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Abstract This paper studies a class of nonlinear fractional q-difference e-
quations with integral boundary conditions. By exploiting the properties of
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istence and uniqueness of positive solutions for the boundary value problem
are established. Iterative schemes for approximating the solutions are also
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1. Introduction

In this paper, we consider an integral boundary value problem of fractional q-
difference equations given by (Dα

q u)(t) = −[f(t, u(t)) + g(t, u(t))], 0 < t < 1,

u(0) = (Dqu)(0) = 0, u(1) =
∫ 1

0
p(s)u(s)dqs,

(1.1)

where 2 < α 6 3, f, g : [0, 1]× [0,+∞)→ [0,+∞) are continuous functions and the
p(s) satisfies the following condition:

(A) p : [0, 1] → [0,+∞) with p ∈ L1[0, 1] and σ1 =
∫ 1

0
τα−1(1 − τ)p(τ)dqτ > 0,

σ2 =
∫ 1

0
τα−1p(τ)dqτ < 1.

Nonlinear fractional q-difference equations appear in the mathematical model-
ing of many phenomena in engineering and science and have attracted much atten-
tion during the past decades (see, for example, [6–8, 12, 13, 19]). Boundary value
problems involving fractional q-difference equations have been studied by applying
different methods (for instance, see [2–5, 9–11, 14, 16, 18, 22, 23] and the references
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therein). Ahmad etc [3–5] investigated existence of solutions for nonlinear fraction-
al q-difference equation with different boundary conditions by some classical fixed
point theorems. Etemad etc [10] studied the existence of solutions for a new class
of fractional q-integro-difference equation involving Riemann-Liouville q-derivatives
and a q-integral of different orders, supplemented with boundary conditions con-
taining q-integrals of different orders. Li and Yang [16] investigated the existence of
positive solutions and two iterative schemes approximating the solutions for a class
of nonlinear fractional q-difference equations with integral boundary conditions by
applying monotone iterative method. Zhao and Yang [22] obtained sufficient con-
ditions for the existence and uniqueness of solutions for a singular coupled integral
boundary value problem of nonlinear higher-order fractional q-difference equation-
s by using a mixed monotone method and Guo-Krasnoselskii fixed point theorem.
Motivated by aforementioned works, we obtain the existence and uniqueness of pos-
itive solutions for the problem (1.1) by using the method of [11]. We also present
sequences approximating a unique solution to the given problem.

2. Preliminarie

For the convenience, we collect here the necessary definitions from the theory of
fractional q-calculus. Let q ∈ (0, 1) and define

[a]q =
1− qa

1− q
, a ∈ R.

The q-analogue of the power function (a− b)n with n ∈ N, a, b ∈ R is

(a− b)0 = 1, (a− b)(n) =

n−1∏
k=0

(a− bqk).

More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏
n=0

a− bqn

a− bqα+n
.

If b = 0, then (a−b)(α) = a(α) = aα. It is easy to see that [a(t−s)](α) = aα(t−s)(α)

and (a− b)(α) = (a− bqα−1)(a− b)(α−1).
The q-gamma function is defined by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
, x ∈ R \ {0,−1,−2, · · · },

and satisfies Γq(x+ 1) = [x]qΓq(x).
The following expression

Dqf(x) =
f(qx)− f(x)

(q − 1)x

is called the q-derivative of the function f(x). Dq has the following properties and
formulas:

Dq(af(x) + bg(x)) = aDqf(x) + bDqg(x),
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Dq(f(x)g(x)) = f(x)Dqg(x) + g(qx)Dqf(x),

tDq(t− s)(α) = [α]q(t− s)(α−1),

(xDq

∫ x

0

f(x, t)dqt)(x) =

∫ x

0
xDqf(x, t)dqt+ f(qx, x).

The q-integral of a function f defined on the interval [0, b] is given by

Iqf(x) =

∫ x

0

f(t)dqt = x(1− q)
∞∑
n=0

f(xqn)qn, x ∈ [0, b].

If a ∈ [0, b] and f is defined on [0, b], its integral from a to b is defined by∫ b

a

f(t)dqt =

∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt.

Definition 2.1 (Agarwal [1]). Let α > 0 and f be a function defined on [0, 1]. The
fractional q-integral of the Riemann-Liouville type is (I0

q f)(x) = f(x) and

(Iαq f)(x) =
1

Γq(α)

∫ x

0

(x− qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1].

Definition 2.2 (Rajković etc [17]). The fractional q-derivative of the Riemann-
Liouville type of order α > 0 is defined by

(Dα
q f)(x) = (Dm

q I
m−α
q f)(x),

where m is the smallest integer greater than or equal to α.

Lemma 2.1 (Agarwal [1]). Let α, β > 0 and f be a function defined on [0, 1]. Then
the following formulas hold:

(Iβq I
α
q f)(x) = (Iα+β

q f)(x),

(Dα
q I

α
q f)(x) = f(x).

Definition 2.3 (Ferreira [12]). Let α > 0 and p be a positive integer. Then, the
following equality holds:

(Iαq D
p
qf)(x) = (Dp

qI
α
q f)(x)−

p−1∑
k=0

xα−p+k

Γq(α+ k − p+ 1)
(Dk

q f)(0).

Lemma 2.2. The unique solution of the q-analogue of the fractional differential
problem (1.1) is given by

u(t) =

∫ 1

0

G(t, qs)[f(s, u(s)) + g(s, u(s))]dqs,

where 2 < α 6 3, G(t, qs) is Green’s function for the problem (1.1), which is given
by

G(t, qs) = G1(t, qs) +G2(t, qs), (2.1)
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where

G1(t, qs) =
1

Γq(α)

 tα−1(1− qs)(α−1) − (t− qs)(α−1), 0 6 qs 6 t 6 1,

tα−1(1− qs)(α−1), 0 6 t 6 qs 6 1,

G2(t, qs) =
tα−1

1− σ2

∫ 1

0

G1(τ, qs)p(τ)dqτ,

where σ2 is defined in condition (A).

Proof. By integrating the two sides on (Dα
q u)(t) = −[f(t, u(t)) + g(t, u(t))], we

can get

(Iαq D
α
q u)(t) = −Iαq [f(t, u(t)) + g(t, u(t))]. (2.2)

In view of Definition 2.2, we deduce

(Iαq D
α
q u)(t) = (Iαq D

3
qI

3−α
q u)(t). (2.3)

By applying Definition 2.3 and Lemma 2.1, we have

(Iαq D
3
qI

3−α
q u)(t) =(D3

qI
α
q I

3−α
q u)(t)−

2∑
k=0

tα−3+k

Γq(α+ k − 3 + 1)
(Dk

q f)(0)

=u(t)−
2∑
k=0

tα−3+k

Γq(α+ k − 2)
(Dk

q f)(0). (2.4)

It follows from (2.2)-(2.4) and Definition 2.1, we have

u(t) =c1t
α−1 + c2t

α−2 + c3t
α−3

− 1

Γq(α)

∫ t

0

(t− qs)(α−1)[f(s, u(s)) + g(s, u(s))]dqs, (2.5)

where c1 =
(D0

qf)(0)

Γq(α−2) , c2 =
(D1

qf)(0)

Γq(α−1) , c3 =
(D2

qf)(0)

Γq(α) are constants to be determined.

Using the boundary conditions given by (1.1) in (2.5), we find that c3 = 0, c2 = 0 and

c1 = 1
Γq(α)

∫ 1

0
(1− qs)(α−1)[f(s, u(s)) + g(s, u(s))]dqs+

∫ 1

0
p(s)u(s)dqs. Furthermore,

we have

u(t) =
1

Γq(α)

∫ t

0

(tα−1(1− qs)(α−1) − (t− qs)(α−1))[f(s, u(s)) + g(s, u(s))]dqs

+
1

Γq(α)

∫ 1

t

tα−1(1− qs)(α−1)[f(s, u(s))+g(s, u(s))]dqs+tα−1

∫ 1

0

p(s)u(s)dqs.

Set

G1(t, qs) =
1

Γq(α)

 tα−1(1− qs)(α−1) − (t− qs)(α−1), 0 6 qs 6 t 6 1,

tα−1(1− qs)(α−1), 0 6 t 6 qs 6 1,

then, we have∫ 1

0

p(s)u(s)dqs =

∫ 1

0

∫ 1

0

p(s)G1(s, τ)dqs[f(τ, u(τ)) + g(τ, u(τ))]dqτ
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+

∫ 1

0

sα−1p(s)dqs

∫ 1

0

p(τ)u(τ)dqτ.

Therefore, it follows that∫ 1

0

p(s)u(s)dqs =
1

1− σ2

∫ 1

0

∫ 1

0

G1(s, τ)p(s)dqs[f(τ, u(τ)) + g(τ, u(τ))]dqτ.

Set

G2(t, qs) =
tα−1

1− σ2

∫ 1

0

G1(τ, qs)p(τ)dqτ.

Finally, in order to solve the problem (1.1), it is sufficient to find the solution of the
following integral equation:

u(t) =

∫ 1

0

G(t, qs)[f(s, u(s)) + g(s, u(s))]dqs,

where G(t, qs) = G1(t, qs) +G2(t, qs).

Lemma 2.3 (Lemma 2.4, [22]). The Green’s function G1(t, qs) defined in Lemma
2.2 satisfies the following properties:

(1) G1(t, qs) is continuous on (t, s) ∈ [0, 1] × [0, 1] and G1(t, qs) > 0 for each
t, s ∈ (0, 1);

(2) qα−1tα−1(1− t)s(1− qs)(α−1) 6 Γq(α)G1(t, qs) 6 tα−1(1− qs)(α−1).

Lemma 2.4. The Green’s function G(t, qs) defined in Lemma 2.2 satisfies the fol-
lowing inequality

σ1q
α−1s(1− qs)(α−1)tα−1

(1− σ2)Γq(α)
6 G(t, qs) 6

tα−1(1− qs)(α−1)

Γq(α)(1− σ2)
.

Proof. By Lemma 2.3, we have

G(t, qs) = G1(t, qs) +G2(t, qs) > G2(t, qs) =
tα−1

1− σ2

∫ 1

0

G1(τ, qs)p(τ)dqτ

>
tα−1

1− σ2

∫ 1

0

qα−1τα−1(1− τ)s(1− qs)(α−1)

Γq(α)
p(τ)dqτ

=
σ1q

α−1s(1− qs)(α−1)tα−1

(1− σ2)Γq(α)
.

On the other hand, from the expression of G1(t, qs), it is obvious that

G(t, qs) = G1(t, qs) +G2(t, qs)

6
tα−1(1− qs)(α−1)

Γq(α)
+

tα−1

1− σ2

∫ 1

0

τα−1(1− qs)(α−1)

Γq(α)
p(τ)dqτ

=
tα−1(1− qs)(α−1)

Γq(α)(1− σ2)
.
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Definition 2.4 (Guo [15]). Let E be a real Banach space. A nonempty convex
closed set P is called a cone provided that: (1) au ∈ P , for all u ∈ P ; a > 0; (2)
u,−u ∈ P implies u = 0.

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0
such that λx 6 y 6 µx. Clearly, ∼ is an equivalence relation. Given h > θ(i.e.,
h > θ and h 6= θ), we denote by Ph the set Ph = {x ∈ E : x ∼ h} . It is easy to see
that Ph ⊂ P .

Definition 2.5 (Guo [15]). Let γ be a real number with 0 < γ < 1. An operator
A : P → P is said to be γ-concave if it satisfies A(tx) > tγAx for all t ∈ (0, 1), x ∈ P .
An operator A : E → E is said to be homogeneous if it satisfies A(tx) = tAx for all
t > 0, x ∈ E. An operator A : P → P is said to be sub-homogeneous if it satisfies
A(tx) > tAx for all t > 0, x ∈ P .

Theorem 2.1 (Theorem 2.2, [21]). Let P be a normal cone in a real Banach space
E,A : P → P be an increasing γ-concave operator, and B : P → P be an increasing
sub-homogeneous operator. Assume that

(i) there is h > θ such that Ah ∈ Ph and Bh ∈ Ph;

(ii) there exists a constant δ0 > 0 such that Ax > δ0Bx for all x ∈ P . Then the
operator equation Ax + Bx = x has a unique solution x∗ in Ph. Moreover,
constructing successively the sequence yn = Ayn−1 + Byn−1, n = 1, 2, · · · , for
any initial value y0 ∈ Ph, we have yn → x∗ as n→∞.

Theorem 2.2 (Theorem 2.1, [20]). Let P be a normal cone a real Banach space
E,A : P → P be an increasing operator, and B : P → P be a decreasing operator.
Assume that:

(i) for any x ∈ P and t ∈ (0, 1), there exist ϕi(t) ∈ (t, 1)(i = 1, 2) such that

A(tx) > ϕ1(t)Ax,B(tx) 6
1

ϕ2(t)
Bx;

(ii) there exists h0 ∈ Ph such that Ah0 + Bh0 ∈ Ph. Then the operator equation
Ax+Bx = x has a unique solution x∗ in Ph. Moreover, for any initial values
x0, y0 ∈ Ph, constructing successively the sequences

xn = Axn−1 +Byn−1, yn = Ayn−1 +Bxn−1;n = 1, 2, · · · ,

we have xn → x∗, yn → x∗ as n→∞.

Remark 2.1. When B is a null operator, Theorems 2.1, 2.2 also hold.

3. Main results and proofs

Consider the Banach space E = C[0, 1] with the norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}.
Define the cone on E: P = {x ∈ E : x(t) > 0, t ∈ [0, 1]}, then P is a normal cone in
E and the normality constant is 1. E can be equipped with a partial order given
by

x 6 y, x, y ∈ E ⇔ x(t) 6 y(t), t ∈ [0, 1].
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In order to solve the q-analogue of the fractional differential problem (1.1), it is
sufficient to find positive solutions of the following integral equation:

u(t) :=

∫ 1

0

G(t, qs)[f(s, u(s)) + g(s, u(s))]dqs.

Define operators A : P → E and B : P → E:

Au(t) :=

∫ 1

0

G(t, qs)f(s, u(s))dqs, Bu(t) :=

∫ 1

0

G(t, qs)g(s, u(s))dqs,

then it is easy to see that u is the solution of problem (1.1) if and only if u = Au+Bu.

Theorem 3.1. Suppose (A) and

(H1) f, g : [0, 1]× [0,+∞)→ [0,+∞) are continuous and increasing with respect to
the second argument, g(t, 0) 6= 0;

(H2) g(t, λx) > λg(t, x) for λ ∈ (0, 1), t ∈ [0, 1], x ∈ [0,+∞), and there exists
a constant γ ∈ (0, 1) such that f(t, λx) > λγf(t, x) for all t ∈ [0, 1], λ ∈
(0, 1), x ∈ [0,+∞);

(H3) there exists a constant δ0 > 0 such that f(t, x) > δ0g(t, x), t ∈ [0, 1], x > 0.

Then problem (1.1) has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈
[0, 1]. Meanwhile, for any initial value u0 ∈ Ph, constructing successively the se-
quence

un+1(t) :=

∫ 1

0

G(t, qs)[f(s, un(s)) + g(s, un(s))]dqs,

we can get un(t)→ u∗(t) as n→∞, where G(t, qs) is given in (2.1).

Proof. First, from (H1) and Lemma 2.2, for u, v ∈ P, with u > v

Au(t) =

∫ 1

0

G(t, qs)f(s, u(s))dqs >
∫ 1

0

G(t, qs)f(s, v(s))dqs = Av(t),

then we have Au > Av. Similarly, Bu > Bv.
Second, from (H2), for γ ∈ (0, 1) and u ∈ P , we have

A(λu)(t) =

∫ 1

0

G(t, qs)f(s, λu(s))dqs >
∫ 1

0

G(t, qs)λγf(s, u(s))dqs = λγAu(t),

B(λu)(t) =

∫ 1

0

G(t, qs)g(s, λu(s))dqs >
∫ 1

0

G(t, qs)λg(s, u(s))dqs = λBu(t),

then we have A(λu) > λγAu,B(λu) > λBu. So the operator A is a γ-concave
operator and the operator B is sub-homogeneous.

Third, from (H1) and Lemma 2.4, for h(t) = tα−1, t ∈ [0, 1],

Ah(t) =

∫ 1

0

G(t, qs)f(s, sα−1)dqs 6
tα−1

Γq(α)(1− σ2)

∫ 1

0

(1− qs)(α−1)f(s, 1)dqs,

Ah(t) =

∫ 1

0

G(t, qs)f(s, sα−1)dqs >
σ1q

α−1tα−1

(1− σ2)Γq(α)

∫ 1

0

s(1− qs)(α−1)f(s, 0)dqs.
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In view of (H1) and (H3), it is clear that f(s, 1) > f(s, 0) > δ0g(t, 0). Then we have∫ 1

0

(1− qs)(α−1)f(s, 1)dqs >
∫ 1

0

s(1− qs)(α−1)f(s, 0)dqs

> δ0

∫ 1

0

s(1− qs)(α−1)g(s, 0)dqs > 0.

Set l1 = 1
Γq(α)(1−σ2)

∫ 1

0
(1−qs)(α−1)f(s, 1)dqs, l2 = σ1q

α−1

(1−σ2)Γq(α)

∫ 1

0
s(1−qs)(α−1)f(s, 0)dqs,

then l2h(t) 6 Ah(t) 6 l1h(t), t ∈ [0, 1]. Therefore, Ah ∈ Ph. Similarly, Bh ∈ Ph.
Next, from (H3), it is easy to see that Au > δ0Bu, u ∈ P . Obviously, all the

conditions of Theorem 2.1 are satisfied. Consequently, the problem (1.1) has a
unique positive solution u∗ in Ph by Theorem 2.1, where h(t) = tα−1, t ∈ [0, 1].
And, for any initial value u0 ∈ Ph, constructing successively the sequence

un+1(t) :=

∫ 1

0

G(t, qs)[f(s, un(s)) + g(s, un(s))]dqs,

we can obtain un(t)→ u∗(t) as n→∞.

Corollary 3.1. Suppose (A) and

(H1′) f : [0, 1] × [0,+∞) → [0,+∞) is continuous and increasing with respect to
the second argument, f(t, 0) 6= 0;

(H2′) there exists a constant γ ∈ (0, 1) such that f(t, λx) > λγf(t, x) for all t ∈
[0, 1], λ ∈ (0, 1), x ∈ [0,+∞).

Then, the following problem (Dα
q u)(t) = −f(t, u(t)), 0 < t < 1,

u(0) = (Dqu)(0) = 0, u(1) =
∫ 1

0
p(s)u(s)dqs

(3.1)

has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈ [0, 1]. Meanwhile,
for any initial value u0 ∈ Ph, constructing successively the sequence

un+1(t) :=

∫ 1

0

G(t, qs)f(s, un(s))dqs,

we can get un(t)→ u∗(t) as n→∞, where G(t, qs) is given in (2.1).

Proof. From Remark 1 and Theorem 3.1 the conclusions hold.

Theorem 3.2. Suppose (A) and

(H4) f : [0, 1] × [0,+∞) → [0,+∞) are continuous and increasing with respect to
the second argument, and f(t, 0) 6= 0;

(H5) g : [0, 1] × [0,+∞) → [0,+∞) are continuous and decreasing with respect to
the second argument, and g(t, 1) 6= 0;

(H6) there exists ϕi(λ) ∈ (λ, 1) such that

f(t, λx) > ϕ1(λ)f(t, x), g(t, λx) 6
1

ϕ2(λ)
g(t, x)

for all t ∈ [0, 1], λ ∈ (0, 1), x ∈ [0,+∞).



Existence and uniqueness of positive solution 161

Then problem (1.1) has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈
[0, 1]. Meanwhile, for any initial value x0, y0 ∈ Ph, constructing successively the
sequence

xn+1(t) :=

∫ 1

0

G(t, qs)[f(s, xn(s)) + g(s, yn(s))]dqs,

yn+1(t) :=

∫ 1

0

G(t, qs)[f(s, yn(s)) + g(s, xn(s))]dqs,

we can get xn(t)→ u∗(t), yn(t)→ u∗(t) as n→∞, where G(t, qs) is given in (2.1).

Proof. First, from (H4) and (H5), A : P → P be an increasing operator, and
B : P → P be a decreasing operator. Second, from (H6), (ii) in Theorem 3.1 hold.
Finally, for h(t) = tα−1, t ∈ [0, 1],

Ah(t) +Bh(t) 6
tα−1

Γq(α)(1− σ2)

∫ 1

0

(1− qs)(α−1)[f(s, 1) + g(s, 0)]dqs,

Ah(t) +Bh(t) >
σ1q

α−1tα−1

(1− σ2)Γq(α)

∫ 1

0

s(1− qs)(α−1)[f(s, 0) + g(s, 1)]dqs.

In view of (H4) and (H5), it is clear that f(s, 1) + g(s, 0) > f(s, 0) + g(s, 1) > 0.
Then we have∫ 1

0

(1− qs)(α−1)[f(s, 1) + g(s, 0)]dqs >
∫ 1

0

s(1− qs)(α−1)[f(s, 0) + g(s, 1)]dqs > 0.

Since f(s, 0) + g(s, 1) 6= 0, then∫ 1

0

s(1− qs)(α−1)[f(s, 0) + g(s, 1)]dqs > 0.

Set l3 = 1
Γq(α)(1−σ2)

∫ 1

0
(1− qs)(α−1)[f(s, 1) + g(s, 0)]dqs, l4 = σ1q

α−1

(1−σ2)Γq(α)

∫ 1

0
s(1−

qs)(α−1)[f(s, 0) + g(s, 1)]dqs, then l4h(t) 6 Ah(t) +Bh(t) 6 l3h(t), t ∈ [0, 1]. There-
fore, it is clear that Ah+Bh ∈ Ph. Hence, by Theorem 2.2, we obtain that problem
(1.1) has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈ [0, 1]. Mean-
while, for any initial value x0, y0 ∈ Ph, constructing successively the sequence

xn+1(t) :=

∫ 1

0

G(t, qs)[f(s, xn(s)) + g(s, yn(s))]dqs,

yn+1(t) :=

∫ 1

0

G(t, qs)[f(s, yn(s)) + g(s, xn(s))]dqs,

we can get xn(t)→ u∗(t), yn(t)→ u∗(t) as n→∞.

Corollary 3.2. Suppose (A), (H1′) and

(H6′) there exists ϕ(λ) ∈ (λ, 1) such that f(t, λx) > ϕ(λ)f(t, x), for all t ∈ [0, 1], λ ∈
(0, 1), x ∈ [0,+∞).

Then problem (3.1) has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈
[0, 1]. Meanwhile, for any initial value u0 ∈ Ph, constructing successively the se-
quence

un+1(t) :=

∫ 1

0

G(t, qs)f(s, un(s))dqs,
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we can get un(t)→ u∗(t) as n→∞, where G(t, qs) is given in (2.1).

Proof. From Remark 1 and Theorem 3.2 the conclusions hold.

4. Example

Example 4.1. Consider the following boundary value problem−(D
5
2
1
2

u)(t) = 2u
1
2 + uet + 2t+ 1, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =
∫ 1

0

√
su(s)d 1

2
s.

(4.1)

Let p(t) =
√
t, f(t, u) = 2u

1
2 + t + 1, g(t, u) = uet + t and γ = 1

2 , then

p : [0, 1] → [0,+∞) with p ∈ L1[0, 1] and σ1 =
∫ 1

0
τ

3
2 (1 − τ)

√
τd 1

2
τ = 4

105 > 0,

σ2 =
∫ 1

0
τ

3
2
√
τd 1

2
τ = 4

7 < 1. Obviously, f, g : [0, 1] × [0,+∞) → [0,+∞) are

continuous and increasing with respect to the second argument, g(t, 0) 6= 0. On the
one hand, for λ ∈ (0, 1), t ∈ [0, 1], u ∈ [0,+∞),

g(t, λu) = λuet + t > λg(t, u)

and

f(t, λu) = 2λ
1
2u

1
2 + t+ 1 > λ

1
2 f(t, u).

On the other hand, there exists a constant 0 < δ0 < 1
2 such that f(t, u) >

δ0g(t, u), t ∈ [0, 1], u > 0. By Theorem 3.1, it is easy to know that problem (4.1) has

a unique positive solution in Ph, where h(t) = t
3
2 , t ∈ [0, 1].

Example 4.2. Consider the following boundary value problem−(D
5
2
1
2

u)(t) = 2u
1
2 + et

u + 2t+ 1, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =
∫ 1

0

√
su(s)d 1

2
s.

(4.2)

Let p(t) =
√
t, f(t, u) = 2u

1
2 + t + 1, g(t, u) = et

u
1
2

+ t and γ = 1
2 . Similar to

Example 4.1, the condition (A) is satisfied. Obviously, f : [0, 1]×[0,+∞)→ [0,+∞)
are continuous and increasing with respect to the second argument, f(t, 0) = t+1 6=
0, g : [0, 1] × [0,+∞) → [0,+∞) is continuous and decreasing with respect to the
second argument, g(t, 1) = et + t 6= 0.

Let ϕ1(λ) = λ
1
2 , ϕ2(λ) = λ

1
2 , then ϕ1(λ), ϕ2(λ) ∈ (λ, 1) For λ ∈ (0, 1), t ∈

[0, 1], u ∈ [0,+∞),

g(t, λu) =
et

λ
1
2u

1
2

+ t 6 λ
1
2 g(t, u) = ϕ2(λ)g(t, u),

and

f(t, λu) = 2λ
1
2u

1
2 + t+ 1 >

1

λ
1
2

f(t, u) =
1

ϕ1(λ)
f(t, u).

Then by Theorem 3.2, problem (4.2) has a unique positive solution in Ph, where

h(t) = t
3
2 , t ∈ [0, 1].
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5. Conclusions

We have discussed the existence and uniqueness of positive solutions for a class of
nonlinear fractional q-difference equations with integral boundary conditions by two
fixed point theorems of a sum operator in partial ordering Banach space. We also
present sequences approximating a unique solution to the given problem. In par-
ticular, we skillfully use a sum operator to solve the inconsistency of monotonicity
of nonlinear terms. In other words, our results do not require super-linearity, sub-
linearity or boundness of nonlinear terms. We yield several new results to boundary
value problems of fractional q-difference equations.
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