
Journal of Applied Analysis and Computation Website:http://jaac.ijournal.cn

Volume 9, Number 6, December 2019, 2278–2294 DOI:10.11948/20190062

DYNAMICAL BEHAVIOR OF A STOCHASTIC
FOOD CHAIN CHEMOSTAT MODEL WITH

MONOD RESPONSE FUNCTIONS
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Abstract This paper studies a food chain chemostat model with Monod re-
sponse functions, which is perturbed by white noise. Firstly, we prove the exis-
tence and uniqueness of the global positive solution. Then sufficient conditions
for the existence of a unique ergodic stationary distribution are established by
constructing suitable Lyapunov functions. Moreover, we consider the extinc-
tion of microbes in two cases. In the first case, both the predator and prey
species are extinct. In the second case, only the predator species is extinct,
and the prey species survives. Finally, numerical simulations are carried out
to illustrate the theoretical results.

Keywords Stochastic food chain chemostat model, Monod response func-
tion, stationary distribution, extinction.

MSC(2010) 60H10, 34F05.

1. Introduction

The chemostat is a continuous culture device mainly used for growing microor-
ganisms. It has the advantage that the parameters are readily measurable, and
plays an important role in mathematical biology and theoretical ecology [2, 17]. In
recent years, the dynamics of chemostat models has been extensively studied, see
e.g. [1,4,8,11,12,16,18]. The deterministic food chain chemostat model with Monod
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response functions takes the following form [2]
ds(t)
dt = Q(s0 − s(t))− 1

δ
µs(t)x1(t)
k+s(t) ,

dx1(t)
dt = µs(t)x1(t)

k+s(t) −Qx1(t)− αγx1(t)x2(t)
l+x1(t) ,

dx2(t)
dt = γx1(t)x2(t)

l+x1(t) −Qx2(t),

(1.1)

where the predator x2 completely feeds on the prey x1, and the prey x1 consumes
a single nutrient s. s(t), x1(t) and x2(t) stand for the concentrations of nutrient,
prey and predator at time t, respectively. s0 is the original input concentration of
nutrient s and Q is the common dilution rate. 1

δ and α represent the consumption

coefficients. The terms µs(t)
k+s(t) and γx1(t)

l+x1(t) denote the Monod growth functional

responses. µ and γ are the maximum growth rates of x1 and x2, respectively. k
and l are the corresponding half-saturation constants.

However, the chemostat is inevitably subject to environmental noise at the micro
level. The deterministic chemostat model has some limitations to accurately predict
the future dynamics. As May [14] pointed out, some parameters involved in the
system exhibit random fluctuations to a greater or lesser extent due to various
environmental noises. Therefore, some authors [6,19,21–24,26–28] have investigated
the classical and competitive chemostat systems with stochastic disturbance. For a
single-species chemostat model in which the maximum growth rate is influenced by
white noise, Xu and Yuan [23] obtained an analogue of break-even concentration
and proved that large noise can make the microorganism go extinct. Sun etc [19]
considered a stochastic two-species Monod competition chemostat model, which is
subject to environmental noise. They studied the asymptotic behavior and the
steady state distribution. Zhang and Jiang [28] discovered sufficient conditions
which guarantee that the principle of competitive exclusion holds for a stochastic
chemostat model with Holling type II functional response.

To the best of our knowledge, there is little amount of work on the food chain
chemostat model with random perturbation. For a Lotka-Volterra food chain
chemostat model in which the dilution rate is influenced by white noise, Sun etc
[20] established sufficient conditions for some population dynamical properties and
proved the existence of stationary distribution. In addition to the dilution rate,
some papers [3, 23, 25] indicate that the maximum growth rate is also one of the
parameters that are very sensitive to white noise in chemostat model. Motivated
by the related work, in this article, we consider that the maximum growth rates of
microorganisms in model (1.1) are effected by white noise, i.e.,

µ→ µ+ β1Ẇ1(t), γ → γ + β2Ẇ2(t).

For the sake of simplicity, we use s, x1 and x2 to represent s(t), x1(t) and x2(t),
respectively. The model of interest is

ds =
[
Q(s0 − s)− 1

δ
µsx1

k+s

]
dt− 1

δ
β1sx1

k+s dW1(t),

dx1 =
[
µsx1

k+s −Qx1 − αγx1x2

l+x1

]
dt+ β1sx1

k+s dW1(t)− αβ2x1x2

l+x1
dW2(t),

dx2 =
[
γx1x2

l+x1
−Qx2

]
dt+ β2x1x2

l+x1
dW2(t),

(1.2)

where Wi(t), i = 1, 2 are standard one-dimensional independent Brownian motions
and β2

i represents the noise intensity. Other parameters are used as in model (1.1).
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To study above system, we make the following dimensionless transformation

s̄ =
s

s0
, τ = Qt, x =

x1

δs0
, y =

αx2

δs0
, m1 =

µ

Q
, m2 =

γ

Q
,

a1 =
k

s0
, a2 =

l

δs0
, σi = βi

√
1

Q
, Bi(τ) =

Wi(
τ
Q )√
1
Q

, i = 1, 2.

Then system (1.2) is transformed into the following equations (replacing s̄, τ with
s, t) 

ds =
(

1− s− m1sx
a1+s

)
dt− σ1sx

a1+sdB1(t),

dx =
(
m1sx
a1+s − x−

m2xy
a2+x

)
dt+ σ1sx

a1+sdB1(t)− σ2xy
a2+xdB2(t),

dy =
(
m2xy
a2+x − y

)
dt+ σ2xy

a2+xdB2(t).

(1.3)

The corresponding deterministic system to (1.3) is
ds
dt = 1− s− m1sx

a1+s ,

dx
dt = m1sx

a1+s − x−
m2xy
a2+x ,

dy
dt = m2xy

a2+x − y.

(1.4)

Let λi = ai
mi−1 , i = 1, 2 and according to the theory in [2, 8], system (1.4) has the

following properties
• If m1 ≤ 1, or m1 > 1 and λ1 ≥ 1, then lim

t→∞
x(t) = 0 (obviously, lim

t→∞
y(t) = 0);

• If m2 ≤ 1, or m2 > 1 and λ1 + λ2 > 1, then lim
t→∞

y(t) = 0;

• If mi > 1 and λ1 + λ2 < 1, i = 1, 2, then predator y is surviving.
The rest of this paper is arranged as follows. In Section 2, we analyze model (1.3)

and review the basic theories, which are necessary for later discussion. In Section
3, we prove the solution of system (1.3) is positive and global. For the equivalent
system (2.1) of model (1.3), Section 4 gives sufficient conditions for the existence
of a unique ergodic stationary distribution. In Section 5, sufficient conditions for
extinction of microbes are established in two cases. In Section 6, we validate our
theoretical results by some examples and make a further discussion.

2. Model analysis and preliminaries

By system (1.3), one yields

d(s+ x+ y) = (1− (s+ x+ y))dt.

Then we can obtain the region

Γ0 = {(s, x, y) ∈ R3
+ : s+ x+ y = 1}

is a positively invariant set of system (1.3). So we can analyze the dynamical
properties of system (1.3) by studying the following systemdx = (m1sx

a1+s − x−
m2xy
a2+x )dt+ σ1sx

a1+sdB1(t)− σ2xy
a2+xdB2(t),

dy = (m2xy
a2+x − y)dt+ σ2xy

a2+xdB2(t),
(2.1)
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where s = 1− x− y and

(x, y) ∈ Γ∗ := {(x, y) ∈ R2
+ : x+ y < 1}.

System (2.1) presents a stochastically perturbed version of the following determin-
istic system 

dx
dt = m1sx

a1+s − x−
m2xy
a2+x ,

dy
dt = m2xy

a2+x − y.
(2.2)

This model has three equilibria E0 : (0, 0), E1 : (1 − λ1, 0), E2 : (x∗, y∗), where x∗

and y∗ satisfy m1(1−x∗−y∗)
1+a1−x∗−y∗ −

m2y
∗

a2+x∗ = 1 and m2x
∗

a2+x∗ = 1. About the properties of

E0, E1 and E2, the reader can refer to [2, 8].
Next, we present some basic theories in stochastic differential equations which

are introduced in [15] and give a lemma [9] which provides a criterion for the exis-
tence of a unique ergodic stationary distribution.

Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous
and F0 contains all P−null sets). Denote

Rd+ = {x ∈ Rd : xi > 0 for all 1 ≤ i ≤ d}, Rd+ = {x ∈ Rd : xi ≥ 0 for all 1 ≤ i ≤ d}.

In general, consider the d-dimensional stochastic differential equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), for t ≥ t0, (2.3)

with initial value x(t0) = x0 ∈ Rd and B(t) denotes d-dimensional standard Brown-
ian motion defined on the above probability space. Define the differential operator
L associated with Eq. (2.3) by

L =
∂

∂t
+

d∑
i=1

fi(x, t)
∂

∂xi
+

1

2

d∑
i,j=1

[gT (x, t)g(x, t)]ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rd × R+;R+), then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trac[gT (x, t)Vxx(x, t)g(x, t)],

where Vt = ∂V
∂t , Vx = ( ∂V∂x1

, · · · , ∂V∂xd
) and Vxx = ( ∂2V

∂xi∂xj
)d×d. By Itô formula, if x(t)

is a solution of Eq. (2.3), then

dV (x(t), t) = LV (x(t), t)dt+ Vx(x(t), t)g(x(t), t)dB(t).

Let X(t) be a homogeneous Markov process in Rl (Rl represents euclidean l-
space) satisfying the stochastic equation

dX(t) = h(X)dt+

k∑
m=1

gm(X)dBm(t).

The diffusion matrix is

A(x) = (aij(x)), aij(x) =

k∑
m=1

g(i)
m (x)g(j)

m (x).
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Lemma 2.1. Assume there exists a bounded open domain G ⊂ Rl with regular
boundary Γ, having the following properties

(A1) In the domain G and some neighborhood thereof, the smallest eigenvalue of
the diffusion matrix A(x) is bounded away from zero;

(A2) If x ∈ Rl \G, the mean time τ at which a path issuing from x reaches the set
G is finite, and supx∈KE

xτ <∞ for every compact subset K ∈ Rl.

Then the Markov process X(t) has a unique stationary distribution π(·). Let f(x)
be a function integrable with respect to the measure π. For all x ∈ Rl, the following
formula holds

P
{

lim
t→∞

1

t

∫ t

0

f(X(s))ds =

∫
Rl

f(x)π(dx)

}
= 1.

For simplicity, we define 〈h〉t = 1
t

∫ t
0
h(s)ds, where h(t) is an integrable function

on [0,∞).

3. Existence and uniqueness of positive solution

In this section, we shall show that system (1.3) has a unique global positive solution
with any given initial value by making use of the Lyapunov function method as
mentioned in [15].

Theorem 3.1. For any initial value (s(0), x(0), y(0)) ∈ R3
+, model (1.3) has a

unique solution (s(t), x(t), y(t)) on t ≥ 0 and the solution will remain in R3
+ with

probability one, that is to say, (s(t), x(t), y(t)) ∈ R3
+ for all t ≥ 0 almost surely

(a.s.).

Proof. Since the coefficients of model (1.3) satisfy the local Lipschitz condition,
there exists a unique local solution (s(t), x(t), y(t)) on t ∈ [0, τe) for any given initial
value (s(0), x(0), y(0)) ∈ R3

+, where τe represents the explosion time. To illustrate
this solution is global, we only need to prove τe =∞ a.s. To this end, let m0 ≥ 1 be
sufficiently large such that s(0), x(0), y(0) all lie within the interval [ 1

m0
,m0]. For

each integer m ≥ m0, define the stopping time as follows

τm = inf

{
t ∈ [0, τe) : min{s(t), x(t), y(t)} ≤ 1

m
or max{s(t), x(t), y(t)} ≥ m

}
,

where throughout this paper, we set inf ∅ =∞ (as usual ∅ denotes the empty set).
Obviously, τm is increasing as m → ∞. Set τ∞ = limm→+∞ τm, whence τ∞ ≤ τe
a.s. If τ∞ = ∞ a.s. is true, then τe = ∞ and (s(t), x(t), y(t)) ∈ R3

+ a.s. for all
t ≥ 0. Namely, in order to complete the proof we only need to prove τ∞ = ∞ a.s.
If this statement is incorrect, then there is a pair of constants T > 0 and ε ∈ (0, 1)
such that

P{τ∞ ≤ T} > ε.

Hence, there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ε for all m ≥ m1.
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In addition, for t ≤ τm, we can easily see

d[s(t) + x(t) + y(t)] = [1− (s(t) + x(t) + y(t))]dt.

This implies that
lim
t→∞

s(t) + x(t) + y(t) = 1.

Therefore, there exists a positive constant K such that

s(t) + x(t) + y(t) ≤ K.

Define a non-negative C2-function V : R3
+ → R+ by

V (s, x, y) = (s− 1− log s) + (x− 1− log x) + (y − 1− log y).

Let m ≥ m1 and T > 0 be arbitrary. For any 0 ≤ t ≤ τm∧T = min{τm, T}, making
use of Itô formula to V , we obtain

dV (s, x, y) = LV (s, x, y)dt+
σ1(x− s)
a1 + s

dB1(t) +
σ2(y − x)

a2 + x
dB2(t),

where LV : R3
+ → R is defined by

LV (s, x, y) =

(
1− 1

s

)(
1− s− m1sx

a1 + s

)
+

1

2s2

(
σ1sx

a1 + s

)2

+

(
1− 1

x

)(
m1sx

a1+s
−x−m2xy

a2+x

)
+

1

2x2

[(
σ1sx

a1+s

)2

+

(
σ2xy

a2 + x

)2
]

+

(
1− 1

y

)(
m2xy

a2 + x
− y
)

+
1

2y2

(
σ2xy

a2 + x

)2

=1− s− 1

s
+ 1 +

m1x

a1 + s
+

1

2

(
σ1x

a1 + s

)2

− x− m1s

a1 + s
+ 1 +

m2y

a2 + x
+

1

2

(
σ1s

a1 + s

)2

+
1

2

(
σ2y

a2 + x

)2

− y − m2x

a2 + x
+ 1 +

1

2

(
σ2x

a2 + x

)2

≤4 +
m1x

a1 + s
+

m2y

a2 + x

+
1

2

((
σ1x

a1 + s

)2

+

(
σ1s

a1 + s

)2

+

(
σ2y

a2 + x

)2

+

(
σ2x

a2 + x

)2
)

≤4 +

(
m1

a1
+
m2

a2

)
K +

(
σ2

1

a2
1

+
σ2

2

a2
2

)
K2 := H,

where H is a positive constant. The rest of the proof is similar to the statement of
Theorem 2.1 in [7], so we omit it. This completes the proof.

4. Existence of ergodic stationary distribution

Since stationary distribution can enrich the dynamical behavior of stochastic chemo-
stat systems [13], the aim of this section is to investigate sufficient conditions for
the existence of a unique ergodic stationary distribution of system (2.1).
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Theorem 4.1. If there exists a constant c2 satisfying c2 >
(
m2

a22 + c1m1(a1+1)
a12

)
a1+1
m1−1 ,

where c1 = m2a2(a1+1−x̄)2

m1a1x̄(a2+x̄)2 , such that the following condition holds

λ :=
m2x̄

a2 + x̄
− 1− c2x̄σ

2
1

2

(
1

a1 + 1

)2

− σ2
2

2

(
1

a2 + 1

)2

> 0,

where x̄ = 1− λ1, then for any initial value (x(0), y(0)) ∈ Γ∗, system (2.1) admits
a unique stationary distribution and it has the ergodic property.

Proof. To prove Theorem 4.1, we need to validate conditions (A1) and (A2) of
Lemma 2.1. The diffusion matrix of system (2.1) is given by

A(x, y) =

 (σ1x(1−x−y)
a1+1−x−y )2 + ( σ2xy

a2+x )2 −( σ2xy
a2+x )2

−( σ2xy
a2+x )2 ( σ2xy

a2+x )2

 ,

which is positive definite. This implies (A1) in Lemma 2.1 holds.
Next, we check the condition (A2) in Lemma 2.1. According to the theory

developed by Zhu and Yin [29], we need to verify there exists a non-negative C2-
function V and a neighborhood Dρ such that LV is negative for any (x, y) ∈ Γ∗\Dρ.

Define a non-negative C2-function V : Γ∗ → R+ by

V (x, y) =M

[
− log y − c1x+ c2

(
x− x̄− x̄ log

x

x̄

)
+

(
c2x̄(2(m1 − 1)a2

2 + 2m2a1a2 + a1σ
2
2)

2a1a2
2

)
y

]
− log(1− x− y) +Mc1

:=M

[
U +

(
c2x̄(2(m1 − 1)a2

2 + 2m2a1a2 + a1σ
2
2)

2a1a2
2

)
y

]
+ V2

:=MV1 + V2,

where M > 0 is a constant satisfying 1 + m1

a1
+

σ2
1

2a21
−Mλ ≤ −2, c1 = m2a2(a1+1−x̄)2

m1a1x̄(a2+x̄)2 ,

c2 >
(
m2

a22
+ c1m1(a1+1)

a21

)
a1+1
m1−1 , U = − log y − c1x + c2

(
x− x̄− x̄ log x

x̄

)
, V1 = U +(

c2x̄(2(m1−1)a22+2m2a1a2+a1σ
2
2)

2a1a22

)
y, V2 = − log(1− x− y) +Mc1.

By Itô formula, one derives

L(− log y) =− m2x

a2 + x
+ 1 +

1

2

(
σ2x

a2 + x

)2

≤− m2x

a2 + x
+ 1 +

σ2
2

2

(
1

a2 + 1

)2

. (4.1)

L(−x) =− m1x(1− x− y)

a1 + 1− x− y
+ x+

m2xy

a2 + x

=− m1x(1− x− y)

a1 + 1− x− y
+
m1x(1− x)

a1 + 1− x
− m1x(1− x)

a1 + 1− x
+ x+

m2xy

a2 + x
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=
a1m1xy

(a1 + 1− x− y)(a1 + 1− x)
− m1x(1− x)

a1 + 1− x
+ x+

m2xy

a2 + x

≤− m1x(1− x)

a1 + 1− x
+ x+

(
m1

a1
+
m2

a2

)
xy. (4.2)

L
(
x− x̄− x̄ log

x

x̄

)
=
x− x̄
x

(
m1x(1− x− y)

a1 + 1− x− y
− x− m2xy

a2 + x

)
+
x̄

2

(
σ1s

a1 + s

)2

+
x̄

2

(
σ2y

a2 + x

)2

≤− (m1 − 1)(x− x̄)2

a1 + 1− x− y
+

(1−m1)(x− x̄)y

a1 + 1− x− y
− m2(x− x̄)y

a2 + x

+
x̄σ2

1

2

(
1

a1 + 1

)2

+
x̄σ2

2

2a2
2

y2

≤− (m1 − 1)(x− x̄)2

a1 + 1
+

[
m1 − 1

a1
+
m2

a2
+

σ2
2

2a2
2

]
x̄y +

x̄σ2
1

2

(
1

a1 + 1

)2

. (4.3)

According to (4.1)-(4.3), it follows that

LU ≤−

(
m2x̄

a2 + x̄
− 1− c2x̄σ

2
1

2

(
1

a1 + 1

)2

− σ2
2

2

(
1

a2 + 1

)2
)

+
m2x̄

a2 + x̄
− m2x

a2 + x

+ c1

(
−m1x(1− x)

a1 + 1− x
+ x

)
− c2(m1 − 1)(x− x̄)2

a1 + 1

+ c1

(
m1

a1
+
m2

a2

)
xy + c2

(
m1 − 1

a1
+
m2

a2
+

σ2
2

2a2
2

)
x̄y.

Let

F (x) =
m2x̄

a2 + x̄
− m2x

a2 + x
+ c1

(
−m1x(1− x)

a1 + 1− x
+ x

)
− c2(m1 − 1)(x− x̄)2

a1 + 1
.

Direct calculations result in

F ′(x)=− m2a2

(a2 + x)2
+c1

[
−m1(1− x)

a1+1−x
+1+

m1a1x

(a1 + 1− x)2

]
− 2c2(m1 − 1)(x− x̄)

a1 + 1
,

and
F ′(x̄) = 0.

Moreover

F ′′(x) =
2m2a2

(a2 + x)3
+

2c1m1a1(a1 + 1)

(a1 + 1− x)3
− 2c2(m1 − 1)

a1 + 1

≤2m2

a2
2

+
2c1m1(a1 + 1)

a2
1

− 2c2(m1 − 1)

a1 + 1
< 0.

Then
F (x) ≤ F (x̄) = 0.

Thus, we get

LU ≤ −λ+ c1

(
m1

a1
+
m2

a2

)
xy + c2

(
m1 − 1

a1
+
m2

a2
+

σ2
2

2a2
2

)
x̄y,
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and

LV1 ≤− λ+ c1

(
m1

a1
+
m2

a2

)
xy

+
c2x̄(2(m1 − 1)a2

2 + 2m2a1a2 + a1σ
2
2)

2a1a2
2

m2xy

a2 + x

≤− λ+

[
c1

(
m1

a1
+
m2

a2

)

+
c2m2x̄(2(m1 − 1)a2

2 + 2m2a1a2 + a1σ
2
2)

2a1a3
2

]
xy. (4.4)

Applying Itô formula to V2 yields

LV2 = L(− log s) =− 1

s
+ 1 +

m1x

a1 + s
+

1

2

(
σ1x

a1 + s

)2

≤− 1

1− x− y
+ 1 +

m1

a1
+

σ2
1

2a2
1

. (4.5)

One can obtain from (4.4) and (4.5)

LV (x, y) ≤M

{
− λ+

[
c1

(
m1

a1
+
m2

a2

)

+
c2m2x̄(2(m1 − 1)a2

2 + 2m2a1a2 + a1σ
2
2)

2a1a3
2

]
xy

}

− 1

1− x− y
+ 1 +

m1

a1
+

σ2
1

2a2
1

.

It can be seen from above formula, if x→ 0+ or y → 0+, then

LV (x, y) ≤ −Mλ+ 1 +
m1

a1
+

σ2
1

2a2
1

≤ −2; (4.6)

if x+ y → 1−, then

LV (x, y) < −∞. (4.7)

By (4.6) and (4.7), we can conclude that

LV (x, y) ≤ −1, for any (x, y) ∈ Γ∗ \Dρ,

where Dρ = {(x, y) ∈ Γ∗ : x ≥ ρ, y ≥ ρ, x+y ≤ 1−ρ} and 0 < ρ < 1
2 is a sufficiently

small constant. This completes the proof.

Remark 4.1. In the proof of Theorem 4.1, we use the equilibrium E1 of model
(2.2) to construct the Lyapunov function V (x, y) which consists of two parts, V1

and V2. The item
(
c2x̄(2(m1−1)a22+2m2a1a2+a1σ

2
2)

2a1a22

)
y in V1 is constructed to eliminate

the term c2

(
m1−1
a1

+ m2

a2
+

σ2
2

2a22

)
x̄y in LU , leaving only the item containing xy. The

term Mc1 in V2 guarantees V is non-negative.
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5. Extinction

In this section, We shall establish sufficient conditions for extinction of microbes in
two cases, one of which is that both the prey and predator species are extinct, the
other of which is the prey species is surviving and the predator species is extinct.

Theorem 5.1. Let (x(t), y(t)) be solution of model (2.1) with any given initial
value (x(0), y(0)) ∈ Γ∗. If one of the following conditions holds

(a) σ2
1 >

m2
1

2 , or

(b) σ2
1 ≤ m1(a1 + 1) and m1

a1+1 −
σ2
1

2(a1+1)2 − 1 < 0, then

lim sup
t→∞

log x(t)

t
≤ m2

1

2σ2
1

− 1 < 0 a.s. If (a) holds;

lim sup
t→∞

log x(t)

t
≤ m1

a1 + 1
− σ2

1

2(a1 + 1)2
− 1 < 0 a.s. If (b) holds.

In other words, the prey will become extinct exponentially with probability one. Nat-
urally, predator will also be extinct.

Proof. Applying Itô formula to log x leads to

d log x =

[
m1s

a1 + s
− 1− m1y

a2 + x
− σ2

1

2

(
s

a1 + s

)2

− σ2
2

2

(
y

a2 + x

)2
]
dt

+
σ1s

a1 + s
dB1(t)− σ2y

a2 + x
dB2(t).

Integrating this equation from 0 to t and dividing by t on both sides, we obtain

log x(t)− log x(0)

t

=m1

〈
s

a1 + s

〉
− 1−m2

〈
y

a2 + x

〉
− σ2

1

2

〈(
s

a1 + s

)2
〉
− σ2

2

2

〈(
y

a2 + x

)2
〉

+
σ1

t

∫ t

0

s

a1 + s
dB1(τ)− σ2

t

∫ t

0

y

a2 + x
dB2(τ)

≤m1

〈
s

a1 + s

〉
− 1− σ2

1

2

〈(
s

a1 + s

)2
〉

+
σ1

t

∫ t

0

s

a1 + s
dB1(τ)− σ2

t

∫ t

0

y

a2 + x
dB2(τ)

≤m1

〈
s

a1 + s

〉
− 1− σ2

1

2

〈
s

a1 + s

〉2

+
σ1

t

∫ t

0

s

a1 + s
dB1(τ)− σ2

t

∫ t

0

y

a2 + x
dB2(τ)

:=f(z) +
σ1

t

∫ t

0

s

a1 + s
dB1(τ)− σ2

t

∫ t

0

y

a2 + x
dB2(τ), (5.1)

where f :
(

0, 1
a1+1

)
→ R is defined by

f(z) =− σ2
1

2
z2 +m1z − 1
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=− σ2
1

2

(
z − m1

σ2
1

)2

+
m2

1

2σ2
1

− 1, z =

〈
s

a1 + s

〉
∈
(

0,
1

a1 + 1

)
. (5.2)

Case 1. When σ2
1 >

m2
1

2 , by (5.2), we get

f(z) ≤ f
(
m1

σ2
1

)
=
m2

1

2σ2
1

− 1.

Then by (5.1), one can see that

log x(t)

t
≤ log x(0)

t
+
m2

1

2σ2
1

− 1

+
σ1

t

∫ t

0

s

a1 + s
dB1(τ)− σ2

t

∫ t

0

y

a2 + x
dB2(τ). (5.3)

On the other hand, from the strong law of large number for local martingales [10],
it follows that

lim
t→∞

σ1

t

∫ t

0

s

a1 + s
dB1(τ) = 0, (5.4)

lim
t→∞

σ2

t

∫ t

0

y

a2 + x
dB2(τ) = 0. (5.5)

So taking the superior limit on both sides of (5.3) and combining (5.4) and (5.5),
we have

lim sup
t→∞

log x(t)

t
≤ m2

1

2σ2
1

− 1 < 0 a.s.

Case 2. When σ2
1 ≤ m1(a1 + 1) and m1

a1+1 −
σ2
1

2(a1+1)2 − 1 < 0, by (5.2), we obtain

f(z) ≤ f
(

1

a1 + 1

)
=

m1

a1 + 1
− σ2

1

2(a1 + 1)2
− 1.

In view of (5.1), one can derive that

log x(t)

t
≤ log x(0)

t
+

m1

a1 + 1
− σ2

1

2(a1 + 1)2
− 1

+
σ1

t

∫ t

0

s

a1 + s
dB1(τ)− σ2

t

∫ t

0

y

a2 + x
dB2(τ). (5.6)

Then taking the superior limit on both sides of (5.6) and combining (5.4) and (5.5),
we get

lim sup
t→∞

log x(t)

t
≤ m1

a1 + 1
− σ2

1

2(a1 + 1)2
− 1 < 0 a.s.,

which implies lim
t→∞

x(t) = 0 a.s. This completes the proof.

Remark 5.1. Theorem 5.1 indicates that if the noise intensity σ2
1 is sufficiently

large such that σ2
1 >

m2
1

2 or it satisfies adequate conditions σ2
1 ≤ m1(a1 + 1) and

m1

a1+1−
σ2
1

2(a1+1)2−1 < 0, then the prey x will go extinct exponentially with probability

one. In the circumstances, predator y will also be extinct.
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Theorem 5.2. Let (x(t), y(t)) be solution of model (2.1) with any given initial
value (x(0), y(0)) ∈ Γ∗. If one of the following conditions holds

(c) σ2
2 >

m2
2

2 , or

(d) σ2
2 ≤ m2(a2 + 1) and m2

a2+1 −
σ2
2

2(a2+1)2 − 1 < 0, then

lim sup
t→∞

log y(t)

t
≤ m2

2

2σ2
2

− 1 < 0 a.s. If (c) holds;

lim sup
t→∞

log y(t)

t
≤ m2

a2 + 1
− σ2

2

2(a2 + 1)2
− 1 < 0 a.s. If (d) holds.

That is to say, the predator will go extinct exponentially with probability one.

Proof. Making use of Itô formula to log y yields

d log y =

[
m2x

a2 + x
− 1− σ2

2

2

(
x

a2 + x

)2
]
dt+

σ2x

a2 + x
dB2(t).

Integrating this equation from 0 to t and dividing by t on both sides, we have

log y(t)− log y(0)

t

=m2

〈
x

a2 + x

〉
− 1− σ2

2

2

〈(
x

a2 + x

)2
〉

+
σ2

t

∫ t

0

x

a2 + x
dB2(τ)

≤m2

〈
x

a2 + x

〉
− 1− σ2

2

2

〈
x

a2 + x

〉2

+
σ2

t

∫ t

0

x

a2 + x
dB2(τ)

:=g(w) +
σ2

t

∫ t

0

x

a2 + x
dB2(τ),

where g :
(

0, 1
a2+1

)
→ R is defined by

g(w) =− σ2
2

2
w2 +m2w − 1

=− σ2
2

2

(
w − m2

σ2
2

)2

+
m2

2

2σ2
2

− 1, w =

〈
x

a2 + x

〉
∈
(

0,
1

a2 + 1

)
.

The reminder of the proof is similar to Theorem 5.1, so we omit it.

Remark 5.2. Theorem 5.2 reveals that if the noise intensity σ2
2 is sufficiently large

such that σ2
2 >

m2
2

2 or it satisfies adequate conditions σ2
2 ≤ m2(a2 + 1) and m2

a2+1 −
σ2
2

2(a2+1)2 − 1 < 0, then the predator y will become extinct.

6. Numerical simulations and discussion

In this section, we will illustrate our main theoretical results by numerical sim-
ulations with the help of Milstein’s higher order method developed in [5]. Since
s(t) = 1− x(t)− y(t) in model (2.1), numerical simulations for s(t) are also given.
We take initial value (s(0), x(0), y(0)) = (0.2, 0.4, 0.4).
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Example 6.1. Choose m1 = 4, m2 = 3, a1 = 1, a2 = 1, σ1 = 0.3, σ2 = 0.2. Simple
computation results c1 = 0.7200. Then there exists a constant c2 = 6.0400 and

λ :=
m2x̄

a2 + x̄
− 1− c2x̄σ

2
1

2

(
1

a1 + 1

)2

− σ2
2

2

(
1

a2 + 1

)2

= 0.1497 > 0.

That is to say, the conditions of Theorem 4.1 are satisfied. It follows that system
(2.1) has a unique ergodic stationary distribution. Simulation in Figure 1 can
confirm this conclusion.

0 50 100 150 200

Time

0

0.5

1

s(
t)

0.2 0.4 0.6

The density functions of s(t)

0

5

10

0 50 100 150 200

Time

0

0.5

1

x(
t)

0.2 0.4 0.6

The density functions of x(t)

0

5

10

0 50 100 150 200

Time

0

0.5

1

y(
t)

0.1 0.2 0.3 0.4
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Figure 1. Numerical simulations of the solution trajectories (the left pictures) and the density func-
tions (the right pictures) of s(t), x(t) and y(t) for system (2.1) with initial value (s(0), x(0), y(0)) =
(0.2, 0.4, 0.4), m1 = 4, m2 = 3, a1 = 1, a2 = 1 and the noise intensities σ1 = 0.3, σ2 = 0.2.(Color figure
online)

Example 6.2. In order to get the extinction of prey and predator in stochastic
system (2.1), in view of Theorem 5.1, we choose constant parameter valuesm1 = 0.4,
m2 = 3, a1 = 0.5, a2 = 1. Consider the following two situations.

Case (1). Let the white noise σ1 = 0.8, σ2 = 0.4. Then

σ2
1 = 0.64 > 0.08 =

m2
1

2
.

Hence, the condition (a) in Theorem 5.1 is satisfied, and the prey and predator
species go extinct. Result of this simulation is presented in Figure 2.

Case (2). Set the white noise σ1 = 0.3, σ2 = 0.4. Then

σ2
1 = 0.09 < 0.6 = m1(a1 + 1),

and
m1

a1 + 1
− σ2

1

2(a1 + 1)2
− 1 = −0.7533 < 0.

In view of condition (b) in Theorem 5.1, we can obtain that the prey will become
extinct exponentially with probability one and the predator will also go extinct.
This result is supported by Figure 3.
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0 20 40 60 80 100 120 140 160 180 200

t

0

0.5

1

1.5
 Stochastic model

s(t)
x(t)
y(t)

Figure 2. Solutions of system (2.1) with initial value (s(0), x(0), y(0)) = (0.2, 0.4, 0.4), m1 = 0.4, m2 =
3, a1 = 0.5, a2 = 1 and the noise intensities σ1 = 0.8, σ2 = 0.4. (Color figure online)

0 20 40 60 80 100 120 140 160 180 200

t

0

0.5

1

1.5
 Stochastic model

s(t)
x(t)
y(t)

Figure 3. Solutions of system (2.1) with initial value (s(0), x(0), y(0)) = (0.2, 0.4, 0.4), m1 = 0.4, m2 =
3, a1 = 0.5, a2 = 1 and the noise intensities σ1 = 0.3, σ2 = 0.4. (Color figure online)

Example 6.3. In order to obtain the extinction of predator in system (2.1), we
select constant parameter values m1 = 3, m2 = 0.4, a1 = 1, a2 = 0.5. Consider the
following two cases.

Case (3). Let the white noise σ1 = 0.5, σ2 = 0.8. Then

σ2
2 = 0.64 > 0.08 =

m2
2

2
.

It follows from condition (c) in Theorem 5.2 that the predator will be extinct. Figure
4 confirms this.
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Figure 4. Solutions of system (2.1) with initial value (s(0), x(0), y(0)) = (0.2, 0.4, 0.4), m1 = 3, m2 =
0.4, a1 = 1, a2 = 0.5 and the noise intensities σ1 = 0.5, σ2 = 0.8. (Color figure online)

Case (4). Choose the white noise σ1 = 0.5, σ2 = 0.4. Then

σ2
2 = 0.16 < 0.6 = m2(a2 + 1),

and
m2

a2 + 1
− σ2

2

2(a2 + 1)2
− 1 = −0.7689 < 0.

According to condition (d) in Theorem 5.2, we can see that the predator species
goes extinct exponentially with probability one. Simulation in Figure 5 can confirm
this conclusion.
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Figure 5. Solutions of system (2.1) with initial value (s(0), x(0), y(0)) = (0.2, 0.4, 0.4), m1 = 3, m2 =
0.4, a1 = 1, a2 = 0.5 and the noise intensities σ1 = 0.5, σ2 = 0.4. (Color figure online)
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Notice that some scholars [19, 22, 28] have studied certain stochastic chemostat
models in which the environmental noise is proportional to the variables. Next, we
will investigate the dynamics of the food chain chemostat model in which the noise
is proportional to the variables. In addition, one can propose some more realistic
models by considering the effects of telegraph noise on system (2.1) and it is worthy
of further study.
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