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Abstract We investigate the approximation of fractional resolvents, extend-
ing and improving some corresponding results on semigroups and resolvents.
As applications, we utilize the approach of Meyer approximation to analyze
the time optimal control problem of a Riemann-Liouville fractional system
without Lipschitz continuity. A fractional diffusion model is also presented to
confirm our theoretical findings.
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1. Introduction
Since the notion of resolvent was firstly proposed and studied by Da Prato and Ian-
nelli in [13,14], there has been considerable interest in introducing and analyzing the
notions related to resolvent, such as solution operators, (a, k)-regularized families,
α-order fractional resolvents and so on (refer to [6,8,15]). Recently, Li and Peng [6]
investigated a Riemann-Liouville fractional evolution problem by introducing the
notion of α-order fractional resolvent.

As we all know, the approximation of semigroups is of great importance in the
study of optimal control problems (see [17, 18]). Many researchers thereby show
tremendous interest in analyzing the approximation of semigroups and resolvents.
For example, the approximation of solution operators was analyzed in [1]. The
approximation of (a, k)-regularized families was studied in [9]. However, limited
work has been done in the approximation of α-order fractional resolvents. Consid-
ering that the resolvent technique is a convenient and efficient approach in studying
fractional evolution systems [6,22–24], we will investigate the approximation of frac-
tional resolvents. The main difficulty in the study is that these resolvents possess
singularity at zero. In this article, by introducing a new concept of exponential
boundedness for s ≥ s0 and constructing resolvents with parameters, we explore
the approximation problem.

On the other hand, time optimal control problems for evolution systems have
recent years drawn tremendous attention based upon their broad applications in
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many fields, such as control theory, industrial application and space technology,
etc. Many researchers analyzed them by setting up time optimal sequence pairs
(see [4,5,7,10,19]). Recently, with the aid of the Lipschitz assumption on the non-
linear term f and the approximation of semigroups, the problems were tackled by
Meyer approximation (refer to [16–18]). That is, the authors formulated a sequence
of Meyer problems to approximate the time optimal control problems. Naturally,
one may ask how to analyze the problems for Riemann-Liouville evolution systems
by Meyer approximation if we remove the Lipschitz continuity. Therefore, the
present paper is intended to conduct some investigations on time optimal control
problems for a Riemann-Liouville fractional evolution system by Meyer approxima-
tion, when the Lipschitz condition is not satisfied. In this paper, we first transform
the original fractional evolution system into an approximate system and propose
a Meyer problem. Then, we deal with the Meyer problem by constructing mini-
mizing sequences twice. Finally, we analyze the time optimal problem by Meyer
approximation.

The following enumerates two aspects of novelties of this paper:
1) Considering that the fractional resolvent has singularity at zero, we introduce

a new concept of exponential boundedness for s ≥ s0. Furthermore, we analyze the
approximation of fractional resolvents by setting up resolvents with parameters.

2) We combine the approximation of fractional resolvents and the time control
problem organically. In addition, the new method of constructing minimizing se-
quences twice is employed to compensate the lack of Lipschitz assumption, when
addressing the Meyer problem.

The outline of this article is as follows. We present some preliminaries in Section
2. Section 3 deals with the approximation of fractional resolvents. As applications,
in Section 4, we treat the time optimal control problem of a Riemann-Liouville
fractional system by Meyer approximation and present an example on a Riemann-
Liouville fractional partial differential system to confirm our theoretical findings.

2. Preliminaries
We compile here some preliminaries, including the notions and facts about fractional
resolvents. Let V be a Banach space and Y a reflexive separable Banach space.
From now on, unless otherwise stated, we assume that 0 < β < 1. Set J = [0, T ],
J ′ = (0, T ] and

C1−β(J ;V ) = {z ∈ C(J ′;V )|z̃(τ) = τ1−βz(τ), z̃(0)=lim
τ↓0

z̃(τ), z̃ ∈ C(J ;V )}.

If the space C1−β(J ;V ) is normed by ∥z∥C1−β
= sup

τ∈J
∥z̃(τ)∥, it is a Banach space.

Let L (Y ;V ) represent the collection of all bounded linear operators from Y to V
and L (V ) denote L (V ;V ). Furthermore, we utilize the symbol Pfc(Y ) to stand
for a class of nonempty closed convex subset of Y and the notation ∗ to mean the
convolution, i.e., (f ∗ g)(s) =

∫ s

0
f(s− τ)g(τ)dτ .

Definition 2.1 ( [6]). By a β-order fractional resolvent, we understand a strongly
continuous family {Rβ(s)}s>0 ⊆ L (V ) satisfying

(a) lim
s↓0

Γ(β)s1−βRβ(s)z = z for any z ∈ V ;

(b) Rβ(τ)Rβ(s) = Rβ(s)Rβ(τ) for s, τ > 0;
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(c) Rβ(τ)J
β
s Rβ(s)−Jβ

τ Rβ(τ)Rβ(s)=gβ(τ)J
β
s Rβ(s)−gβ(s)J

β
τ Rβ(τ) for s, τ >0,

where gβ(τ) = τβ−1

Γ(β) , τ > 0 and the notation Jβ
τ stands for the β-order fractional

integral operator, i.e., Jβ
τ f(τ) = (gβ ∗ f)(τ) (see [12]).

In addition, the generator A : D(A) ⊆ V → V of the resolvent {Rβ(s)}s>0 is

D(A) =

{
z ∈ V : lim

s↓0

s1−βRβ(s)z − z
Γ(β)

sβ
exists

}
,

Az = Γ(2β) lim
s↓0

s1−βRβ(s)z − z
Γ(β)

sβ
, z ∈ V.

Remark 2.1. Based on (a) of Definition 2.1, we see that the resolvent {Rβ(s)}s>0

has singularity at zero.

Remark 2.2. Let {Rβ(s)}s>0 be a resolvent. Then, by using Definition 2.1 and
the uniform boundedness principle, we can easily show that sup

s∈J
∥s1−βRβ(s)∥ < ∞,

where s1−βRβ(s)|s=0 = lim
s↓0

s1−βRβ(s).

Lemma 2.1 ( [6]). Assume that A generates a resolvent {Rβ(s)}s>0. Then

(a) Rβ(s)D(A) ⊆ D(A) and ARβ(s)z = Rβ(s)Az for any z ∈ D(A);
(b) Rβ(s)z = gβ(s)z + Jβ

s Rβ(s)Az for any z ∈ D(A);
(c) Rβ(s)z = gβ(s)z +A(gβ ∗Rβ)(s)z for any z ∈ V ;
(d) D(A) = V.

Based on Lemmas 3.4 and 3.5 of [2], we can propose the following important
properties of {Rβ(s)}s>0.

Lemma 2.2. Let {t1−βRβ(t)}t>0 be compact and equicontinuous. Then, for t ∈ J ′,

(a) lim
τ↓0

∥∥(t+τ)1−βRβ(t+ τ)−
(
Γ(β)τ1−βRβ(τ)

) (
t1−βRβ(t)

)∥∥=0;

(b) lim
τ↓0

∥∥t1−βRβ(t)−
(
Γ(β)τ1−βRβ(τ)

) (
(t−τ)1−βRβ(t−τ)

)∥∥=0.

Lemma 2.3. Let p > 1
β and {t1−βRβ(t)}t>0 be compact and equicontinuous. As-

sume that g ∈ Lp(J ;V ) and Λ : Lp(J ;V ) → C1−β(J ;V ) is a map defined by
(Λg)(·) = (Rβ ∗ g)(·). Then Rβ ∗ g ∈ C(J ;V ) and Λ is compact.

Proof. With the help of Lemma 2.2, we can easily verify the statement of this
lemma by following the verification of Lemmas 3.1 and 4.2 in [23].

3. Approximation of fractional resolvents
This section is intended to display some approximation theorems of the fractional
resolvent {Rβ(s)}s>0.

As we all know, any C0-semigroup is (M,ω) type. However, the resolvent
{Rβ(s)}s>0 is not (M,ω) type since it has singularity at zero. Now, we introduce
the following new definition:
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Definition 3.1. Let s0 > 0. The resolvent {Rβ(s)}s>0 is called exponentially
bounded for s ≥ s0, if there exist two nonnegative constants ω and M such that

∥Rβ(s)∥ ≤ Meωs, s ≥ s0. (3.1)

For convenience, we employ the symbol A ∈ Cβ
s0(M,ω) to mean that A generates a

resolvent {Rβ(s)}s>0 satisfying (3.1).

Remark 3.1. Let A ∈ Cβ
s0(M,ω). Then by using (3.1) and Remark 2.2, it is easy

to show that Rβ(s) is Laplace transformable for λ > ω. In fact, for t > s0, we have∫ t

0

e−λs∥Rβ(s)∥ds ≤
∫ s0

0

e−λs∥Rβ(s)∥ds+
∫ t

s0

e−λs∥Rβ(s)∥ds

≤ M

∫ s0

0

sβ−1ds+

∫ t

s0

e−(λ−ω)sMds

≤ Msβ0
β

+
M

λ− ω
,

where M = sup
s∈[0,s0]

∥s1−βRβ(s)∥. Thus, due to the strong continuity of {Rβ(s)}s>0,

Rβ(s) is Laplace transformable for λ > ω.

Lemma 3.1. Let s0 > 0. Then A ∈ Cβ
s0(M,ω) if and only if (ωβ ,∞) ⊆ ρ(A) and

there is a family {Rβ(s)}s>0 ⊆ L (V ) satisfying

(a) for any z ∈ V , Rβ(·)z ∈ C(R+;V ) and lim
s↓0

Γ(β)s1−βRβ(s)z = z;

(b) for s ≥ s0, ∥Rβ(s)∥ ≤ Meωs;
(c) Rβ(s)Rβ(τ) = Rβ(τ)Rβ(s) for s, τ > 0;
(d) for λ > ω and z ∈ V ,

(λβI −A)−1z =

∫ ∞

0

e−λsRβ(s)zds.

In such a case, {Rβ(s)}s>0 is a resolvent generated by A.

Proof. (Necessity) Let A ∈ Cβ
s0(M,ω). Then (a), (b) and (c) hold. Based upon

Remark 3.1, Rβ(s) is Laplace transformable for λ > ω. Set

R(λ) =

∫ ∞

0

e−λsRβ(s)ds, λ > ω.

Due to (a) and (b) of Lemma 2.1, we can employ Laplace transform to get that for
any z ∈ D(A),

R(λ)z = λ−βz + λ−βR(λ)Az = λ−βz + λ−βAR(λ)z.

Thus, according to (d) of Lemma 2.1, we can deduce that for λ > ω and z ∈ V ,

(λβI −A)−1z = R(λ)z =

∫ ∞

0

e−λsRβ(s)zds.
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(Sufficiency) We suppose that (a), (b), (c) and (d) hold. In view of the resolvent
identity, we get

(µ−β − λ−β)R(λ)R(µ) = λ−βµ−βR(µ)− µ−βλ−βR(λ).

Hence, by utilizing inverse Laplace transform, we derive

Rβ(τ)J
β
s Rβ(s)− Jβ

τ Rβ(τ)Rβ(s) = gβ(τ)J
β
s Rβ(s)− gβ(s)J

β
τ Rβ(τ),

which indicates that {Rβ(s)}s>0 is a resolvent, hence that A ∈ Cβ
s0(M,ω).

Lemma 3.2. Let both {Rβ(s)}s>0 and {Tβ(s)}s>0 be fractional resolvents generated
by A, Then Rβ(s) = Tβ(s) for s > 0.

Proof. Due to Lemma 2.1, we have

gβ ∗Rβ = (Tβ −A(gβ ∗ Tβ)) ∗Rβ

= Tβ ∗ (Rβ −A(gβ ∗Rβ)) = Tβ ∗ gβ = gβ ∗ Tβ ,

which indicates that Rβ(s)z = Tβ(s)z for every z ∈ D(A). As such, based on
D(A) = V , we get Rβ(s) = Tβ(s) for s > 0.

Lemma 3.3. Let A∈Cβ
s0(M,ω) and k ∈ [0,+∞). Then kA generates a resolvent

{Rk
β(s)}s>0, where

Rk
β(s) =

k(−1+ 1
β )Rβ

(
sk

1
β

)
, k > 0,

sβ−1I
Γ(β) , k = 0.

Proof. For clarity, we verify this lemma by considering the following two cases.
Case 1 k > 0. Because of A ∈ Cβ

s0(M,ω), we can easily derive the strong continuity
of {Rk

β(s)}s>0 and the commutativity of Rk
β(s) and Rk

β(τ). Moreover, we can see
that {Rk

β(s)}s>0 ⊆ L (V ).

Additionally, due to A ∈ Cβ
s0(M,ω) and (a) of Lemma 3.1, we derive

lim
s↓0

Γ(β)s1−βRk
β(s)z = lim

s↓0
Γ(β)

(
sk

1
β

)1−β

Rβ

(
sk

1
β

)
z = z

for any z ∈ V .
Furthermore, for s ≥ s0 > 0, we get from (b) of Lemma 3.1 that

∥Rk
β(s)∥ =

∥∥∥k(−1+ 1
β )Rβ(sk

1
β )
∥∥∥ ≤ k(−1+ 1

β )Meωk
1
β s.

As such, we can choose M1 > 0 and ω1 > 0 such that ∥Rk
β(s)∥ ≤ M1e

ω1s, s ≥ s0.
In addition, according to (d) of Lemma 3.1, we can conclude that for any z ∈ V ,∫ ∞

0

e−λsRk
β(s)zds =

∫ ∞

0

e−λsk(−1+ 1
β )Rβ

(
sk

1
β

)
zds

= k−1

∫ ∞

0

e−λk
− 1

β tRβ(t)zdt = (λβI − kA)−1z, λ > ω1.

Thus, based on Lemmas 3.1 and 3.2, {Rk
β(s)}s>0 is a resolvent generated by kA.

Case 2 k = 0. Firstly, we see at once that {Rk
β(s)}s>0 is strongly continuous,
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{Rk
β(s)}s>0 ⊆ L (V ) and Rk

β(s)R
k
β(τ) = Rk

β(τ)R
k
β(s). Furthermore, we can pick

M2 > 0 and ω2 > 0 to ensure that ∥Rk
β(s)∥ ≤ M2e

ω2s, s ≥ s0. Moreover, it is clear
that for z ∈ V , lim

s↓0
Γ(β)s1−βRk

β(s)z = z.

Additionally, we have∫ ∞

0

e−λsRk
β(s)zds =

∫ ∞

0

e−λs s
β−1

Γ(β)
zds

=
λ−β

Γ(β)

∫ ∞

0

e−ttβ−1zdt = (λβI − 0)−1z, λ > ω2,

where the notation 0 stands for zero operator.
Consequently, {Rk

β(s)}s>0 is a resolvent generated by 0.

Theorem 3.1. Let A ∈ Cβ
s0(M,ω) and kn ≥ 0. If kn → kε as n → ∞, then for

any z ∈ V and t ≥ 0,

t1−βRkn

β (t)z → t1−βRkε

β (t)z, (3.2)

where
(
t1−βRkn

β (t)z
)
|t=0 = lim

t↓0

(
t1−βRkn

β (t)z
)
. Moreover, we have

t1−βRkn

β (t)
s→ t1−βRkε

β (t),

uniformly in t ∈ [a, b] ⊆ [0,+∞), as n → ∞. Here the notation s→ means the strong
operator topology.

Proof. We consider the following cases.
Case 1 kn = 0. In view of Lemma 3.3, the proof is immediate.
Case 2 kn > 0 and kε = 0. Let z ∈ V . If t = 0, according to Lemmas 3.1 and 3.3,
we derive

t1−βRkn

β (t)z|t=0 = lim
t↓0

(
tk

1
β
n

)1−β

Rβ

(
tk

1
β
n

)
z =

z

Γ(β)
.

If t > 0, we get

lim
n→∞

t1−βRkn

β (t)z = lim
n→∞

(
tk

1
β
n

)1−β

Rβ

(
tk

1
β
n

)
z =

z

Γ(β)
.

On the other hand, due to kε = 0 and Lemma 3.3, we have t1−βRkε

β (t)z = z
Γ(β) .

Hence, (3.2) holds.
Case 3 kn > 0 and kε > 0. If t = 0, by means of Lemma 3.3, we derive
t1−βRkn

β (t)z|t=0 = z
Γ(β) and t1−βRkε

β (t)z|t=0 = z
Γ(β) . Thus, the proof is straight-

forward. If t > 0, we have∥∥∥t1−βRkn

β (t)z − t1−βRkε

β (t)z
∥∥∥

=

∥∥∥∥∥
(
tk

1
β
n

)1−β

Rβ

(
tk

1
β
n

)
z −

(
tk

1
β
ε

)1−β

Rβ

(
tk

1
β
ε

)
z

∥∥∥∥∥
≤

∥∥∥∥∥
(
tk

1
β
n

)1−β
∥∥∥∥∥
∥∥∥∥Rβ

(
tk

1
β
n

)
z −Rβ

(
tk

1
β
ε

)
z

∥∥∥∥
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+

∥∥∥∥k(−1+ 1
β )

n − k
(−1+ 1

β )
ε

∥∥∥∥ t1−β

∥∥∥∥Rβ

(
tk

1
β
ε

)
z

∥∥∥∥ .
Firstly, the fact that kn → kε, n → ∞ implies the boundedness of {kn}. In addition,
if s0 ∈ (0, tk

1
β
ε ), by employing the strong continuity of {Rβ(t)}t>0, the exponential

boundedness for t ≥ s0 and kn → kε, one can easily see that (3.2) holds. If s0 ≥ tk
1
β
ε ,

by utilizing the boundedness of
(
tk

1
β
ε

)1−β

Rβ

(
tk

1
β
ε

)
on

[
tk

1
β
ε , s0

]
and the strong

continuity of {Rβ(t)}t>0, we can easily conclude that (3.2) holds.
As for t ∈ [a, b] ⊆ [0,+∞), we derive

a

∣∣∣∣k 1
β
n − k

1
β
ε

∣∣∣∣ ≤ ∣∣∣∣tk 1
β
n − tk

1
β
ε

∣∣∣∣ ≤ b

∣∣∣∣k 1
β
n − k

1
β
ε

∣∣∣∣ ,
which indicates that

∣∣∣∣tk 1
β
n − tk

1
β
ε

∣∣∣∣ → 0, uniformly in t. Hence, it is easily seen that

t1−βRkn

β (t)
s→ t1−βRkε

β (t), uniformly in t.

Theorem 3.2. Let lim
n→∞

kn = kε, kn, kε ∈ (0,+∞) and {t1−βRβ(t)}t>0 be contin-
uous in the uniform operator topology sense. Then

t1−βRkn

β (t)
τu→ t1−βRkε

β (t),

uniformly in t ∈ [a, b] ⊆ (0,+∞), where the notation τu→ stands for the uniform
operator topology.

Proof. It follows from lim
n→∞

kn = kε, kn, kε ∈ (0,+∞) and

a

∣∣∣∣k 1
β
n − k

1
β
ε

∣∣∣∣ ≤ ∣∣∣∣tk 1
β
n − tk

1
β
ε

∣∣∣∣ ≤ b

∣∣∣∣k 1
β
n − k

1
β
ε

∣∣∣∣
that

∣∣∣∣tk 1
β
n − tk

1
β
ε

∣∣∣∣ → 0, n → ∞, uniformly in t. Thus, due to the assumption on

{t1−βRβ(t)}t>0, we derive∥∥∥t1−βRkn

β (t)− t1−βRkε

β (t)
∥∥∥

=

∥∥∥∥∥
(
tk

1
β
n

)1−β

Rβ

(
tk

1
β
n

)
−
(
tk

1
β
ε

)1−β

Rβ

(
tk

1
β
ε

)∥∥∥∥∥
→ 0, n → ∞,

uniformly in t, which establishes the conclusion.

Theorem 3.3. Let A ∈ Cβ
s0(M,ω) and {t1−βRβ(t)}t>0 be compact and equicon-

tinuous. Then {t1−βRk
β(t)}t>0 (k > 0) is compact and equicontinuous.

Proof. Since k > 0 and t1−βRk
β(t) =

(
tk

1
β

)1−β

Rβ

(
tk

1
β

)
, we can see that

{t1−βRk
β(t)}t>0 is compact and equicontinuous, by the compactness and equiconti-

nuity of {t1−βRβ(t)}t>0.
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Remark 3.2. With the aid of the resolvent properties, we have explored the ap-
proximation of resolvents by introducing the notion of exponential boundedness for
s ≥ s0 and constructing resolvents with parameters. Emphasis here is that our
method differs from the approach in [11, 17]. Moreover, our technique can also be
applied to the case of C0-semigroups. However, the question whether the Trotter-
Kato type approximation theorem holds for fractional resolvents is at present far
from being solved, since these resolvents have singularity at zero.

4. Time optimal control problems
In this section, with the help of the approximation theory in Section 3, we deal with
the time optimal control problem of a Riemann-Liouville fractional evolution sys-
tem. We first propose the time optimal control problem (P ) of a Riemann-Liouville
fractional control system and the Meyer problem (Pε) of a transformation system.
Then, we tackle the Meyer problem (Pε) by constructing minimizing sequences
twice. Finally, we deal with the problem (P ) by Meyer approximation.

Consider the following evolution control system with a β-order Riemann-Liouville
fractional derivative:

Dβ
t z(t) = Az(t) +B(t)v(t) + f(t, z(t)), t ∈ J ′,

lim
t↓0

Γ(β)t1−βz(t) = z0,

v ∈ Vad.

(4.1)

Here A generates a β-order resolvent {Rβ(t)}t>0, f : J × V → V is a continuous
function. Moreover, Vad is an appropriate admissible set.

From now on, we impose the following conditions:
(HA) A∈Cβ

s0(M,ω) and t1−βRβ(t) is compact and equicontinuous on J ′.
(Hf) f : J × V → V is continuous and there exists a positive constant N to

guarantee that for (t, z) ∈ J × V , ∥f(t, z)∥ ≤ N.
(HB) B ∈ L∞(J,L (Y, V )).

Furthermore, we introduce an admissible control set

Vad = {v ∈ Lp(J ;G)|v(t) ∈ U(t) a.e.},

where p > 1
β , U : J → Pfc(Y ) is a measurable multi-valued mapping, G ⊆ Y is

a bounded set and U(·) ⊆ G. Thanks to Proposition 2.1.7 in [3], we know that
Vad ̸= ∅. In addition, condition (HB) indicates that for all v ∈ Vad, Bv ∈ Lp(J ;V ).

Due to Lemma 2.3 and our previous work ( see Lemma 3.2 in [22]), we introduce
the notion of mild solutions to system (4.1).

Definition 4.1. For fixed v ∈ Vad, by a mild solution to system (4.1) associated
with v, we mean the function z ∈ C1−β(J ;V ) satisfying

z(t) = Rβ(t)z0 +

∫ t

0

Rβ(t− τ)
(
B(τ)v(τ) + f(τ, z(τ))

)
dτ, t ∈ J ′.

For convenience, put

S(v) =
{
z ∈ C1−β(J ;V ) : z is a mild solution to (4.1) depending on v ∈ Vad

}
.
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By the standard technique utilized for Riemann-Liouville fractional evolution
systems (see Theorem 3.1 in [22]), we exhibit the existence result of (4.1).

Theorem 4.1. Let conditions (HA), (Hf) and (HB) hold. Then S(v) ̸= ∅.

In what follows, we first introduce some notations and propose the time optimal
control problem of system (4.1).

Let z0, z1 ∈ V and z0 ̸= z1. Set Ad = {(z, v) : v ∈ Vad, z ∈ S(v)},

Az1
d ={(z, v) ∈ Ad : there exists t ≥ 0 to ensure that Γ(β)t1−βz(t) = z1}

and

V0 = {v ∈ Vad : there exists z ∈ S(v) to guarantee that (z, v) ∈ Az1
d }.

Let Az1
d ̸= ∅. For any (z, v) ∈ Az1

d , we denote by

t(z, v) = min{t ≥ 0 : Γ(β)t1−βz(t) = z1}

the transition time related to the state-control pair (z, v).
Set t∗ = inf{t(z, v) : (z, v) ∈ Az1

d }. We propose the time optimal control problem
(P ) of system (4.1):

Seek a state-control pair (z∗, v∗) ∈ Az1
d to ensure that t(z∗, v∗) = t∗.

Remark 4.1. Note that the mild solution z ∈ S(v) has singularity at zero, but
that Γ(β)(·)1−βz(·) ∈ C(J ;V ). We thereby employ Γ(β)t1−βz(t) = z1 instead of
z(t) = z1, when we define the transition time t(z, v). Below, we check that the
definition of the transition time is well-defined. To simplify notation, set τ(z, v) =
{t ≥ 0 : Γ(β)t1−βz(t) = z1} and t = inf τ(z, v). If τ(z, v) contains only finite
elements, the proof is trivial. Otherwise, we can take a sequence {tn}n≥1 ⊆ τ(z, v)
satisfying that lim

n→∞
tn = t. As such, Γ(β)t1−β

n z(tn) = z1. Moreover, we conclude
from Γ(β)(·)1−βz(·) ∈ C(J ;V ) that

lim
n→∞

Γ(β)t1−β
n z(tn) = Γ(β)t

1−β
z(t),

hence that Γ(β)t
1−β

z(t) = z1, and finally that the definition is well-defined.

Next, by introducing the linear transformation

t = ks, 0 ≤ s ≤ 1 and k ∈ [0,+∞),

we transform the system (4.1) into the following system:
Dβ

s x(s) = kβAx(s) + kβ(B(ks)u(s) + f(ks, x(s))), s, k > 0,

Γ(β)(ks)1−βx(s) = z0, s = 0 or k = 0,

(u, k) ∈ W,

(4.2)

where x(s) = z(ks), u(s) = v(ks), Γ(β)(ks)1−βx(s)|k=0 = lim
k↓0

Γ(β)(ks)1−βx(s),

Γ(β)(ks)1−βx(s)|s=0 = lim
s↓0

Γ(β)(ks)1−βx(s),
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W = {(u, k) : u(s) = v(ks), s ∈ [0, 1], v ∈ V0, k ∈ [0,+∞)} .

Due to Lemma 3.3, kβA generates a resolvent (written {Rk
β(s)}s>0, for short).

From Theorem 3.3 and (HA), we see that {s1−βRk
β(s)}s>0 is compact and equicon-

tinuous for k > 0. Furthermore, for fixed k ∈ [0,+∞), it is easily seen that
sup

s∈[0,1]

∥s1−βRk
β(s)∥ < ∞. For convenience, we assume that sup

s∈[0,1]

∥s1−βRk
β(s)∥ < M.

Write

Ck
β([0, 1];V ) =

{
x|x̃(τ) = (kτ)1−βx(τ), x̃ ∈ C([0, 1];V )

}
,

where x̃(0) = lim
τ↓0

x̃(τ) and x̃(τ)|k=0 = lim
k↓0

x̃(τ).

Based on Definition 4.1, we can introduce the following notion:

Definition 4.2. For fixed w = (u, k) ∈ W , by a mild solution of (4.2) related to
w, we understand the function x ∈ Ck

β([0, 1];V ) satisfying that for s ∈ (0, 1] and
k > 0,

x(s) = Rk
β(s)k

−(1−β)z0 +

∫ s

0

Rk
β(s− τ)kβ

(
B(kτ)u(τ) + f(kτ, x(τ))

)
dτ,

and for s = 0 or k = 0, Γ(β)(ks)1−βx(s) = z0.

For simplicity, set

S(w) =
{
x ∈ Ck

β([0, 1];V ) : x is a mild solution of (4.2) related to w ∈ W
}
.

By means of Theorem 4.1, we can establish the following existence result:

Theorem 4.2. Assume that (HA), (Hf) and (HB) hold. Then S(w) ̸= ∅.

Then, we analyze the following Meyer problem (Pε) of system (4.2):
Seek a state-control pair (xε, wε) to guarantee that

Jε(xε, wε) = inf
(x,w)∈S(w)×W

Jε(x,w),

where w = (u, k) ∈ W and Jε(x,w) =
1
2ε

∥∥Γ(β)k1−βx(1)− z1
∥∥2 + k.

To treat the Meyer problem (Pε), we need the following lemma:

Lemma 4.1. Let k > 0 and assumptions (HA) and (HB) hold. Then the operator
ϕ : Lp([0, 1];Vad) → Ck

β([0, 1];V ), p > 1
β , given by

(ϕu)(s) =

∫ s

0

Rk
β(s− τ)B(kτ)u(τ)dτ,

is compact.

Proof. Assume that {un}n≥1 is a bounded sequence in Lp([0, 1];Vad). Then we infer
from (HB) that {B(k·)un(·)}n≥1 ⊆ Lp([0, 1];V ) is bounded. Thus, by employing
Lemma 2.3, ϕ is compact.

Since the uniqueness of the solutions cannot be acquired, the method of setting
up a minimizing state-control pair sequence in [16–18] breaks down. We now utilize
a new technique of establishing minimizing sequences twice to deal with the Meyer
problem (Pε).
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Theorem 4.3. Let (HA), (Hf) and (HB) hold. Then for fixed ε > 0, Meyer
problem (Pε) possesses at least one optimal trajectory-control pair (xε, wε).

Proof. For clarity, we split the proof into the following procedures.
Step 1 For fixed w ∈ W , we will seek x ∈ S(w) to ensure that Jε(x,w) = Jε(w),
where Jε(w) = inf

x∈S(w)
Jε(x,w).

Below, we consider the following two cases.
Case 1 k = 0. From Γ(β)k1−βx(1) = z0 for any x ∈ S(w), we deduce that Jε(x,w)
is a constant, hence that the proof is obvious.
Case 2 k > 0. Since it is trivial for the two cases when Jε(w) = +∞ or the solution
set S(w) possesses only finite elements, we can suppose that Jε(w) < +∞. Thus,
we can take {xn}n≥1 ∈ S(w) to guarantee that lim

n→∞
Jε(xn, w) = Jε(w).

By {xn}n≥1 ∈ S(w), we get that for s > 0,

xn(s) = Rk
β(s)k

−(1−β)z0 +

∫ s

0

Rk
β(s− τ)kβ

(
B(kτ)u(τ) + f(kτ, xn(τ))

)
dτ. (4.3)

Since {s1−βRk
β(s)}s>0 is compact and equicontinuous, we can obtain the compact-

ness of {xn}n≥1 in Ck
β([0, 1];V ). This follows by the same argument as in Step 3 of

Theorem 3.1 in [22]. As such, we can choose x ∈ Ck
β([0, 1];V ) and a subsequence ex-

tracted from {xn}n≥1, still written {xn}n≥1, such that lim
n→∞

xn = x. Therefore, by
letting n → ∞ on both sides of (4.3), we conclude from the dominated convergence
theorem that

x(s) = Rk
β(s)k

−(1−β)z0 +

∫ s

0

Rk
β(s− τ)kβ

(
B(kτ)u(τ) + f(kτ, x(τ))

)
dτ,

hence that x ∈ S(w), finally that

Jε(w) = lim
n→∞

Jε(xn, w) = lim
n→∞

1

2ε

∥∥∥Γ(β)k(1−β)xn(1)− z1

∥∥∥2 + k

≥ 1

2ε

∥∥∥Γ(β)k(1−β)x(1)− z1

∥∥∥2 + k = Jε(x,w)

≥ Jε(w).

This indicates that Jε(x,w) = Jε(w).
Step 2 We shall look for wε satisfying Jε(wε) = inf

w∈W
Jε(w). For simplicity of

notation, set mε = inf
w∈W

Jε(w).
We only need to consider the case mε < +∞, since the case mε = +∞ is trivial.
Due to mε < +∞, we can pick {wn}n≥1 ⊆ W to ensure that lim

n→∞
Jε(wn) = mε,

where wn = (un, kn) ∈ Vad × [0,+∞).
Based on the definitions of mε, Jε(w), Jε(x,w) and W , {kn} is bounded. Accord-

ingly, one can extract a subsequence from {kn}, relabeled by it again, to guarantee
that kn → kε, n → ∞, for some kε ∈ [0,+∞).

Thanks to {un}n≥1 ∈ Vad, a subsequence of {un}n≥1 ⊆ Vad can be extracted,
written {un}n≥1 again, such that un

w→ uε, n → ∞, for some uε ∈ Vad. Since Vad

is close and convex, we infer from Mazur lemma that uε ∈ Vad.
By virtue of Step 1, one can take xn ∈ S(wn) to ensure that Jε(xn, wn) =

Jε(wn). On account of xn ∈ S(wn), it yields that for kn > 0 and s ∈ (0, 1],

xn(s)=Rkn

β (s)k−(1−β)
n z0+

∫ s

0

Rkn

β (s− τ)kβn
(
B(knτ)un(τ)+f(knτ, xn(τ))

)
dτ, (4.4)
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and for kn = 0,
Γ(β + γ(1− β))(kns)

(1−β)(1−γ)xn(s) = z0.

Below, we consider the following three cases.
Case 1 kn > 0 and kε > 0. We see from Theorem 3.3 that {t1−βRkn

β (t)}t>0 is
compact and equicontinuous, hence that {xn}n≥1 is compact by the same method
in Step 1, finally that we can suppose, without loss of generality, that xn → xε.

Firstly, according to kn → kε and kε > 0, we can derive the boundedness of
{kn}n≥1 and

{
k
−(1−β)
n

}
n≥1

. Thus, from sup
s∈[0,1]

∥s1−βRk
β(s)∥ < M for fixed k ∈

[0,∞) and Theorem 3.1, we can deduce that for fixed s ∈ (0, 1],∥∥∥Rkn

β (s)k−(1−β)
n z0 −Rkε

β (s)k−(1−β)
ε z0

∥∥∥
≤

∥∥∥s1−βRkn

β (s)z0 − s1−βRkε

β (s)z0

∥∥∥ (skn)−(1−β)

+
∥∥∥s1−βRkε

β (s)
∥∥∥ ∣∣∣(skn)−(1−β) − (skε)

−(1−β)
∣∣∣ ∥z0∥

→ 0, n → ∞.

Secondly, we deduce from Lemma 4.1 and un
w→ uε that for s ∈ (0, 1],∫ s

0

Rkε

β (s− τ)kβεB(kετ)(un(τ)− uε(τ))dτ → 0, n → ∞.

In addition, according to the definition of Vad, we get {un(s) : n ≥ 1, a.e. s ∈
[0, 1]} ⊆ G. Since G is bounded, we can suppose that ∥un(s)∥ ≤ M1, uniformly for
s ∈ [0, 1] and n ≥ 1. As such,∥∥∥∥∫ s

0

Rkε

β (s− τ)kβε (B(knτ)−B(kετ))un(τ)dτ

∥∥∥∥
≤ MM1k

β
ε

∫ s

0

(s− τ)−(1−β)∥B(knτ)−B(kετ)∥dτ

≤ MM1k
β
ε

(
p− 1

βp− 1

)1− 1
p
(∫ 1

0

∥B(knτ)−B(kετ)∥pdτ
) 1

p

.

Hence, we have∫ s

0

Rkε

β (s− τ)kβε (B(knτ)−B(kετ))un(τ)dτ → 0, n → ∞,

which is due to the p-mean continuity (see problem 23.9 on page 445 in [20]).
Furthermore, on account of sup

s∈[0,1]

∥s1−βRk
β(s)∥ < M for k ∈ [0,+∞) and

∥un(s)∥ ≤ M1, uniformly in s ∈ [0, 1] and n ≥ 1, we derive that∥∥∥∥∫ s

0

Rkε

β (s− τ)
(
kβn − kβε

)
B(knτ)un(τ)dτ

∥∥∥∥ ≤ MM1∥B∥∞
β

∣∣kβn − kβε
∣∣ → 0.

Additionally, we can infer from Theorem 3.2 and the dominated convergence
theorem that ∥∥∥∥∫ s

0

(
Rkn

β (s− τ)−Rkε

β (s− τ)
)
kβnB(knτ)un(τ)dτ

∥∥∥∥
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≤ kβn∥B∥∞M1

∫ s

0

∥gs(n, τ)∥ (s− τ)−(1−β)dτ

≤ kβn∥B∥∞M1

(
p− 1

βp− 1

)1− 1
p
(∫ s

0

∥g
s
(n, τ)∥p dτ

) 1
p

→ 0, n → ∞,

where g
s
(n, τ) = (s− τ)1−βRkn

β (s− τ)− (s− τ)1−βRkε

β (s− τ).
Hence, we get∥∥∥∥∫ s

0

Rkn

β (s− τ)kβnB(knτ)un(τ)−Rkε

β (s− τ)kβεB(kετ)uε(τ)dτ

∥∥∥∥
≤

∥∥∥∥∫ s

0

(
Rkn

β (s− τ)−Rkε

β (s− τ)
)
kβnB(knτ)un(τ)dτ

∥∥∥∥
+

∥∥∥∥∫ s

0

Rkε

β (s− τ)
(
kβn − kβε

)
B(knτ)un(τ)dτ

∥∥∥∥
+

∥∥∥∥∫ s

0

Rkε

β (s− τ)kβε (B(knτ)−B(kετ))un(τ)dτ

∥∥∥∥
+

∥∥∥∥∫ s

0

Rkε

β (s− τ)kβεB(kετ)(un(τ)− uε(τ))dτ

∥∥∥∥
→ 0, n → ∞.

Similarly, we have∥∥∥∥∫ s

0

Rkn

β (s− τ)kβnf(kn(τ), xn(τ))−Rkε

β (s− τ)kβε f(kετ, xε(τ))dτ

∥∥∥∥
≤

∥∥∥∥∫ s

0

(
Rkn

β (s− τ)−Rkε

β (s− τ)
)
kβnf(knτ, xn(τ))dτ

∥∥∥∥
+

∥∥∥∥∫ s

0

Rkε

β (s− τ)
(
kβn − kβε

)
f(knτ, xn(τ))dτ

∥∥∥∥
+

∥∥∥∥∫ s

0

Rkε

β (s− τ)kβε (f(knτ, xn(τ))− f(kετ, xε(τ)))dτ

∥∥∥∥
→ 0, n → ∞.

Therefore, letting n → ∞ on both sides of (4.4), we get

xε(s) = Rkε

β (s)k−(1−β)
ε z0 +

∫ s

0

Rkε

β (s− τ)kβε
(
B(kετ)uε(τ) + f(kετ, xε(τ))

)
dτ.

Thus, xε ∈ S(wε), where wε = (uε, kε). In addition, according to the boundedness
of {kn}, xn → xε and kn → kε, we get∥∥Γ(β)k1−β

n xn(1)− Γ(β)k1−β
ε xε(1)

∥∥
≤ Γ(β)k1−β

n ∥xn(1)− xε(1)∥+ Γ(β)∥xε(1)∥
∣∣k1−β

n − k1−β
ε

∣∣
→ 0, n → ∞.

As such,
lim

n→∞
Γ(β)k1−β

n xn(1) = Γ(β)k1−β
ε xε(1).
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Case 2 kn > 0 and kε = 0. By means of Lemma 3.3 and (4.4), we get

lim
n→∞

Γ(β)(kns)
1−βxn(s) = lim

n→∞
Γ(β)Rkn

β (s)s1−βz0

= lim
n→∞

Γ(β)(sk
1
β
n )1−βRβ(sk

1
β
n )z0 = z0.

In addition, Definition 4.2 shows that

Γ(β)k(1−β)(1−γ)
ε xε(1) = z0,

where xε ∈ S(wε) and wε = (uε, 0). Hence,

lim
n→∞

Γ(β)k1−β
n xn(1) = Γ(β)k1−β

ε xε(1).

Case 3 kn = 0. From kn → kε, n → ∞, we get kε = 0. Moreover, due to Definition
4.2, we have

Γ(β)k1−β
n xn(1) = z0

and
Γ(β)k1−β

ε xε(1) = z0,

where xε ∈ S(wε) and wε = (uε, 0). As such,

lim
n→∞

Γ(β)k1−β
n xn(1) = Γ(β)k1−β

ε xε(1).

Thus, combining above cases, we can assert that

mε = lim
n→∞

Jε(wn) = lim
n→∞

Jε(xn, wn)

= lim
n→∞

(
1

2ε

∥∥Γ(β)k1−β
n xn(1)− z1

∥∥2 + kn

)
≥ 1

2ε
∥Γ(β)k1−β

ε xε(1)− z1∥2 + kε

= Jε(xε, wε) ≥ Jε(wε) ≥ mε.

Therefore,
Jε(xε, wε) = mε = inf

w∈W
Jε(w),

which indicates that (xε, wε) is an optimal trajectory-control pair.
We are now in a position to analyze the time optimal control problem (P ) by

Meyer approximation.

Theorem 4.4. Suppose that conditions (HA), (Hf) and (HB) hold. Then problem
(P ) possesses at least one optimal trajectory-control pair.

Proof. The proof will be divided into the following steps.
Step 1 According to Az1

d ̸= ∅, we can take (z, v) ∈ Az1
d . Let t(z, v) = t < ∞.

Then one can assert from the definition of t(z, v) that Γ(β)t
1−β

z(t) = z1. This
gives t > 0, which is based on the fact that Γ(β)t1−βz(t)|t=0 = z0 and z0 ̸= z1.
Set u(s) = v(ts), 0 ≤ s ≤ 1 and w = (u, t) ∈ W . Then Γ(β)t

1−β
x(1) = z1 and

x ∈ S(w), where x(·) = z(t·).
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Due to Theorem 4.3, for any ε > 0, there exists a pair (xε, wε) to ensure that

Jε(xε, wε) =
1

2ε
∥Γ(β)k1−β

ε xε(1)− z1∥2 + kε = inf
(x,w)∈S(w)×W

Jε(x,w).

Thus, we get

Jε(x,w) = t ≥ Jε(xε, wε) =
1

2ε
∥Γ(β)k1−β

ε xε(1)− z1∥2 + kε,

which yields that for any ε > 0,

0 ≤ kε ≤ t and ∥Γ(β)k1−β
ε xε(1)− z1∥2 ≤ 2εt.

As such, we can find a sequence {εn}n≥1 to ensure that εn → 0 as n → ∞ and

kεn → k0 for some k0 ∈ [0, t],

Γ(β)k1−β
εn xεn(1) → z1,

uεn
w→ u0 for some u0 in Vad.

Thanks to z0 ̸= z1, we have kεn > 0 and k0 > 0. In fact, if kεn = 0, we can
conclude from Definition 4.2 that Γ(β)k1−β

εn xεn(1) = z0, which is a contradiction. If
k0 = 0, we see from step 2 in Theorem 4.3 that lim

n→∞
Γ(β)k1−β

εn xεn(1) = z0, which
is also a contradiction.
Step 2 On account of xεn ∈ S(wεn) and kεn > 0, we get that for s ∈ (0, 1],

xεn(s)=R
kεn
β (s)k−(1−β)

εn z0+

∫ s

0

R
kεn

β (s−τ)kβεn
(
B(kεnτ)uεn(τ)+f(kεnτ, xεn(τ))

)
dτ.

As in the proof of Theorem 4.3, we can extract a subsequence from {xεn}, still
written {xεn} again. Moreover, there is no loss of generality in assuming that
lim
n→∞

xεn = x0. By the same reasoning as in Step 2 of Theorem 4.3, we obtain

x0(s)=Rk0

β (s)k
−(1−β)
0 z0+

∫ s

0

Rk0

β (s− τ)k0
β
(
B(k0τ)u0(τ)+f(k0τ, x

0(τ))
)
dτ,

which indicates that x0 ∈ S(w0), where w0 = (u0, k0).
Since xεn → x0 and kεn → k0 as n → ∞, we can conclude from the boundedness

of {kεn} that ∥∥∥Γ(β)k1−β
εn xεn(1)− Γ(β)k1−β

0 x0(1)
∥∥∥

≤ Γ(β)k1−β
εn ∥xεn(1)− x0(1)∥+ Γ(β)∥x0(1)∥

∣∣∣k1−β
εn − k1−β

0

∣∣∣
→ 0, n → ∞.

On the other hand, due to Step 1, we derive
∥∥Γ(β)k1−β

εn xεn(1)− z1
∥∥2 ≤ 2εnt → 0.

We thereby get∥∥∥Γ(β)k1−β
0 x0(1)− z1

∥∥∥
≤

∥∥Γ(β)k1−β
εn xεn(1)− z1

∥∥+
∥∥∥Γ(β)k1−β

εn xεn(1)− Γ(β)k1−β
0 x0(1)

∥∥∥
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→ 0, n → ∞,

which indicates that Γ(β)k1−β
0 x0(1) = z1.

Step 3 Since k0 > 0 (see Step 1), we can set v0(·) = u0(·/k0). Thus, we can infer
that z0(·) = x0(·/k0) is a mild solution of (4.1) related to v0 ∈ V0 and

Γ(β)k1−β
0 z0(k0) = Γ(β)k1−β

0 x0(1) = z1.

This gives (z0, v0) ∈ Az1
d . Let t(z0, v0) = t0. According to the definition of t(z0, v0),

we get t0 ≤ k0. In addition, similar argument in step 1 shows that for any εn > 0,
t0 ≥ kεn . Letting n → ∞, we get t0 ≥ k0. As such, t0 = k0. Accordingly, due to
t∗ = inf{t(z, v) : (z, v) ∈ Az1

d }, we have k0 ≥ t∗.
For any (z, v) ∈ Az1

d , the same reasoning as in step 1 tells us that for any εn > 0,
t(z, v) ≥ kεn . Letting n → ∞, for any (z, v) ∈ Az1

d , we have t(z, v) ≥ k0. Therefore,
we can conclude that t∗ ≥ k0. As such, t∗ = k0. Hence, (z0, v0) is an optimal
trajectory-control pair of problem (P ).

Remark 4.2. In most of the existing results on the time optimal control problems
of evolution systems, many researchers explored them by setting up time optimal
sequences (see [4, 5, 10, 19]). With the aid of the Lipschitz assumption on f , the
authors in [16–18] coped with them by Meyer approximation. In the present paper,
we have investigated the time control problem by Meyer approximation, when the
Lipschitz condition is not satisfied. Thus, our results extend and generalize some
recent results about time optimal controls of all evolution systems.

Finally, we address a fractional diffusion model by employing our theoretical
findings.

Example 4.1. Consider the time optimal control problem of the following Riemann-
Liouville fractional partial differential system:

Dβ
t z(t, y) =

∂2

∂y2 z(t, y) + f(t, z(t, y)) + v(t, y), t, y ∈ (0, 1],

z(t, 0) = z(t, 1) = 0,

lim
t↓0

Γ(β)t1−βz(t, y) = g(y) =
∞∑

n=1
cn sinnπy.

(4.5)

Let V = Y = L2(0, 1), en(y) =
√
2 sin(nπy), n = 1, 2, · · · and A = ∂2

∂y2 with
domain

D(A) = {ξ ∈ V : ξ′, ξ′′ ∈ V, ξ(0) = ξ(1) = 0}.

Then A generates a β-order resolvent Rβ(t) (see [6]):

Rβ(t)g(y) =

∞∑
n=1

tβ−1Eβ,β(−n2π2tβ)⟨g, en⟩en(y), t > 0, g ∈ V.

Moreover, A also generates an analytic and compact semigroup {T (t)}t>0 (see [11]):

T (t)g(y) =

∞∑
n=1

e−n2π2t⟨g, en⟩en(y), t > 0, g ∈ V.
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By utilizing probability density functions and Laplace transformations, we get

t1−βRβ(t) = β

∫ ∞

0

τξβ(τ)T (t
βτ)dτ,

where

ξβ(τ) =
1

β
τ−1− 1

β ϖβ(τ
− 1

β ),

ϖβ(τ)=
1

π

∞∑
n=0

(−1)nτ−(n+1)β−1Γ((n+ 1)β + 1)

(n+ 1)!
sin ((n+ 1)πβ) , τ ∈ R+.

Based on the compactness of {T (t)}t>0, we can acquire the compactness and equcon-
tinuity of {t1−αRα(t)}t>0 (see [21]). Since ∥T (t)∥ ≤ 1, we can choose M > 0 and
ω > 0 to ensure that ∥Rα(t)∥ ≤ Meωt for t ≥ s0, which indicates that (HA) holds.
In addition, due to Lemma 3.3 and Theorem 3.3, kA generates a compact and
equicontinuous resolvent {Rk

α(s)}s>0.
Let z(t)(y) = z(t, y), B(t) = 1 and v(t)(y) = v(t, y). We assume that f :

[0, 1] × V → V , defined by f(t, z(t))(y) = f(t, z(t, y)), is continuous. Furthermore,
we introduce the following admissible control set

Vad = {v(t)(·) ∈ Y : there exists constant N1 > 0 such that ∥v(t)(·)∥Y ≤ N1}.

Then by means of Theorem 4.4, the time optimal control problem of system (4.5)
possesses optimal trajectory-control pairs.
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