + (ρ− a− dL)L(t),

dy(t)
dt = (1− αL)(1− ϵ)βx(t)y(t) + aL(t)

−δy(t)− py(t)z(t),

dz(t)
dt = cy(t)z(t)

1+ηy(t) − bz(t)−my(t)z(t),

(1.1)

where x denotes the concentration of activated CD4+ T cells, L latently infected
cells, y productively infected CD4+ T cells and z the immune cells. Here, 0 <
αL < 1. The effectiveness of both drug classes is represented by ϵ ∈ [0, 1]. Here
ϵ is also known as the overall treatment effectiveness of HIV. If the treatment is
terminated, ϵ = 0. If the therapy is 100% effective, we have ϵ = 1 [12, 34]. The
default parameters for system (1.1) is listed in Table 5.

In the literature, the immune and immune impairment function cyz
1+ηy −bz−myz

has been applied to the viral models to characterize the interaction between the
immune cells and the productively infected CD4+ T cells [8, 32, 47]. Wang and
Liu [47] constructed a within-host viral dynamics models to consider HIV infection
with immune impairment. In this article, we consider the post-treatment immune
control, the biological implication behind the ‘Mississippi baby’. By mathematical
analysis, we obtain the threshold of proliferation rate of CTLs, which determines
the HIV infection status. We also perform bifurcation analysis and demonstrate
the bistable behavior of the model, which is consistence with results from recent
medical trial.

2. Preparation
In this section, we perform mathematical analysis for the model (1.1). We prove
the positiveness and boundedness of the solutions to system (1.1) and calculate the
equilibria of the model. We always assume a+ dL > ρ. That is to say, the sum of
the activation rate and the death rate of the latently infected cell is greater than
the proliferation rate of latently infected cells.

2.1. Positiveness and boundedness
In the following, we show that system (1.1) is well-posed.

Theorem 2.1. System (1.1) has a unique nonnegative solution with initial values
(x(0), L(0), y(0), z(0)) ∈ R4

+, where R4
+ = {(x1, x2, x3, x4)|xj ≥ 0, j = 1, 2, 3, 4}.

Furthermore, the solution is bounded.

Proof. It follows from the fundamental theory of ordinary differential equations
[16] that there exists a unique solution to system (1.1) with nonnegative initial
conditions.

For any nonnegative initial data, let t1 > 0 be the first time when x(t1) = 0.
From the first equation of (1.1) we have that ẋ(t1) = s > 0, which implies that
x(t) < 0 for t ∈ (t1− ε1, t1), where ε1 is an arbitrarily small positive constant. This
is a contradiction. Therefore, x(t) is always positive. Since z = 0 is a constant
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solution of the last equation of (1.1), it follows from the fundamental existence and
uniqueness theorem that z > 0 for all t > 0.

Suppose there is a first time t2 > 0 when y(t2)z(t2) = 0. Then we have
(i) L(t2) = 0, y(t) ≥ 0 for t ∈ [0, t2], or
(ii) y(t2) = 0, L(t) ≥ 0 for t ∈ [0, t2].

For case(i), since x(t) is positive, it follows from the variation of constants for-
mula that L(t2) = L(0) + e−

∫ t2
0 (a+dL−ρ)dξ

∫ t2
0

αL(1 − ϵ)βx(ξ)y(ξ)dξ > 0, which is
in contradiction to L(t2) = 0.

For case (ii), the third equation of system (1.1) implies that y(t2) = y(0) +

e
∫ t2
0 [(1−αL)(1−ϵ)βx(ξ)−δ−pz(ξ)]dξ

∫ t2
0

aL(ξ)dξ > 0, which is in contradiction to y(t2) =
0. Thus, L(t) and y(t) are always positive.

Next, we expatiate upon the boundedness of solutions of (1.1). Let

K(t) = σx(t) + aL(t) + (a+ dL − ρ)y(t) +
p(a+ dL − ρ)z(t)

c−m
,

where σ = aαL + (1− αL)(a+ dL − ρ). Since all solutions of (1.1) are positive, we
have

dK
dt = σ

[
s− dx− (1− ϵ)βxy

]
+a

[
αL(1− ϵ)βxy + (ρ− a− dL)L

]
+(a+ dL − ρ)

[
(1− αL)(1− ϵ)βxy

+aL− δy − pyz
]

+p(a+dL−ρ)
c−m

(
cyz
1+ηy − bz −myz

)
≤ σs− σdx− (a+ dL − ρ)δy − p(a+dL−ρ)

c−m bz

< σs− σrK,

where r = min
{

d
σ ,

δ
σ ,

b
δ

}
> 0. Let φ denote the solution to the following system

dφ

dt
= σs− σrφ,

φ0 = σx0 + aL0 + (a+ dL − ρ)y0 +
p(a+ dL − ρ)z0

c−m
,

where x0, y0 and z0 are the initial values of system (1.1) and φ0 = K0 > 0. We then
obtain limt→+∞ sup φ(t) = s

r . By comparison theorem [36], we get K(t) < φ(t).
Therefore, x(t), L(t), y(t) and z(t) are bounded.

2.2. Equilibria
In this section, we consider the existence of the equilibria to system (1.1).

(i) If R0 < 1, system (1.1) only has an infection-free equilibrium E0 = (x0, 0, 0, 0) =
( sd , 0, 0, 0), where

R0 =
sβ(1− ϵ)[aαL + (1− αL)(a+ dL − ρ)]

dδ(a+ dL − ρ)
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is the basic infection reproductive number. Here, R0 is the expected number of
newly infected cells generated from an infected cell at the beginning of the infectious
process.

(ii) If R0 > 1, system (1.1) also has an immune-free equilibrium E1 = (x1, L1, y1, 0),
where

x1 = δ(a+dL−ρ)
β(1−ϵ)[aαL+(1−αL)(a+dL−ρ)] ,

L1 = αLβ(1−ϵ)x1y1

a+dL−ρ ,

y1 = d(R0−1)
β(1−ϵ) .

Solving equation cy
1+ηy − b − my = 0 yields two positive roots, given by c1 =

m+ bη − 2
√
bmη and c2 = m+ bη + 2

√
bmη. We then get the existence conditions

for the positive equilibria.
(iii) If R∗

− > 1 and c > c2, system (1.1) has an immune equilibrium E∗
− =

(x∗
−, L

∗
−, y

∗
−, z

∗
−). If R∗

+ > 1 and c > c2, system (1.1) has an immune equilibrium
E∗

+ = (x∗
+, L

∗
+, y

∗
+, z

∗
+) as well. Here

x∗
± = s

d+β(1−ϵ)y∗
±
,

L∗
± =

αL(1−ϵ)βx∗
±y∗

±
a+dL−ρ ,

y∗± =
−B∓

√
B2−4bmη

2mη ,

z∗± =
δ(R∗

±−1)

p ,

B = m+ bη − c,

R∗
− = 2mηsβ(1−ϵ)

δ(a+dL−ρ)
[aαL+(a+dL−ρ)(1−αL)]

{2mηd+β(1−ϵ)[c−m−bη−
√

(c−m−bη)2−4bmη]}
,

and
R∗

+ = 2mηsβ(1−ϵ)
δ(a+dL−ρ)

[aαL+(a+dL−ρ)(1−αL)]

{2mηd+β(1−ϵ)[c−m−bη+
√

(c−m−bη)2−4bmη]}
.

Denote
c∗ = m+ bη +

2dmη(R0 − 1)

β(1− ϵ)
,

c∗∗ = m+ bη +
bβ(1− ϵ)

d(R0 − 1)
+

dmη(R0 − 1)

β(1− ϵ)

and
Rc = 1 +

β(1− ϵ)
√
bmη

dmη
.

We then have the following results.

Lemma 2.1. R0 > Rc > 1 ⇔ c∗ > c∗∗.

Proof.
c∗ > c∗∗ ⇔ dmη(R0−1)

β(1−ϵ) > bβ(1−ϵ)
d(R0−1) ,

⇔ R0 > 1 + β(1−ϵ)
√
bmη

dmη = Rc.
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Lemma 2.2. (i) R0 > Rc > 1 ⇔ c∗ > c2. (ii) 1 < R0 < Rc ⇔ c∗ < c2.

Proof.
c∗ > c2 ⇔ dmη(R0−1)

β(1−ϵ) >
√
bmη,

⇔ R0 > 1 + β(1−ϵ)
√
bmη

dmη = Rc.

c∗ < c2 ⇔ dmη(R0−1)
β(1−ϵ) <

√
bmη,

⇔ R0 < 1 + β(1−ϵ)
√
bmη

dmη = Rc.

Lemma 2.3. (i) Assume 1 < R0 < Rc. If R∗
− > 1, then c > c∗∗. (ii) Assume

R0 > Rc > 1. If R∗
− > 1, then c > c2.

Proof.

R∗
− > 1 ⇔ sβ(1−ϵ)[aαL+(a+dL−ρ)(1−αL)]

δ(a+dL−ρ)

> d+ β(1−ϵ)
2mη [c−m− bη −

√
(c−m− bη)2 − 4bmη],

⇔
√

(c−m− bη)2 − 4bmη > c−m− bη − 2dmη
β(1−ϵ) (R0 − 1),

⇔
√
(c−m− bη)2 − 4bmη > c− c∗.

If c < c∗ and one of the conditions c < c1 or c > c2 holds, then R∗
− is always greater

than one. If c > c∗, solving
√
(c−m− bη)2 − 4bmη > c− c∗ yields c > c∗∗.

(i) If 1 < R0 < Rc, then c∗ < c2. From R∗
− > 1, we can deduce that c > c∗∗.

(ii) If R0>Rc>1, then c∗>c2. From R∗
−>1, we can deduce that c > c2.

Lemma 2.4. (i) If 1 < R0 < Rc, then R∗
+ > 1 has no solution. (ii) Assume that

R0 > Rc > 1. If R∗
+ > 1, then c2 < c < c∗∗.

Proof.

R∗
+ > 1 ⇔ sβ(1−ϵ)[aαL+(a+dL−ρ)(1−αL)]

δ(a+dL−ρ)

> d+ β(1−ϵ)
2mη [c−m− bη +

√
(c−m− bη)2 − 4bmη],

⇔ −(c−m− bη) + 2dmη
β(1−ϵ) (R0 − 1) >

√
(c−m− bη)2 − 4bmη,

⇔ c∗ − c >
√
(c−m− bη)2 − 4bmη.

(i) If 1 < R0 < Rc, then c∗ < c2. Thus R∗
+ > 1 has no solution. (ii) If

R0 > Rc > 1, then c∗ > c2. Solving R∗
+ > 1, we have c2 < c < c∗∗.

By Lemmas 2.1∼2.4, summing up the above analysis yields the existence results
of the equilibria of system (1.1)

Theorem 2.2. (i) System (1.1) always has an infection-free equilibrium E0.
(ii) If R0 > 1, system (1.1) also has an immune-free equilibrium E1.
(iii) If 1 < R0 < Rc and c > c∗∗, system (1.1) has only one positive equilibrium

E∗
+.

(iv) If R0 > Rc > 1 and c2 < c < c∗∗, system (1.1) has two positive equilibria
E∗

− and E∗
+. While R0 > Rc and c > c∗∗, system (1.1) has only one positive

equilibrium E∗
+.

The existence of the positive equilibria of the model is summarized in Tables 1
and 2.
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Table 1. The existence of the positive equilibria when 1 < R0 < Rc.

c2 < c < c∗∗ c > c∗∗

E∗
− — exist

E∗
+ — —

Table 2. The existence of the positive equilibria when R0 > Rc > 1.

c2 < c < c∗∗ c > c∗∗

E∗
− exist exist

E∗
+ exist —

3. Stability analysis
In this section, we consider the stability of the equilibria of system (1.1).

Let Ẽ be any arbitrary equilibrium of system (1.1). Its corresponding Jacobian
matrix is obtained as

J =


J11 0 J13 0

J21 J22 J23 0

J31 J32 J33 J34

0 0 J43 J44

 ,

where

J11 = −d− β(1− ϵ)ỹ,

J13 = −β(1− ϵ)x̃,

J21 = αLβ(1− ϵ)ỹ,

J22 = ρ− a− dL,

J23 = αL(1− ϵ)βx̃,

J31 = (1− αL)β(1− ϵ)ỹ,

J32 = a,

J33 = (1− αL)β(1− ϵ)x̃− δ − pz̃,

J34 = −pỹ,

J43 =
cz̃

(1 + ηỹ)2
−mz̃,

J44 =
cỹ

1 + ηỹ
− b−mỹ.

The characteristic equation of the linearized system of (1.1) at Ẽ is given by

|λI − J | = 0. (3.1)
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3.1. Stability analysis of Equilibrium E0

Theorem 3.1. If R0 < 1, then the infection-free equilibrium E0 of system (1.1) is
locally asymptotically stable. If R0 > 1, then E0 is unstable.

Proof. For equilibrium E0(x0, 0, 0, 0), the characteristic equation (3.1) reduces to

(λ+ d)(λ+ b)(λ+ a+ dL − ρ)[λ+ δ − (1− αL)(1− ϵ)βx0] = 0. (3.2)

It is easy to see that equation (3.2) has two negative roots, obtained as

λ1 = −d, λ2 = −b. (3.3)

The other eigenvalues are determined by

λ2 + a1λ+ a2 = 0, (3.4)

where
a1 = a+ dL − ρ+ δ[1− (1−αL)(1−ϵ)βx0

δ ],

a2 = (a+ dL − ρ)− asβαL(1−ϵ)
d

−aβ(1− ϵ)[δ − (1− αL)(1− ϵ)βx0]

= δ(a+ dL − ρ)(1−R0).

(3.5)

If R0 < 1, we have a1 > 0 and a2 > 0, and as such equation (3.4) has two
negative roots. Thus, E0 is locally stable for R0 < 1.

If R0 > 1, from (3.5) we know that E0 is a saddle, and hence unstable. The
proof of Theorem 3.1 is complete.

Theorem 3.2. If R0 < 1, then the infection-free equilibrium E0 of system (1.1) is
globally asymptotically stable.

Proof. Define a function

V =
1

2
(x− x0)

2 +AL+By +
pB

c−m
z,

where A and B are undetermined positive coefficients. It is easy to see that V is a
positive Lyapunov function. Evaluating the time derivative of V along the solution
of system (1.1) yields

V̇ |(1.1) =(x− x0)[s− dx− (1− ϵ)βxy] +A[αL(1− ϵ)βxy − (a+ dL − ρ)L]

+B[(1− αL)(1− ϵ)βxy + aL− δy − pyz] +
pB

c−m
(

cyz

1 + ηy
− bz −myz)

=(x− x0)[dx0 − dx− (1− ϵ)βxy + (1− ϵ)βx0y − (1− ϵ)βx0y]

+AαL(1− ϵ)βxy −A(a+ dL − ρ)L+B(1− αL)(1− ϵ)βxy

+BaL−Bδy −Bpyz +
pB

c−m

cyz

1 + ηy(t)
− pB

c−m
bz − pB

c−m
myz

≤− (d+ (1− ϵ)βy)(x− x0)
2 − [x0 −AαL −B(1− αL)](1− ϵ)βxy

− [Bδ − (1− ϵ)βx2
0]y − [A(a+ dL − ρ)−Ba]L

− (Bp−Nc+Nm)yz −Nbz.
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If we choose

A =
x0

(1− αL)[
a+dL−ρ

a + αL

1−αL
]
,

B =
A(a+ dL − ρ)

a
,

then

x0 −AαL −B(1− αL) ≥ 0,

Bδ − (1− ϵ)βx2
0 ≥ 0,

A(a+ dL − ρ)−Ba ≥ 0.

Thus, if R0 ≤ 1, then V̇ |(1.1) ≤ 0. Since x, L, y, z are positive, we have V̇ = 0 if and
only if (x, L, y, z) = (x0, 0, 0, 0). Therefore, it follows from the classical Krasovskii-
LaSalle principle [23,24] that E0 is globally asymptotically stable.

Biologically, the global asymptotic stability of the uninfected equilibrium E0 of
system (1.1) implies that the virus will die out in the host if the treatment is strong
enough to ensure R0 < 1.

3.2. Stability analysis of Equilibrium E1

Now we consider the stability of equilibrium E1.

Theorem 3.3. Suppose that the immune-free equilibrium exists (i.e., R0 > 1).
When 0 < c < c∗∗, E1 is locally asymptotically stable. When c > c∗∗, E1 is
unstable.

Proof. The characteristic equation of the linearized system of (1.1) at E1 is given
by

(λ3 + b1λ
2 + b2λ+ b3)

(
λ− cy1

1 + ηy1
+ b+my1

)
= 0,

where
b1 = d+ (1− ϵ)βy1 + a+ dL − ρ︸ ︷︷ ︸

1⃝

+
aαL(1− ϵ)βx1

a+ dL − ρ︸ ︷︷ ︸
2⃝

,

b2 = d(a+ dL − ρ+ aL1

y1
) + (1− ϵ)βaL1

+(1− ϵ)βy1(a+ dL − ρ)︸ ︷︷ ︸
3⃝

+(1− ϵ)βx1(1− αL)(1− ϵ)βy1︸ ︷︷ ︸
4⃝

,

b3 = aαL(1− ϵ)βx1(1− ϵ)βy1

+(a+ dL − ρ)(1− ϵ)βx1(1− aL)(1− ϵ)βy1.

Clearly,
1⃝ × 4⃝ + 2⃝ × 3⃝ − b3 = 0.
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Thus, we have b1b2 − b3 > 0. We then consider the sign of the eigenvalue

λ =
cy1

1 + ηy1
− b−my1

=
− dmη

β(1−ϵ) (R0 − 1)2 + (c−m− bη)(R0 − 1)− bβ(1−ϵ)
d

[β(1− ϵ) + dη(R0 − 1)]/d
,

which is determined by

∆ = (c−m− bη)2 − 4bmη.

Let ∆ = 0, we have c = c1 or c = c2.

(i) If ∆ = 0, then c = c1 or c = c2, which is a critical situation.
(ii) If ∆ < 0, then c1 < c < c2, and we have λ < 0.

(iii) If ∆ > 0, then c < c1 or c > c2. To get λ < 0, we must ensure c < m+bη and
R0 < 1 +R1, or R0 > 1 +R2. Meanwhile, from R0 < 1 +R1 and R0 > 1 +R2, we

have c < c∗∗. Here R1,2 =
β(1−ϵ)

[
(c−m−bη)∓

√
(c−m−bη)2−4bmη

]
2dmη . In view of c2 < c∗∗,

if c < m+ bη or c2 < c < c∗∗, then the eigenvalue λ < 0. If c > c∗∗, we have λ > 0.

In summary, if c < c2 or c2 < c < c∗∗, then λ < 0. By the Routh-Hurartz
criterion, for R0 > 1, if c < c2 or c2 < c < c∗∗, the equilibrium E1 of system (1.1)
is locally asymptotically stable. If c > c∗∗, E1 is unstable.

Biologically, if the proliferation rate of CTLs is less than the critical value c∗∗,
the viral load can be at high level.

3.3. Stability analysis of positive equilibria

In this subsection, we consider the stability of the positive equilibria. Here, we use
E∗ = (x∗, L∗, y∗, z∗) to denote a positive equilibrium of system (1.1).

Theorem 3.4. (i) Assume A3(A1A2 −A3)−A2
1A4 > 0. If

(A.1) 1 < R0 < Rc and c > c∗∗, or
(A.2) R0 > Rc > 1 and c > c2,

system (1.1) has an immune equilibrium E∗
−, which is a stable node.

(ii) If R0 > Rc > 1 and c2 < c < c∗∗, system (1.1) also has an immune
equilibrium E∗

+, which is an unstable saddle.

Proof. The characteristic equation of the linearized system of (1.1) at an arbitrary
positive equilibrium E∗ is given by

λ4 +A1λ
3 +A2λ

2 +A3λ+A4 = 0,
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where

A1 = a+ dL − ρ+ d+ β(1− ϵ)y∗ + aL∗

y∗ ,

A2 = (a+ dL − ρ)
[
d+ β(1− ϵ)y∗

]
+aL∗

y∗

[
d+ β(1− ϵ)y∗

]
+ py∗z∗

[
c

(1+ηy∗)2 −m
]

+(1− αL)(1− ϵ)βx∗(1− ϵ)βy∗,

A3 = aL∗

y∗ (a+ dL − ρ)(1− ϵ)βy∗

+py∗z∗
[

c
(1+ηy∗)2 −m

][
a+ dL − ρ+ d+ β(1− ϵ)y∗

]
+(1− αL)(1− ϵ)βx∗(1− ϵ)βy∗(a+ dL − ρ),

A4 = py∗z∗(a+ dL − ρ)
[

c
(1+ηy∗)2 −m

][
d+ β(1− ϵ)y∗

]
.

Then we have

A1A2 −A3 = aL∗

y∗ d(a+ dL − ρ) + (aL
∗

y∗ )2
[
d+ β(1− ϵ)y∗

]
+aL∗

y∗ py∗z∗
[

c
(1+ηy∗)2 −m

]
+aL∗

y∗ (1− αL)(1− ϵ)βx∗(1− ϵ)βy∗

+(a+ dL − ρ)
[
a+ dL − ρ+ d+ β(1− ϵ)y∗

]
×
[
d+ β(1− ϵ)y∗

]
+ aL∗

y∗

[
d+ β(1− ϵ)y∗

]
×
[
a+ dL − ρ+ d+ β(1− ϵ)y∗

]
+(1− αL)(1− ϵ)βx∗(1− ϵ)βy∗

×
[
a+ dL − ρ+ d+ β(1− ϵ)y∗

]
.

(i) For equilibrium E∗
−, if c > c2, we have m(

√
c
m − 1) > bη√

c
m−1

. It thus follows

that
√
(c−m− bη)2 − 4bmη > c−m−bη−2m(

√
c
m−1). Therefore, c

(1+ηy∗
−)2 −m >

0. Clearly, Ai > 0, i = 1, 2, 3 and A1A2 − A3 > 0. If A3(A1A2 − A3) − A2
1A4 > 0,

by Routh-Hurwitz Criterion, we know that the positive equilibrium E∗
+ is a stable

node in this case.
(ii) For equilibrium E∗

+, if R0 > Rc > 1 and c2 < c < c∗∗, then c
(1+ηy∗

+)2 −m < 0

and A4 < 0. Thus, equilibrium E∗
+ is an unstable saddle for R0 > Rc and c2 < c <

c∗∗.
By Theorem 3.3 and Theorem 3.4, we have the following result.

Theorem 3.5. If R0 > Rc > 1 and c = c2, the immune equilibrium E∗
+ and E∗

−
coincide with each other and a saddle-node bifurcation occurs when c passes through
c2.

The stabilities of the equilibria and the behaviors of system (1.1) are summarized
in Tables 3 and 4.
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Table 3. The stabilities of the equilibria and the behaviors of system (1.1) in the case 1 < R0 < Rc.
Here, c∗∗ is the critical value, and we assume A3(A1A2 − A3) − A2

1A4 > 0.

E0 E1 E∗
− E∗

+ System (1.1)
R0 < 1 GAS — — — Converges to E0

1 < R0 < Rc, 0 < c < c∗∗ US LAS — — Converges to E1

1 < R0 < Rc, c
∗∗ < c US US LAS — Converges to E∗

+

Table 4. The stabilities of the equilibria and the behaviors of system (1.1) in the case R0 > Rc > 1.
Here, c2, c

∗ and c∗∗ are critical values, and c2 is a saddle-node bifurcation point. Here we assume
A3(A1A2 − A3) − A2

1A4 > 0.

E0 E1 E∗
− E∗

+ System (1.1)
R0 < 1 GAS — — — Converges to E0

R0 > 1, 0 < c < c2, US LAS — — Converges to E1

R0 > Rc > 1, c2 < c < c∗∗ US LAS LAS US Bistable
R0 > Rc > 1, c∗∗ < c < c∗ US US LAS US Converges to E∗

+

R0 > Rc > 1, c > c∗∗ US US LAS — Converges to E∗
+

4. Sensitive analysis and numerical simulations

4.1. Sensitive analysis

Sensitive analysis provides insights into the basic infection reproductive number R0

with respect to system parameters [50]. In this section, we use latin hypercube sam-
pling (LHS) and partial rank correlation coefficients (PRCCs) [5, 26] to reveal the
dependence of the basic infection reproduction number R0 on a variety of system
parameters. As a statistical sampling method, LHS provides efficient analysis of
parameter variations across simultaneous uncertainty ranges in each parameter [5].
PRCC, which is obtained from the rank transformed LHS matrix and output ma-
trix [26], indicates the parameters that have the most significant influences on the
behaviors of the model. In this work, we perform 4000 simulations per run. We use a
uniform distribution function to test the PRCCs for a variety of system parameters.

The PRCC results of the model, Fig. 1, illustrate the dependence of R0 on differ-
ent system parameters. The estimations of the distributions for R0 is approximately
a normal distribution. We use |PRCC| as an index to test if the parameter has im-
portant correlation with the infection reproduction number R0. If |PRCC| > 0.4,
we say that the correlation is strong. If 0.4 ≥ |PRCC| > 0.2, we say that the corre-
lation is moderate. For 0.2 ≥ |PRCC| > 0, there correlation is weak. As is shown
in Fig. 1, the general rate of CD4+ T cells s, the decay rate of CD4+ T cells d, the
infection rate of CD4+ T cells β, the drug efficacy ϵ and the latently infected cell
death rate dL have significant influence on the infection reproduction number R0.
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Figure 1. Partial rank correlation coefficients for R0 and the frequency distribution of R0. The param-
eters are shown in Table 5.

Table 5. Parameters for the model.
Symbol Description Value Reference
s Proliferation rate of CD4+ T cells 10 cells /µ L/ day [6]
d Decay rate of CD4+ T cells 0.01 day−1 [6]
β Infection rate of CD4+ T cells 0.015 µ L / day –
ϵ Drug efficacy 0.8 –
αL Fraction of newly infected cells that become latently infected 0.001 –
ρ Proliferation rate of latently infected cells 0.0045 day−1 [12]
a Activation rate 0.001 day−1 [12]
dL Latently infected cell death rate 0.004 day−1 [12]
δ Infected cell death rate 1 day−1 [27]
p Killing rate of infected CD4+ T cells 0.42 day−1 –
c Proliferation rate of CTLs 0.45 day−1 –
η Effector cell production Hill function scaling 1 cells/µ L –
b Decay rate of CTLs 0.1 day−1 –
m Immune impairment rate of viral 0.05 cells /µ L / day –

4.2. Numerical simulations
In this section, we carry out numerical simulations to consider the HIV dynamics
of our model. The parameter values are listed in Table 5. We then calculate the
thresholds R0 ≈ 3.0030 > 1, Rc ≈ 1.4243, c2 ≈ 0.2914 and c∗∗ ≈ 0.4988. Notice
that A3(A1A2 − A3) − A2

1A4 = 8.9125 × 10−011 > 0. We then get the bistable
interval (0.2914, 0.4988). In this case, when c < c2, the immune-free equilibrium
E1 is stable. When c2 < c < c∗∗, the immune-free equilibrium E1 and the positive
equilibrium E∗

+ are stable. When c > c∗∗, only the positive equilibrium E∗
+ is stable.

Fig.2 shows that there is no positive equilibrium if c < 0.2914 and a saddle-
node bifurcation appear when c passes through 0.2914. The system display bistable
behavior for 0.2914 < c < 0.4988. As an example, we simulate the time history of
the system for c = 0.45 ∈ (0.2914, 0.4988) with different initial conditions (see Fig.
3). We find that, with the same parameter values and different initial conditions, the
system may converge to different equilibriums. Such simulation result is consistent
with recent clinic trial performed by Treasure et al [39].
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Figure 2. Bistability and saddle-node bifurcation diagram of system (1.1). Here c = 0.2914 is a saddle-
node bifurcation (SN) point. The bistable interval is (0.2914, 0.4988). The parameter values are shown
in Table 5. There are three phases in this figure. In phase I (0 < c < c2), the system has virus rebound.
In phase II (c2 < c < c∗∗), the system has bistable behavior. In phase III (c > c∗∗), the system is under
elite control.
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Figure 3. Time history of system (1.1) for c = 0.45 (c2 < c < c∗∗). All the other parameter values
are listed in Table 5. The trajectories of system (1.1) converge to different equilibria for different initial
values, i.e., system (1.1) has bistable behavior. The initial values are x(0) = 600, L(0) = 13, y(0) = 20,
z(0) = 1 (blue) and x(0) = 600, L(0) = 13, y(0) = 20, z(0) = 20 (red).

We also consider the influence of system parameters on the elite control threshold
c∗∗ by PRCCs. Fig.4 shows that the immune impairment rate of virus m and
the proliferation rate of latently infected cells ρ are positively correlated with the
elite control threshold c∗∗. On the other hand, the death rate of infected cells δ
has negative correlation with the elite control threshold c∗∗. It thus follows that
decreasing immune impairment rate m is beneficial for obtaining post-treatment
immune control. Decrease the immune impairment rate m and the proliferation
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rate of latently infected cells ρ, and increasing the death rate of infected cells δ are
beneficial for the host to get elite control.
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Figure 4. Partial rank correlation coefficients for c∗∗. The parameter values are shown in Table 5.

5. Discussion
In this paper, we investigate the viral dynamics of a simplified within host model.
By performing mathematical analysis and numerical simulations, we obtain the
post-treatment immune control threshold and the elite control threshold. We get
conditions for the model to reach post-treatment immune control and elite control.

The expression of the post treatment control threshold implies that the immune
impairment rate of virus m has positive correlation with the post treatment control
threshold . Early initiation of ART after infection allows PTC by limiting the size
of latent reservoir. A patient with latent HIV reservoir small enough may obtain
adaptive immune response to prevent viral rebound (VR), and thus has controlled
infection [12].

Sensitive analysis and numerical simulations imply that decreasing the immune
impairment rate is beneficial for the host obtain post-treatment immune control
and the elite control. A comprehensive HIV treatment involving decreasing the
immune impairment rate of virus, decay rate of CTLs and effector cell production
Hill function scaling allows the host to obtain elite control efficiently.

The proliferation rate of latently infected cells ρ plays an important role in
the elite control. It is worth carrying out further investigation to reveal the viral
dynamics of the within host model with logistic proliferation rate of latently infected
cells, given by system (5.1).

dx(t)
dt = s− dx(t)− (1− ϵ)βx(t)y(t),

dL(t)
dt = αL(1− ϵ)βx(t)y(t)− (a+ dL)L(t) + ρL(t)(1− L(t)

Lmax
),

dy(t)
dt = (1− αL)(1− ϵ)βx(t)y(t) + aL(t)− δy(t)− py(t)z(t),

dz(t)
dt = cy(t)z(t)

1+ηy(t) − bz(t)−my(t)z(t),

(5.1)

Using the same method of analyzing system (1.1), we can get theoretical results.
Here, we carry out numerical simulations to show its bistable behaviors. As shown
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in Fig.5, if we choose parameters listed in Table 5 and Lmax = 50, system (5.1)
displays bistable behaviors.
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Figure 5. Time history of system (5.1). The trajectories of system (5.1) converge to different equilibria
for different initial values, i.e., system (5.1) has bistable behavior. The initial values are x(0) = 600,
L(0) = 13, y(0) = 20, z(0) = 1 (blue) and x(0) = 600, L(0) = 13, y(0) = 20, z(0) = 20 (red). The
parameter values are shown in Table 5.
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