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Abstract In this paper, the two-dimensional (2D) Holf-Cole transformation
with mass conservation in the frame of conformable derivative is developed,
and then by introducing some exact solutions that satisfy linear differential
equations and using the symbolic computation method, four exact solutions
of 2D-nonlinear Navier-Stokes equations (NSEs) with the conformable time-
fractional derivative are established. Some physical properties of the exact
solutions are described preliminarily. Our results are the first ones on analyt-
ical study for the 2D time-fractional NSEs.
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1. Introduction

Nonlinear Navier-Stokes equations (NSEs) have been addressed extensively because
of their demonstrated applications in hydromechanics, aeronautical sciences, meteo-
rology, and other science branches. In recent literatures only a small number of exact
solutions of the NSEs are reported, concerning the pulsating dean flow in a channel
with porous walls, the steady flow in an annulus with porous wall, the stagnation
flow on a plate with anisotropic slip and so on (see [10,13,15,17,18,21,22,24,25,27]
and references therein).

In this paper, we study the following two dimensional (2D)-nonlinear NSEs with
the conformable time-fractional derivative

Dα
t ~u+ ~u · ∇~u = −∇p+ ν∇2~u, (1.1)

∇ · ~u = 0, (1.2)

where Dα
t (·) is the conformable fractional derivative, 0 < α ≤ 1, ~u = ~u(t, x, y),

p = p(t, x, y), ν and ∇ are the fluid velocity field, the fluid pressure, the viscosity
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and the gradient, respectively. The variables x and y form a Cartesian coordinate
system; u1, u2 are the components of ~u.

Notice that the problem (1.1) reduces to the classical NSEs for α = 1:

~ut + ~u · ∇~u = −∇p+ ν∇2~u. (1.3)

In 1977, Takeo Saitoh [15] considered the full NSEs (1.3) by a numerical scheme
with a high degree of accuracy. A fortunate exact solution was produced for flow in
a porous pipe in [18]. By Chebyshev expansion methods, H. C. Ku et al. [10] studied
the solutions of the steady 2D-NSEs in both the vorticity-stream function and the
vorticity-velocity formulation. In 1998, G. Profilo et al. [13] solved the 2D-NSEs
by the symmetry approach. The pseudo-spectral solutions of the 2D incompress-
ible NSEs on a disk with no-slip boundary conditions were studied in [21]. The
analyticity of solutions for randomly forced 2D-NSEs with periodic boundary con-
ditions were discussed in [17]. By similarity transform, C. Y. Wang [24] investigated
the flow due to a stretching flat boundary with partial slip. Analytical solutions
of the equations of motion of a Newtonian fluid for the fully developed laminar
flow between two concentric cylinders were presented by S. Tsangaris in the litera-
ture [22]. The numerical methods for solving the 2D-NSEs have been investigated
by authors [3, 6–8,16,26].

Fractional calculus has attracted much attention from mathematicians, physi-
cists, biology, chemistry, engineering and other areas of applications in recent decades.
Various types of definitions of fractional derivative are given, such as Grünwald-
Letnikov, Riemann-Liouville and Caputo’s fractional derivatives [5, 12]. Most of
them are defined via fractional integrals, thus they have nonlocal properties. The
theory of conformable fractional calculus is a new topic of research which is intro-
duced by Khalil et al. [9] in 2014. This new fractional derivative is a well-behaved
definition, which depends on the basic limit definition of the derivative, and has
governed much attention in recent years. In 2015, Abdeljawad studied fractional
versions of the chain rule, exponential functions, Gronwall inequality, integration
by parts (see [1] for details). Atangana et al. [2] investigated some new properties
of this derivative, such as Taylor power series expansions, the conformable partial
derivative, the conformable gradient, the conformable divergence theorem, and so
on. The fractional Newtonian mechanics and the fractional version of the calcu-
lus of variations were introduced, and the fractional Euler-Lagrange equation was
constructed in [4]. D. Zhao and M. Luo [28] generalized the conformable derivative
and gave the physical and geometrical interpretation of generalized conformable
derivative in 2017.

There is a considerable interest in the study of time fractional Navier-Stokes
equations (TFNSEs). Most of them are 1D-TFNSEs. There are also some analyt-
ical methods available for solving the TFNSEs. The homotopy analysis method is
used to obtain an approximate solution of the nonlinear 1D-TFNSEs by introducing
the Caputo’s fractional derivative, see Ragab, Hemida, Mohamed and Salam [14].
In [29], Y. Zhou and L. Peng established the existence criterion of weak solution-
s of the 1D-TFNSEs by means of Galerkin approximations in the case that the
dimension n ≤ 4, which can be used to simulate anomalous diffusion in fractal me-
dia. Moreover, L. Peng, A. Debbouche and Y. Zhou investigated the existence and
Faedo-Galerkin approximations of solutions for 1D-TFNSEs with Caputo derivative
operators in the paper [11]. In 2018, G. Zou et al. [30] solved the numerical solu-
tion of 1D-TFNSEs by applying a composite idea of semi-discrete finite difference
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approximation in time and Galerkin finite element method in space with Caputo
derivative of order 0 < α < 1.

However, to our best knowledge, there is no result on the exact solution of the
2D-TFNSEs, especially result with conformable fractional derivative operator. In
2007, C. Wu et al. [23] considered the following 2D-NSEs

ut + uux + vuy + px =
1

Re
(uxx + uyy) ,

vt + uvx + vvy + py =
1

Re
(vxx + vyy) ,

and the continuity equation is
ux + vy = 0,

where x and y form a Cartesian coordinate system; the variables u and v are the
components of the fluid vector ~V in the x and y directions, respectively; Re is

Reynolds number; variable p is the fluid pressure; ut ,
∂u(t,x,y)

∂t , uxx , ∂2u(t,x,y)
∂x2 .

Three exact solutions of the 2D-NSEs are presented by using the method of 2D
Hopf-Cole transformation with mass conservation.

Followed the above references, the main contribution of our paper is to provide
some exact solutions of 2D-TFNSEs in the frame of conformable derivative and to
discuss some interesting physical properties of these exact solutions. The rest of the
paper is arranged as follows. In section 2, we give some definitions, properties of
conformable fractional operators and the procedure of the Jacobi elliptic function
expansion method. In section 3, the 2D Holf-Cole transformation with mass con-
servation in the frame of conformable derivative is developed. And then in section
4, by introducing some 2D exact solutions that satisfy linear differential equations
and using the symbolic computation method in Refs. [19], [20], four exact solutions
of 2D-TFNSEs are established. In order to reveal some relevant physical aspects of
the obtained results, some figures are presented for various parameters by using the
analytical solutions obtained in section 3. In section 5, we give some comments on
our paper.

2. Basic definitions and tools

To address our main result, here we represent the definitions, symbols and known
properties of conformable fractional operators which will be used in the remainder
of this paper.

Definition 2.1. The (left) conformable fractional derivative starting from t0 of a
function f : [t0,∞)→ R of order α with 0 < α ≤ 1 is defined by

(t0D
α
t f) (t) = lim

ε→0

f
(
t+ ε(t− t0)1−α)− f(t)

ε
.

If (t0D
α
t f) (t) exists at t ≥ t0, we say f is α-differentiable at point t, and if

(t0D
α
t f) (t) exists on (t0, t1), then (t0D

α
t f) (t0) = limt→t+0

(t0D
α
t f) (t).

Definition 2.2. Let α ∈ (0, 1]. The left conformable fractional integral of order α
starting at t0 is defined by

(t0I
α
t f) (t) =

∫ t

t0

(x− t0)α−1f(x)dx.
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If t0 = 0, Dα
t f , (t0D

α
t f) (t), Iαt f , (t0I

α
t f) (t). We note that for α ∈ (0, 1],

the definition of conformable fractional integral is the same as Riemann-Liouville
fractional integral up to a constant multiplier.

In the higher order case, we can generalize to the following definitions.

Definition 2.3. Let α ∈ (n, n + 1]. The (left) conformable fractional derivative
starting from t0 of a function f : [t0,∞) → R of order α, where f (n)(t) exists, is
defined by

(t0D
α
t f) (t) =

(
t0D

α−n
t f (n)

)
(t).

Definition 2.4. Let α ∈ (n, n + 1]. The (left) conformable fractional integral of
order α starting at t0 is defined by

(t0I
α
t f) (t) =t0 In+1

t

(
(t− t0)α−n−1f

)
(t) =

1

n!

∫ t

t0

(t− x)n(x− t0)α−n−1f(x)dx.

Lemma 2.1 (see [9]). If α ∈ (n, n + 1] and f : [t0,∞) → R is an (n + 1) times
differentiable function for t > t0. Then, for all t > t0, we have

t0I
α
t t0D

α
t (f)(t) = f(t)−

n∑
k=0

f (k)(t0)(t− t0)k

k!
. (2.1)

Lemma 2.2 (see [1]). Let α ∈ (0, 1] and suppose f , g are α-differentiable at point
t > 0. Then

1. t0D
α
t (af + bg) = a ·t0 Dα

t (f) + b ·t0 Dα
t (g) for all real constant a, b;

2. t0D
α
t (fg) = f ·t0 Dα

t (g) + g ·t0 Dα
t (f);

3. t0D
α
t (tp) = ptp−α, for all p;

4. t0D
α
t

(
f
g

)
=

g·t0D
α
t (f)−f ·t0D

α
t (g)

g2 ;

5. t0D
α
t (c) = 0, where c is a constant;

6. (t0D
α
t f) (t) = (t− t0)1−αf ′(t).

Now we describe the procedure of the Jacobi elliptic function expansion method.
Given a nonlinear wave equation

F

(
u,Dα

t u,
∂u

∂x
,
∂u

∂y
,D2α

t u,
∂2u

∂x2
,
∂2u

∂y2
, · · ·

)
= 0, (2.2)

where Dnα
t (·) = Dα

t · · ·Dα
t︸ ︷︷ ︸

n

(·), n ∈ N . Transforming (2.2), applying the chain rule

[1] and letting t0 = 0,

u = u(ξ), ξ = l
tα

α
+mx+ ny,

where l, m, and n are arbitrary constants,

Dα
t (·) = l

d(·)
dξ

,
∂(·)
∂x

= m
d(·)
dξ

,
∂(·)
∂y

= n
d(·)
dξ

, · · · (2.3)

yields an ordinary differential equation (ODE) for u(ξ),

O(u, u′, u′′, u′′′, · · · ),

where the prime denotes the derivative with respect to ξ.
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Example 2.1. 2D conformable time fractional heat-conduction equation.
Using the Jacobi elliptic function expansion method, let us consider the con-

formable time-fractional heat conduction equation

Dα
tW (t, x, y) = ν (Wxx +Wyy) .

Suppose that W (t, x, y) = W (ξ), ξ = x+ y − l t
α

α , where l is constant, we get

Wξξ +
l

2ν
Wξ = 0. (2.4)

It is easy to get a simple solution of (2.4). That is

W (ξ) =
2Cν

l
+ C∗ exp

{
− l

2ν
ξ

}
,

where C and C∗ are constants. Hence we get

W (t, x, y) =
2Cν

l
+ C∗ exp

{
− l

2ν

(
x+ y − l t

α

α

)}
.

3. 2D Hopf-Cole transformation with mass conser-
vation

3.1. Expression of 2D Hopf-Cole transformation

The conformable nonlinear 2D-TFNSEs is of the form{
Dα
t u1 + u1u1x + u2u1y + px = ν (u1xx + u1yy) ,

Dα
t u2 + u1u2x + u2u2y + py = ν (u2xx + u2yy) ,

(3.1)

and
u1x + u2y = 0. (3.2)

We recall that the stream function ψ is defined by

u1 = −∂ψ
∂y

, u2 =
∂ψ

∂x
. (3.3)

Substituting (3.3) into (3.2), we get

u1u1x + u2u1y = − (ψxψy)y +
(
ψ2
y

)
x
,

u1u2x + u2u2y = − (ψxψy)x +
(
ψ2
x

)
y
.

(3.4)

Using (3.3) and (3.4) in (3.1), we have

−
[
Dα
t ψ +

1

2

(
ψ2
x + ψ2

y

)
− ν (ψxx + ψyy)

]
y

+
1

2

[
(ψx − ψy)

2
]
y

+ px +
(
ψ2
y

)
x

= 0,[
Dα
t ψ +

1

2

(
ψ2
x + ψ2

y

)
− ν (ψxx + ψyy)

]
x

− 1

2

[
(ψx + ψy)

2
]
x

+ py +
(
ψ2
x

)
y

= 0.

(3.5)
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Letting

px = −1

2

[
(ψx − ψy)

2
]
y
−
(
ψ2
y

)
x
,

py =
1

2

[
(ψx + ψy)

2
]
x
−
(
ψ2
x

)
y
,

(3.6)

and the integral constant being zero, we get the following simple expression via
performing integration for x and y directions,

Dα
t ψ +

1

2

(
ψ2
x + ψ2

y

)
− ν (ψxx + ψyy) = 0. (3.7)

We introduce a variable W now which satisfies the following linear differential
equation

Dα
tW − ν (Wxx +Wyy) = 0, (3.8)

and we assume that
W = W (t, x, y) = F (ψ), (3.9)

then we can structure a transformation between variables F and ψ. Substituting
(3.9) into (3.8) and using Lemma 2.2, we have

Dα
t ψ −

νFψψ
Fψ

(
ψ2
x + ψ2

y

)
− ν (ψxx + ψyy) = 0. (3.10)

Comparing (3.7) with (3.10), we can see that there is a relation

− 1

2
= ν

Fψψ
Fψ

. (3.11)

Making all integral constants being zero in the course of solving (3.11), then the
following transformation between variables F and ψ can be obtained

ψ = −2ν ln

(
− 1

2ν
W

)
. (3.12)

Substituting (3.12) into (3.3) and (3.7), we get

u1 = 2ν
Wy

W
,u2 = −2ν

Wx

W
; (3.13)

px = −2ν2

(
(Wy −Wx)2

W 2

)
y

− 4ν2

(
W 2
y

W 2

)
x

= −1

2

[
(u1 + u2)2

]
y
−
(
u2

1

)
x
,

py = 2ν2

(
(Wx +Wy)2

W 2

)
x

− 4ν2

(
W 2
x

W 2

)
y

=
1

2

[
(u2 − u1)2

]
x
−
(
u2

2

)
y
.

(3.14)

Furthermore, W can be solved in (3.8), and then u1, u2 and px, py can be
obtained via solving (3.13) ∼ (3.14). Substituting u1, u2 and px, py into (3.1) ∼
(3.2), we get

2νDα
t (lnFψ)y + 4ν2 (lnFψ)y (lnFψ)yx + 4ν2 (lnFψ)x (lnFψ)xy + px

=2ν2 (lnFψ)yxx + 2ν2 (lnFψ)yyy ,
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2νDα
t (lnFψ)x + 4ν2 (lnFψ)y (lnFψ)xx − 4ν2 (lnFψ)x (lnFψ)xy + py

=2ν2 (lnFψ)xxx + 2ν2 (lnFψ)xyy .

Using the symbolic computation method in Refs. [19], [20] to calculate these vari-
ables, we know that u1, u2 and px, py satisfy (3.1) ∼ (3.2). Thus (3.13) ∼ (3.14)
make up a 2D Hopf-Cole transformation of the conformable nonlinear 2D-TFNSEs.

If u1, u2 and px, py are structured by using some trigonometric functions and
exponential functions as in section 4 case 4, then px and py do not satisfy (3.14).
In this case, u1 and u2 have been obtained by (3.13) under the precondition that
W satisfies (3.8), and then px and py can be obtained by the following equations

px = ν (u1xx + u1yy)−Dα
t u1 − u1u1x − u2u1y,

py = ν (u2xx + u2yy)−Dα
t u2 − u1u2x − u2u2y.

(3.15)

3.2. Modified expression of 2D Hopf-Cole transformation

Followed the procedure of 2D Hopf-Cole transformation, we obtain (3.4) ∼ (3.7).
Introducing a new variable V that satisfies the following linear differential equation

Dα
t V + h(t, x, y)− ν (Vxx + Vyy) = 0, (3.16)

and assuming
V = C0 + V1(t)H(t, x, y) = C0 + V1(t)H(ψ), (3.17)

here h(t, x, y) may be structured as follows

h(t, x, y) = −Dα
t (V1(t))H(t, x, y), (3.18)

where V1(t) is a point source varying with time and C0 is a constant.
Using the similar discussion as 2D Hopf-Cole transformation, we can obtain

a modified expression of 2D Hopf-Cole transformation with mass conservation as
follows

ψ = −2ν ln

(
− 1

2ν
V

)
;

u1 = 2ν
Vy
V
, u2 = −2ν

Vx
V

;

px = −2ν2

(
(Wy −Wx)

2

W 2

)
y

− 4ν2

(
W 2
y

W 2

)
x

+A1

= −1

2

[
(u1 + u2)

2
]
y
−
(
u2

1

)
x

+A1,

py = 2ν2

(
(Wx +Wy)

2

W 2

)
x

− 4ν2

(
W 2
x

W 2

)
y

+A2

=
1

2

[
(u2 − u1)

2
]
x
−
(
u2

2

)
y

+A2,

(3.19)

where
A1 = −Dα

t [V1(t)] · u1

V1(t)V (t)
(3.20)

and
A2 = −Dα

t [V1(t)] · u2

V1(t)V (t)
. (3.21)
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If V1(t) = 1 in (3.17), then (3.17) reduces to (3.9). By the symbolic computation
method, we learn that H(t, x, y) is the same as the solution of W (t, x, y), and V1(t)
is a differentiable function, h(t, x, y) can structure the V (x, y, t) that satisfies (3.16).

If the point source is a constant, then A1 and A2 are zeros in (3.20) and (3.21),
thus (3.19) reduces to (3.13) and (3.14).

3.3. Properties of px and py

Note that since some exact solutions of 2D-NSEs in this paper are vortex solutions,
they can be expressed in two orthogonal coordinate systems reciprocally. We intro-
duce a new coordinate system (X,Y ) and two new variables U1 and U2 which are
defined by

x = −Y, y = X,u1 = −U2, u2 = U1. (3.22)

Under the new coordinate system (3.22), the expressions in (3.19) are changed into

pY =
1

2

[
(U2 − U1)

2
]
X
−
(
U2

2

)
Y
−Dα

t [V1(t)] · U2

V1(t)V (t)
,

pX = −1

2

[
(U1 + U2)

2
]
Y
−
(
U2

1

)
X
−Dα

t [V1(t)] · U1

V1(t)V (t)
.

(3.23)

Substituting (3.22) into (3.15), we get

pY = ν (U2XX + U2Y Y )−Dα
t U2 − U1U2X − U2U2Y ,

pX = ν (U1XX + U1Y Y )−Dα
t U1 − U1U1X − U2U1Y .

(3.24)

Comparing (3.23), (3.24) with (3.19), (3.15), we get the following conclusions.
(i) The expressions of px, py and pX , pY will be exchanged reciprocally.
(ii) px and py are orthogonal symmetry reciprocally, and∫

pxdx = p(u1, u2, x, y, t),∫
pydy =

∫
pXdX = p(U1, U2, X, Y, t).

(3.25)

(iii) p(u1, u2, x, y, t) = p(U1, U2, X, Y, t).
(iv) The fluid velcocity field ~u, the fluid pressure p in some vortex solutions are

orthogonal symmetric distribution for origin (x = 0, y = 0), thus px and py are
compatible to each other.

4. Statement of the problem and its exact solutions
on infinity plane

In this section, we consider some exact solutions of 2D-TFNSEs in many cases.
Case 1. An exact solution on infinity plane
Introducing an exact solution that satisfies (3.8) of the form

W (t, x, y) =
2Cν

l
+ C∗E1 (4.1)
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and substituting (4.1) into (3.12) ∼ (3.14), we have

ψ = −2ν ln

(
−C
l
− C∗E1

)
, C < 0, C∗ < 0;

u1 =
−C∗l2E1

C + lC∗E1
, u2 =

C∗l2E1

C + lC∗E1
;

px =
C∗2Cl5E2

1

ν(C + lC∗E1)3
, py =

νCC∗2l5E2
1 − 2C∗2Cl5E4

1

ν(C + lC∗E1)3
,

(4.2)

where ψ is the stream function and E1 = e−
l
2ν (x+y−l tαα ). Substituting u1, u2 and px,

py into (3.1) ∼ (3.2) and using the symbolic computation method to calculate these
variables, respectively, we can learn that the variables satisfy (3.1) ∼ (3.2). Hence
u1, u2 and px, py in (4.2) constitute an exact solution of conformable time-fractional
2D-NSEs.

In the first case, the coefficients of (4.2) are ν = 0.1, l = 1, C = −1, C∗ = −2.
Then we can find some interesting physical behaviour of this exact solution with
the fractional order α = 1

2 at the time t = 1, t = 10 and t = 100, as shown in Figs.
1, 2 and 3.

(i) From Fig. 1, we see that the vectorial distribution of the fluid velocity vector
~u is strip region and it is increasing as t increasing. The flown line distribution of ~u
is a series of parallel lines. Particularly, the flown line distribution of ~u in the region
X×Y ∈ [−20, 20]× [−20, 20], the flown line distribution of ~u is more intensive than
in the rest of the region.

(ii) Fig. 2 shows that the surface distribution of u1 and u2 change with α = 1
2

at the time t = 1, t = 10, and t = 100. It can be seen clearly that the valued field of
u1 is [−1, 0] and the surface distribution of u1 decreases gradually to u1 = 1 as the
increasing of t. And then the valued field of u2 is [0, 1] and the surface distribution
of u2 increases gradually to u2 = 1 with the increasing of t.

(iii) Fig. 3 depicts the surface distribution of px and py for three different values
of t. It is clear that the surface distribution of px decreases from +∞ to 0, and the
surface distribution of py increases from −∞ to 0. Hence we get that as time goes
on, the surface distribution of px and py will be on the plane px = 0 and py = 0
eventually.

Case 2. An exact solution under action of a point source on infinity
plane

Introducing an exact solution that satisfies (3.8) of the form

W (t, x, y) = 1 +
a0

4πνtα
E2 (4.3)



2008 J. Shao & B. Guo & L. Duan

(a) vectorial distribution of u1 and u2 (b) flown line distribution of u1 and u2

(c) surface distribution of u1 (d) surface distribution of u2

(e) surface distribution of px (f) surface distribution of py

Figure 1. Case 1. The parameters are chosen as: ν = 0.1, l = 1, t = 10, C = −1, C∗ = −2 and α = 1
2 .

and substituting (4.3) into (3.12) ∼ (3.14), we have

ψ =− 2ν ln

(
− 1

2ν
− a0

8πν2tα
E2

)
;

u1 =
−ya0αE2

4πνt2α + a0tαE2
, u2 =

xa0αE2

4πνt2α + a0tαE2
;

px =
a2

0α
2E2

2

(4πνt2α + a0tαE2)
3

·
[
4παxy2tα − 4πν(y − x)t2α − a0(y − x)tαE2 − 2παy(x− y)2tα

]
,

py =
a2

0α
2E2

2

(4πνt2α + a0tαE2)
3

·
[
4παx2ytα + 4πν(x+ y)t2α + a0(x+ y)tαE2 − 2παx(x+ y)2tα

]
,

(4.4)
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(a) surface distribution of u1, t = 1 (b) surface distribution of u2, t = 1

(c) surface distribution of u1, t = 10 (d) surface distribution of u2, t = 10

(e) surface distribution of u1, t = 100 (f) surface distribution of u2, t = 100

Figure 2. Case 1. The parameters are chosen as: ν = 0.1, l = 1, C = −1, C∗ = −2 and α = 1
2 .

where ψ is the stream function and E2 = exp

{
−α(x2+y2)

4tαν

}
. Following the pro-

cedure of the first case, we conclude that u1, u2 and px, py in (4.4) constitute an
exact solution of conformable TFNSEs.

In the second case, the parameters are chosen as: ν = 0.1, a0 = exp(1) with
the fractional parameter α = 1

2 at the time t = 1, t = 10, t = 100 and t = 10000,
respectively. Then we can find some physical behaviors of this exact solution, as
shown in Figs. 4, 5, 6, 7, and 8.
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(a) surface distribution of px, t = 1 (b) surface distribution of py , t = 1

(c) surface distribution of px, t = 10 (d) surface distribution of py , t = 10

(e) surface distribution of px, t = 100 (f) surface distribution of py , t = 100

Figure 3. Case 1. The parameters are chosen as: ν = 0.1, l = 1, C = −1, C∗ = −2 and α = 1
2 .

(i) Figs. 4, 5 and 6 are depicted to show the changes of the velocity field and the
initial shape of spatial distribution of u1, u2 and px, py. We can see that the vector
~u whirls around origin (x = 0, y = 0) only and the stream function ψ pictures a
series of concentric circles merely within a certain circle. It is clear that the vectorial
distribution of u1 and u2 are increasing as t increasing in Fig. 6.

(ii) Figs. 7 and 8 demonstrate the initial steep shape of spatial distribution
of u1, u2 and px, py tend to be more and more gentle and their amplitude to be
smaller with the increasing of t.
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(iii) If we choose ν = 1
Re , where Re is Reynolds number, then we get that the

change in ν value may lead to change in shape of spatial distribution of u1, u2 and
px, py. With the increase in ν value, their shape tend to be more and more gentle.

Choosing the fractional parameter α = 1 and ν = 1
Re in (4.3), we can get the

same exact solution as in Ref. [23].

(a) vectorial distribution of u1 and u2 (b) flown line distribution of u1 and u2

(c) surface distribution of u1 (d) surface distribution of u2

(e) surface distribution of px (f) surface distribution of py

Figure 4. Case 2. The parameters are chosen as: ν = 0.1, t = 1, x× y ∈ [−5, 5]× [−5, 5], a0 = exp(1)

and α = 1
2 .

Case 3. An exact solution under action of a point source varying with
time on infinity plane
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(a) vectorial distribution of u1 and u2 (b) flown line distribution of u1 and u2

(c) surface distribution of u1 (d) surface distribution of u2

(e) surface distribution of px (f) surface distribution of py

Figure 5. Case 2. The parameters are chosen as: ν = 0.1, t = 1, x × y ∈ [−10, 10] × [−10, 10],

a0 = exp(1) and α = 1
2 .

Introducing an exact solution that satisfies (3.16) of the form

V (t, x, y) = C0 + V1(t)H(ψ)

= C0 + exp{C0sech(C1(t− C2))} 1

4πνtα
exp

{
−
α
(
x2 + y2

)
4νtα

}
,

(4.5)
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(a) vectorial distribution of u1 and u2, t = 10 (b) flown line distribution of u1 and u2, t = 10

(c) vectorial distribution of u1 and u2, t = 100 (d) flown line distribution of u1 and u2, t = 100

(e) vectorial distribution of u1 and u2, t = 10000
(f) flown line distribution of u1 and u2, t =
10000

Figure 6. Case 2. The parameters are chosen as: ν = 0.1, t = 10000, a0 = exp(1) and α = 1
2 .

where V1(t) = exp {C0sech(C1(t− C2))} and H(ψ) = 1
4πνtα exp

{
−α(x2+y2)

4νtα

}
.

Substituting (4.5) into (3.19) ∼ (3.21), we have

ψ = −2ν ln

(
−C0

2ν
− E2

8πν2tα

)
; (4.6)

u1 =
−yαE2

tα (4πC0νtα + E2)
, u2 =

xαE2

tα (4πC0νtα + E2)
; (4.7)
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(a) surface distribution of u1, t = 10 (b) surface distribution of u2, t = 10

(c) surface distribution of u1, t = 100
(d) surface distribution of u2, t =
100

(e) surface distribution of u1, t = 10000 (f) surface distribution of u2, t = 10000

Figure 7. Case 2. The parameters are chosen as: ν = 0.1, t = 10000, a0 = exp(1) and α = 1
2 .

px =
α2E2

2

[
2πC0αy(x− y)2 + 4πC0νt

α(x− y) + E2(x− y) + 4πC0αxy
2
]

t2α(4πC0νtα + E2)3

− 4πC0C1ναyt
1−αE2sech(C1(t− C2)) tanh(C1(t− C2))

(4πνtα + E2)(4πC0νtα + E2)
,

(4.8)
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(a) surface distribution of px, t = 10 (b) surface distribution of py , t = 10

(c) surface distribution of px, t = 100 (d) surface distribution of py , t = 100

(e) surface distribution of px, t = 10000 (f) surface distribution of py , t = 10000

Figure 8. Case 2. The parameters are chosen as: ν = 0.1, t = 10000, a0 = exp(1) and α = 1
2 .

py =
α2E2

2

[
−2πC0αx(x+ y)2 − 4πC0νt

α(x+ y)− E2(x+ y) + 4πC0αx
2y
]

t2α(4πC0νtα + E2)3

+
4πC0C1ναxt

1−αE2sech(C1(t− C2)) tanh(C1(t− C2))

(4πνtα + E2)(4πC0νtα + E2)
,

(4.9)

where ψ is the stream function and E2 = exp

{
C0sech(C1(t− C2))− α(x2+y2)

4νtα

}
.

Substituting u1, u2 and px, py into (3.1) ∼ (3.2) and using the symbolic computation
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method to calculate these variables, respectively, we can learn that the variables
satisfy (3.1) ∼ (3.2), thus the u1, u2 and px, py in (4.6) ∼ (4.9) constitute an exact
solution of conformable 2D-TFNSEs.

The parameters are chosen as: ν = 0.1, C0 = 10.0, C1 = 0.005, C2 = 500.0,
and α = 1

4 . We can get some properties, as shown in Fig. 9. It is depicted to
show the changes of the velocity field and the initial shape of spatial distribution
of u1, u2 and px, py, respectively. We can see that the vector ~u whirls around
origin (x = 0, y = 0). Especially, the flown line distribution of ~u in the region
X × Y ∈ [−5, 5]× [−5, 5], is more intensive than that in the rest of the region. The
initial steep shape of spatial distribution of u1, u2 and px, py tend to be more and
more gentle and their amplitude to be smaller with the increase in time t.

Choosing the fractional parameter α = 1, C0 = 1 and ν = 1
Re in (4.5), we can

get the same exact solution as in Ref. [23].

Case 4. An exact solution with respect to initial boundary value
problem in foursquare region

Introducing an exact solution that satisfies (3.8) of the form

W (t, x, y) = 1 + a0E3
l2

π2
cos

πx

l
cos

πy

l
, (4.10)

where a0 is an initial boundary value, and l is a side length of foursquare region.
Substituting (4.10) into (3.12) ∼ (3.14), we have

ψ =− 2ν ln

(
− 1

2ν
− a0l

2E3

2νπ2
cos

πx

l
cos

πy

l

)
;

u1 =
2νπa0lE3 cos πl x sin π

l y

π2 + a0l2E3 cos πl x cos πl y
, u2 =

2νπa0lE3 sin π
l x cos πl y

π2 + a0l2E3 cos πl x cos πl y
.

(4.11)

Let

B(t, x, y) = π2 + a0l
2E3 cos

π

l
x sin

π

l
y, (4.12)

B1(t, x, y) =ν (u1xx + u1yy) = −4ν2π3a0E3

lB3
·
(
π4 cos

π

l
x sin

π

l
y

+π2a0l
2E3 sin2 π

l
x sin

π

l
y cos

π

l
y − a2

0l
4E2

3 cos3 π

l
x sin

π

l
x
)
,

(4.13)

B2(t, x, y) =ν (u2xx + u2yy) = −4ν2π3a0E3

lB3
·
(
π4 sin

π

l
x cos

π

l
y

−π2a0l
2E3 sin

π

l
x sin

π

l
x sin2 π

l
y − a2

0l
4E2

3 cos3 π

l
y sin

π

l
x
)
,

(4.14)

B3(t, x, y) = Dα
t u1 =

−4ν2π5a0E3 cos πl x sin π
l y

lB2
, (4.15)

B4(t, x, y) = Dα
t u2 =

−4ν2π5a0E3 sin π
l x cos πl y

lB2
, (4.16)

B5(t, x, y) =u1u1x + u2u1y =
4ν2π3a2

0lE
2
3

B3

(
−π2 sin

π

l
x cos

π

l
x sin2 π

l
y

+π2 sin
π

l
x cos

π

l
x cos2 π

l
y + a0l

2E3 sin
π

l
x cos

π

l
y cos2 π

l
x
)
,

(4.17)
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(a) vectorial distribution of u1 and u2 (b) flown line distribution of u1 and u2

(c) surface distribution of u1 (d) surface distribution of u2

(e) surface distribution of px (f) surface distribution of py

Figure 9. Case 3. The parameters are chosen as: ν = 0.1, C0 = 10.0, C1 = 0.005, C2 = 500.0, and

α = 1
4 .

B6(t, x, y) =u1u2x + u2u2y =
4ν2π3a2

0lE
2
3

B3

(
π2 cos2 π

l
x sin

π

l
y cos

π

l
y

+a0l
2E3 cos

π

l
x sin

π

l
y cos2 π

l
y − π2 sin2 π

l
x sin

π

l
y cos

π

l
y
)
,

(4.18)
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where E3 = exp
{
− 2νπ2tα

αl2

}
. Then we get

px = B1(t, x, y)−B3(t, x, y)−B5(t, x, y),

py = B2(t, x, y)−B4(t, x, y)−B6(t, x, y).
(4.19)

Following the procedure of the first case, we conclude that u1, u2 and px, py in (4.4)
constitute an exact solution of the conformable 2D-TFNSEs.

The exact solution for 2D-TFNSEs with respect to initial boundary value prob-
lem in foursquare region are obtained using Hopf-Cole transform. For a com-
plete study and for possible comparisons, we present the parameters by mak-
ing ν = 0.01, t = 10, a0 = exp(3), α = 1

4 and X × Y ∈ [−5, 5] × [−5, 5] or
X × Y ∈ [−20, 20]× [−20, 20]. Some physical properties are found as shown in Fig.
10 and Fig. 11.

(i) Fig. 10 is depicted to show the changes of the vector field, the flown line
distribution of u1 and u2, and the shapes of spatial distribution of u1, u2 and px,
py when t = 10. It can be seen that the flown line distribution of ~u pictures two
families of hyperbolas.

(ii) In Fig. 11, it is clearly seen that u1 and u2 are the space periodic solutions,
and their region of periodic is X × Y ∈ [−20, 20]× [−20, 20].

(iii) If the parameters are chosen as Fig. 10, the shape of spatial distribution
of u1, u2 and px, py remain the same to the Fig. 10 with the increasing of t. These
figures are omitted here for reasons of limited space.

5. Conclusions

The 2D-TFNSEs are considered in this paper for the first time. These new fluid
models have a series of physical properties. Many conclusions are obtained as
follows:

(i) Compared to 2D-NSEs, it is hard to solve the exact solutions of 2D-TFNSEs
due to the time fractional derivative. With mass conservations (3.2) and the stream
function ψ (3.3), 2D Hopf-Cole transformations are established by using the prop-
erties of conformable fractional operators and introducing a new variable W that
satisfying the linear differential equations (3.8). If W can be found, it is possible
to structure the corresponding exact solutions of TFNSEs. Next we must use sym-
bolic computation method to test the obtained exact solutions according to point
of Chiping Wu et al. in Refs. [24].

(ii) Exact solution in Case 1 provides that the velocity of the fluid tends to the
constant value ~u = (−1, 1) gradually as the fluid pressure p varying from strong to
weak with t increasing. The flown line distribution of ~u is a series of parallel lines.
Especially the flown line distribution of ~u in the region X×Y ∈ [−20, 20]×[−20, 20],
is more intensive than that in the rest of the region. It is seen clearly that the valued
field of u1 is [−1, 0] and the surface distribution of u1 decrease gradually to u1 = 1
with the increasing of t. And then the valued field of u2 is [0, 1] and the surface
distribution of u2 gradually decrease to u2 = 1 with the increase in time t. The
surface distribution of px and py for three different values of t. It is clear that the
surface distribution of px decreases from +∞ to px = 0, and the surface distribution
of py increases from −∞ to px = 0.

(iii) Exact solution in Case 2 describes the gradual decreasing in vortex on
infinity plane due to the influence of turbulent diffusion. Fig. 7 and Fig. 8
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(a) vectorial distribution of u1 and u2 (b) flown line distribution of u1 and u2

(c) surface distribution of u1 (d) surface distribution of u2

(e) surface distribution of px (f) surface distribution of py

Figure 10. Case 4. The parameters are chosen as: ν = 0.01, t = 10, a0 = exp(3), X × Y ∈
[−5, 5]× [−5, 5] and α = 1

4 .

demonstrate the rotating vortex will gradually flatten out as the fluid pressure
becoming weaker as time goes on. We can see that the vector ~u whirls around
origin (x = 0, y = 0) only and stream function ψ pictures a series of concentric
circles merely within a certain circle. It is clear that the vectorial distribution of u1

and u2 are increasing as t increasing. The initial steep shape of spatial distribution
of u1, u2 and px, py tend to be more and more gentle and their amplitude to be
smaller with the increasing of t. If we choose ν = 1

Re , then we get that the change
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(a) vectorial distribution of u1 and u2 (b) flown line distribution of u1 and u2

(c) surface distribution of u1 (d) surface distribution of u2

(e) surface distribution of px (f) surface distribution of py

Figure 11. Case 4. The parameters are chosen as: ν = 0.01, t = 10, a0 = exp(3), X × Y ∈
[−20, 20]× [−20, 20] and α = 1

4 .

in ν value may lead to change in shape of spatial distribution of u1, u2 and px, py.
With the increasing of ν value, their shape tend to be more and more gentle. In
other words, the higher of the density becomes, the gentler of fluid motion.

(iv) Exact solution in Case 3 provides a description of 2D vortex moving from
weak to strong and then to weak on infinity plane. The vector ~u in this case whirls
around origin (x = 0, y = 0), too. Especially, the flown line distribution of ~u in
the region X × Y ∈ [−5, 5] × [−5, 5], is more intensive than that in the rest of the
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region. The initial steep shape of spatial distribution of u1, u2 and px, py tend to
be more and more gentle and their amplitude to be smaller with the increasing of
t.

(v) The exact solution in Case 4 describes the circumfluence obvious characteris-
tic of periodic changes within foursquare region because of the influence of turbulent
diffusion, see Fig. 11. We can see that the flown line distribution of ~u pictures two
families of hyperbolas. It is clearly seen that u1 and u2 are the space periodic so-
lutions, and their region of periodic is X × Y ∈ [−5, 5]× [−5, 5]. If the parameters
are chosen as Fig. 10, the shape of spatial distribution of u1, u2 and px, py remain
the same to the Fig. 10 with the increasing of t.
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