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PARAMETRIC MULHOLLAND-TYPE
INEQUALITIES*
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Abstract By means of the weight functions and the idea of introducing pa-
rameters, a discrete Mulholland-type inequality with the general homogeneous
kernel and the equivalent form are given. The equivalent statements of the best
possible constant factor related to some parameters, the operator expressions
and some particular examples are considered.
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1. Introduction

Assuming that 0 < > °_ a2, < cc and 0 < > o2, b2 < oo, we have the following
discrete Hilbert’s inequality with the best possible constant factor 7 (cf [3], Theorem
315):

sz+n dald | (1.1)
m=1 n=1

m=1n=1

We still have the following Mulholland’s inequality with the same best possible
constant factor 7 (cf. [3], Theorem 343):

Z Z lnmn <7 <22mafn 22715721) , (1.2)

m=2n=2

If0 < [;° f2(x)dz < oo and 0 < [;° ¢*(y)dy < oo, then we have the following
Hilbert’s 1ntegra1 inequality:

/ / I dmdy < </ f2(z)dx /000 gz(y)dy> i , (1.3)

with the best possible constant factor 7 (cf. [3], Theorem 316).
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Inequalities (1.1), (1.2), (1.3) and their extensions by introducing independent
parameters and conjugate exponents (p,q)(p > 1,% + % = 1) are important in
analysis and its applications (cf. [1,2,15-17,19-22,20]).

The following half-discrete Hilbert-type inequality was provided (cf [5] Theorem
351): If K (2)(z > 0) is decreasing, p > 1, L+ ¢ = 1,0 < ¢(s) = [;~ K(a)z*"'dz <
oo, then

oo

Z (1.4)

’UM—‘

o) oS
/ prZ (nz)a,)Pdx < ¢P(
0 n=1

In the last ten years, some new extensions of (1.4) with their applications were
provided by [4,12-14,23] and [24].

In 2016, by the use of the technique of real analysis, Hong [5] considered some
equivalent statements of the extensions of (1.1) with the best possible constant
factor related to a few parameters. The other similar works on the extensions of
(1.3) and (1.4) were given by [6-8,18] and [9].

In this paper, following the way of [5], by the use of the weight functions and
the idea of introducing parameters, a discrete Mulholland-type inequality with the
general homogeneous kernel and the equivalent form are given, which are extension
of (1.2). The equivalent statements of the best possible constant factor related to
a few parameters, the operator expressions and some particular examples are also
considered.

2. Some lemmas

In what follows, we suppose that p > 1, % + % =1a,8€ (0,1, A € RA, A=Ay <
2222 A=At < 5, ka(2,y) is a positive homogeneous function of degree —), satisfying
for any u,z,y > 0,

ka(uz, uy) = u= ka2, y).

Also, ky(z,y) is decreasing with respect to z,y > 0 (or

0 0
7kk(x7y) < Oa 7}?,\(33,(@) < 0(%,2./ > O))’

Ox oy
such that for any v = A1, A — Ao,
o0
ka(y) == / Ex(u, DuYrdu € Ry = (0, 00). (2.1)
0

In this paper, we still assume that a,,,b, > 0 (m,n € N\{1} = {2,3,---}), such
that

0 ppli-a(PH2 41
O<z:hl S TP < 0, and
1-p m ’
m=2 m
0 pall-ACE+ATH]-1
0< ), — b, < oo.

n=2
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Definition 2.1. We define the following weight functions:
21y
T meN\{1}), (22)

wa(Ag,m) : = In*A=A2) Z kx(In® m, In” n)
n=2
BO-A) ) N o, s T im
wa(A1,n) 1 =In DY ka(In®m,In n)———— (n € N\{1}). (2.3)
m=2 m
Lemma 2.1. We have the following inequalities:
1
wa(Az,m) < Ekx(/\ — A2) (m € N\{1}), (2.4)
(2.5)

Linn) (n e N\{1}).

wx(A,n) <
«
Infr2-1¢ . .
H—— is a strictly

Proof. For Sy — 1 < 0, it is evident that ky(In® m,In” t)
decreasing function with respect to ¢ > 0. By the decreasing property, setting

nZm we find that
o A2ty
wa(Ag,m) < In¥A—*2) m/ ka(In® m, In” t)

1

U= Inft
dt
L[~ (A=A)—1 1
=— Ex(u, Dur ™7 du = —kx (A — A2).
B Jo B

arp—1ly ., . .

h‘ft is a strictly decreasing
o

In“ ¢ we

Hence, we have (2.4).
For a\; —1 < 0, it is evident that ky(In® ¢, 1n” n)

function with respect to ¢ > 0. By the decreasing property, setting u = {5,

In®M 1

wa(Ar,n) < InfA=2) n/ ka(In®t,1n” n)
1

1/ k,\(u,l)u)‘lfldu:lkx(/\l).
0 (6%

find that
dt

T
Hence, we have (2.5). O
Lemma 2.2. We have the following inequality:
I: = Z Z kx(In®m, In” n)amby
n=2m=2
1 1 1 0o lnp[l_a(A;AQ +>\T1)]_1 m P
< m’ff@ —A2)ky (A1) { _ g g an,
(2.6)

{ 20 pall-ACE+ATH]-1
X

Z nlfq bgl}

n=2
Proof. By Hélder’s inequality with weight (cf. [10]), we obtain

InPr2=1/p p | n(1—ar)/a 1
am
m*l/q

oo oo

I=>"3 kx(In®m,In" n)

n=2m=2

nl/P

|
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lln(ah—wq m In(t=8x2)/p ]

mi/a n—1/p
1
0o oo h,lﬁ)\z*lnln(lﬂfl)(l*a/\l)m P
o B
< {mz:_znz_:zkj\(ln m,In” n) - o ab,

1

0o oo . lna)\lfl m ln(qfl)(lfﬁ/\Q) n a

X {ZQ ZQkA(ln m,In” n) - oy b

1
o Pl-a(*52+30) v
= {ZOJ)\()\Q’m) 1 maﬁz

1-p
m
m=2

1
nal1=BCF+220) }

ZOO 1
)
X { 2@)\(}\1,71) nl—q bn
n=

Then by (2.4) and (2.5), we have (2.6). O
Remark 2.1. By (10), for A; + Ay = A, we find
o] lnp(l—a/\l)—lm 00 hlq(l—,B)\g)—ln
O<Z2Tafn<ooand0<z_:2 nl—a b%<ooy

and the following inequality:

Z Z kx(In®™ m,lnB )G by,
n=2m=2
ka(A1) ®© pPA—aer)=1 5[ oo Ind(1=BAr2)-1
p
Bl/pal/a Z mi-p U Z

n=2

In particular, for a« = 8 = 1, we have

i i kEx(Inm,lnn)a,,b,

n=2m=2
&S] — — 5 oo — - 3
lnp(l A1)—1 m P hlq(l A2)—1 n q

< k)\()\l) lz ml-p agr)n Z nl—a bgz

m=2 n=2

(2.8)

Forp=q=2,X=1k\(z,y) = %4-3,7)‘1 = Ay = 1, (2.8) reduces to (1.2). Hence,
(2.7) is an extension of (2.8) and (1.2).

Lemma 2.3. The constant factor ,Blf?v(igq in (2.7) is the best possible.

Proof. For any € > 0, we set

ey ety
p = ——— by = ——— , N\{1}).
@ - " (m,n € N\{1})

kx(A1)
Bl/ral/ar

If there exists a constant M < such that (2.7) is valid when replacing

kx (A1)
Bl/ral/a

by M, then in particular, we have

I: = i i k(In® m, In” n)&'mgn

n=2m=2
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Tl=

nl—a

s3] — _
lnp(l al) lmN ]
- O0F
ml=p

<M[Z

m=2

00 1a(1—BA2) -1 i
Zibq .

n=2

‘We obtain

=

O pP-aer)=1 o ppa(di=5)-p
mlfp mpP

IN<M[Z

m=2

20 1 1(1-BA) 1 ) 1 a8 £)—q ]
X

nl—a

1 1
noc— 1 00 n-oe— 1 P —Be—1 00 —Be—1 q
2 In 2 In n
= ( Py ) (2 ) )
m=3 n=3
1 1
n-oe 1 oo —ae—1 ? —Be—1 oo 1..—Be—1 q
2 1 t L 2 1 t
It (2 / Ity
2 t 2 2 t

1
M (elnT'2 L In~7'2 N In 72"
e 2 Q@ 2 B8

By the decreasing property and the Fubini theorem (cf. [11]), we find

o0 o0 1
:ZZ (In® m, In” n)n
=2 m— mlnpm nlnqn

Oz)\lfl

m

=1y

%) lnoz)\lfl T B)\Q 1 y

>

dx] dy (u

u\

lny

ka(In® 2, In” y) o
.’I:hlpf,r ylnqy

1 % —Be—1 o0
S Fea(u, Du™ 5 du | dy
(@] 2 y In® 2
nB y
1 [e%s} 1n7ﬂ€71 1
- 2 ¥ kea(u, Du™ 5 Ydu | dy
o Jo Yy In% 2
lnﬁy

1 °°l
+*/ = (/ Ex(u,1) Alldu) dy
@ Ja2

1 1 oo 1 —58 -
= 7/ [/ nydy] Fx(u, Dut 7 tdu
@ Jo n+e(u_1ln" 2)1/8 Yy

1 > A—e-1
+— kx(u, Du™"»" “du
aﬁelnﬂ€2/1 A1)

1 1 ! Note 1 o -
ky(u, DuMta—lg Ex(u, Du™ =5 Tdu ) .
aﬁe (ln /0 alu, Du u + ln’882/1 au, Du u

Then we have

1 1 ! At 1 > e
— | Tary [ ka(w, et / k(u, DuM 771
af <lna52 ,/0 A Ly vt <2 /i Al L !
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1 1
- 1 —ae—1 2 1 —aa2 D 1 —Be—1 2 1 —652 q
<el<M (6 & + = ) ( = + = .

2

2 g

«

For ¢ — 0%, by Fatou lemma (cf. [11]), we find

1
af

+ lim
o+ In? 2

IN

af
/ kx(u, 1)u’\1_2_1du)
1

1 I < 1
— lim [ ——
Oéﬁ cs0+ In®* 2

1 1 ! g
71@\()\1) = — ( lim 7/ k)\(u, 1)u>‘1+5_1du
0

e—0t In“< 2

1
/ ko (u, a7 du
0

1 * A—e—1 )
+— ka(u, Hu™ " 7" "du
lnBEQ/l A, 1)

< M lim (5111

e—=0t

()

1 1
—as—lg +1n—a52 P (In P19 +ln_652 ‘
2 « 2 I}

1
) q
’

ka(A
namely,ﬁl}p(ai)q < M.
Hence, M = %is the best possible constant factor of (2.7). O

Remark 2.2. Setting Xl :

Ade f A R . A=A A
A=Az 4 AL = 2AL 4 A2 we find
p T g M s T

~ o~ A=) A A=A A
X+ Az = e -+ 2
p q q p
XA
=— 4 — =),
P q
~ 11 1~ 1 1
M —+—=— Q< —+—,
"Spalga T o T g8 pB

and by Holder’s inequality (cf. [10]), we obtain

(A — A2) = ka(Ag) = ki (

A=A A
2+71)
p q

:/ kA(u,l)uA;M*'%l_ldu
0

A—Ag—1 Ap—1

- /OO Fa(u, ) (w7 ) (w7 )du
0

< (/OOO K (u, 1)u’\)‘21du) ’ (/OOO K (1, 1)u>‘11du>

Q=

= kP (A — A)kI (M) < oo, (2.9)

We can rewrite (2.6) as follows:

1

I'< Bl/Pal/q

k

> |

- 1

oo - - P
InP—ed) =1, »
a’m

ml-p

(A= 2a)kd (A1) {

m=2
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~ 1
00 1 a(1-BR2)-1 “
x {E o el (2.10)

1—gq
n
n=2

1 1
Lemma 2.4. If the constant factor mk;\’ (A= X2)ki (A1) in (2.6) is the best
possible, then A1 + Ao = .

1 1
Proof. If the constant factor Wlal/qk)’j (A — X2)k{ (A1) in (2.6) is the best pos-
sible, then by (2.10) and (2.7), the unique best possible constant factor must be
mk‘)\()\l) (€ R;), namely,
~ 1 1
ka(Ar) = kS (A = A2)k5 (A1)

We find that (2.9) keeps the form of equality if and only if there exist constants A
and B, such that they are not all zero and (cf. [10])

Auvr 27 = Byt ae. in Ry
Assuming that A # 0 (otherwise, B = A = 0), it follows that u* A2~ = % a.e. in
R, and then A — Ay — A\; = 0, namely, A\; + Ao = . O
3. Main results

Theorem 3.1. Inequality (2.6) is equivalent to

PB(E+2) -1

) oo p %
In n o
J = E - <§ Ex(In m,ln’gn)am> ]

n=2 =2
1 1 1 0o lnp[l_a(kfp)\z_i_%)]_l m P
< kI (A= A)k{ (M) — a Vo (3.1)
Bl/ral/a ml-»
m=2

If the constant factor in (2.6) is the best possible, then, so is the constant factor in
(3.1).

Proof. Suppose that (3.1) is valid. By Holder’s inequality (cf. [10]), we find

o [, o
I= E [n 7 n E Ex(In® m, 1n” n)ay,
n
n= m=2

X

ln%fﬁ(%+%) n
n*l/P n

| p——

1
o _B(l2 ATy q
Jpalli—BC2+221) -1
< J{§ 2 - e b (3.2)

1—q
n
n=2

Then by (3.1), we obtain (2.6).
On the other hand, assuming that (2.6) is valid, we set

lnpﬁ(%+%)*1 n
n

by, ==

00 p—1
Z k(In® m, In” n)am> ,n € N\{1}.

m=2
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If J =0, then (3.1) is naturally valid; if J = oo, then it is impossible that makes
(3.1) valid, namely, J < co. Suppose that 0 < J < co. By (2.6), it follows that

lnq[l—ﬁ(%-i- A;AI -1

n
2 nl—a bh=Jr =1
1 N N o ppll-e(P52+20)-1 »
< ﬁl/Pozl/q k,\ (A - A?)k)\ (Al) { Z mlfp a%
m=2
o0 pall-B(RE N1, Y@
g {Zz nt—4q KR

1
Inall=BCE+> -1, )7
oy
n=2

1
1 > lnp[l—o‘(%Jr%)]_lm }p
a? ,

1 1
< Girmarra A (A= A2)k () {

1-p
m
m=2

namely, (3.1) follows, which is equivalent to (2.6).

If the constant factor in (2.6) is the best possible, then so is constant factor in
(3.1). Otherwise, by (3.2), we would reach a contradiction that the constant factor
in (2.6) is not the best possible. O

Theorem 3.2. The following statements (1), (ii), (iii) and (iv) are equivalent:
1
(i) k (/\ /\2)kq (A1) is independent of p, g;
(ii) k ()\ )\g)k‘ (A1) is expressed by a single integral;
1
(iii) ﬁl/ml/q k (A= A2)k{ (A1) is the best possible constant factor of (2.6);
(IV) A+ A=A

If the statement (iv) follows, namely, A\; + Ay = A, then we have (2 7) and the
following equivalent inequality with the best possible constant factor A1 /pa s ka(A):

1
sl 11)5)\2*1 o P1p
[Zn” S b (1 o, I
n

n=2 m=2

1
1 s lnp(lfa)\l)fl m P
< a0 [ T

m=2
Proof. (i) => (ii). Since k} (A — A2)k; (A1) is independent of p, g,we find

1 1 1
2O = A)k? (M) = lim Lim B2 (= M)k (A1) = k(A1)

p—>00q4>1+

1 1
namely, k7 (A — A2)ky (A1) is expressed by a single integral

k(A1) :/ Fox (11, 1)L,
0
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1 1

(17) => (iv). In (2.9), if kY (A — A2)ky (A1) is expressed by a single integral, then
(2.9) keeps the form of equahty, Wthh follows that A+ A=A

(tv) => (i). If Ay + A2 = A, then k (A— )\g)k‘ (A1) = kx(A1), which is indepen-
dent of p,q. Hence, we have (i) <=> ( i) <=> (iv).

(#91) => (iv). By Lemma 2.4, we have A; + Ay = A.

1 1

(iv) => (iii). By Lemma 2.3, for A + A2 = A\, grparzks (A = A2)ky (M)(=
Bl/ml/q Ex(A1)) is the best possible constant factor of (2.6). Therefore, we have
(7i1) <=> (iv).

Hence, the statements (i), (ii), (iii) and (iv) are equivalent. O
Remark 3.1. (i) Fora==A=1\ = %,)\2 = % in (2.7) and (3.3), we have
the following equivalent inequalities with the best possible constant factor kl(%):

Z Z k1 (Inm, Inn)a,,b,
n=2m=2
1 [ 1 V(& 1 i
i (Eatn) (o) e
0 o0 2k
[Z (Z (Inm,Inn am> 1
n=2 m=2
11 »
< k,\(g) <m§:‘2 ml_pafn> : (3.5)

(i) Fora=p=A=1,\ = /\2 = in (2.7) and (3.3), we have the following

equivalent inequalities with the bebt pObblble constant factor kl(%):

i i k1 (Inm,Inn)am,by,

n=2m=2
) 1 ) 1
1 = P ?m P S i 2% ¢
</€1(];) (Z:Q D aﬁ) (Z:z nl—qb%> ; (3.6)
P ?p (& n
Z - Z kEx(Inm,Inn)a,,
n=2 m=2
1 > P 2%m ,
< ki(5) (Z 1_,a§3n> . (3.7)
p m=2 m=—F

(iii) For p = ¢ = 2, both (3.4) and (3.6) reduce to

oo oo

Z Z ky(Inm,Inn)am,b, < ki(= (Z maZ, an2> , (3.8)

n=2m=2
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and both (3.5) and (3.7) reduce to the equivalent form of (3.8) as follows:

Z% (Z k,\(lnm,lnn)am> <ki(z (Z ma ) . (3.9)

n=2

4. Operator expressions and some particular exam-
ples

We set functions

IPll-eCC52+301-1 Iall—B(E+270)-1
@(m) = mlfp 7¢(n) = nlfq ’
wherefrom,
Ay | A—Ag
lnPB(7+ 7 )—1 n
() = - (m,n € N\{1}).

Define the following real normed spaces:

o0
byt = {a—{am}m 2illallpg = (3 w(m)|am ) <OO}

=2

- wm)bal)e < oo},

n=2

lﬂﬂ {b—{bn}n 27||b||q¢ -

n=2

1
lp’wl”’ L= {C_ {Cn}n 27||C||pw1 pi= Z¢1 p |C |p)p < OO}

Assuming that a € [, ,, setting

c=Acn}l g cni= Z ka(In® m, In” n)a,, n € N\{1},

m=2

we can rewrite (3.1) as follows:

1 1
llellp,p1-» < kX (A= A)k{ (M)llallp,p < oo,

1
ﬂl/pal/q
namely, ¢ € [, y1-».

Definition 4.1. Define a Mulholland-type operator T : I, , — [, y1-» as follows:
For any a € I, ,,, there exists a unique representation ¢ € [, y1-». Define the formal
inner product of T'a and b € [ 4, and the norm of T" as follows:

(Ta,b) : = i <i ke (In® m, In® n)am> by =1,

n=2 \m=2

Ta -
IT||: = sup Hnﬂ'
a(#£0)€Ely, llallp.e

By Theorem 3.1 and Theorem 3.2, we have
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Theorem 4.1. Ifa €1, ,,b € lgy,||a|lp,y:|b]lg, > 0, then we have the following
(4.1)

equivalent inequalities:
1 1 1

(Ta,b) < Bilvailax (A = A2k (An)llallp,o[6]lq.»

I Tallpy1-» < W’ff (A= A2)kg (A1)l al - (4.2)

1 1
Moreover, A1 + Ao = X if and only if the constant factor mk; (A= A2)k{ (A1)

in (4.1) and (4.2) is the best possible, namely,
1
T = Wk)\o\l)~ (4.3)
Example 4.1. We set ky(z,y) = m (¢,A>0;2,y > 0). Then we find
1

kx(In® m, In® n) = .
3 ) (¢In®m + In® n)

For 0 < Apj,A =X < 2,0 < X, A=Ay < %,kz,\(q},y) is a positive homogeneous

1
function of degree —\, satisfying that ky(z,y) is decreasing with respect to z,y > 0,

and for v = A1, A — Ao,
-1

k Ty
)\(V) - /0 (C’LL ¥ 1))\ u
L[ ot 1
/ U dv= "By, —1)€R..
0 cv

(v+1)*

T
In view of Theorem 4.1, it follows that Ay + Ay = X if and only if
1 1 1
1Tl = Bl/rali/a falh) = Bl/ral/a o B A2).
In(cz/y) (¢, A > 0;z,y > 0). Then we find

I CORET
In(cIn®m/In” n)

kx(In®m,In” n) = .

Al ) Al m— 1 n

Example 4.2. We set ky(z,y)

For 0 < A, A — Ag < é,O < Ao, A=A < %,k‘,\(x,y) is a positive homogeneous
function of degree — A\, satisfying that kj(x,y) is decreasing with respect to z,y > 0

(cf. [19], Example 2.2.1), and for v = A, A — Ag,
e’} fy—ll

/ u n(cu) du
0

k =
X(’Y) (CU))‘ 1
1 0 ,(r/N)-1] 1
= / v nvdv:—[#]QeRJﬁ
A2, v—1 ¢ Asin(my /)
In view of Theorem 4.1, it follows that A\; + Ao = A if and only if
1 1 [ T 2
Asin(mA/A)"

1
1711 = Bl/rat/a ka(h) = Bl/pal/a M



1984 L. He, H. Liu, & B. Yang

Example 4.3. We set ky(z,y) = [[i_, W O<e < vy, A> 052,y >
0). Then we find

S

1
Ex(In® m,In” n) = .
kl;[l (In®* m + ¢, In?/#)
For 0 < Aj,A — X\ < l 0 < A, A= < % kx(x,y) is a positive homogeneous
function of degree — A\, satlsfymg that ky(x,y) is decreasing with respect to x,y > 0,
and for v = Ay, A — )\2, by Example 1 of [25], it follows that

~v—1
/ I;IUA/SJeru du

TS Ea 1
s 11 tpen
A =1

C; — C
j=1G#k) 4 F

In view of Theorem 4.1, it follows that Ay + Ay = X if and only if

£ () 1 s Loy 1
IT] = 2 = — e :
pl/ratla pr/rat/a \sin( /\/\1) ; j_ll;[#) cj — g
In particular, for ¢; = -+ = ¢; = ¢, we have ky(x,y) = W and
~(s 0 >\1 1du 9)\1/)\
EO) s = / X / dv
o (uMs+c)s /\CT
s SA1 SAg
= — €R;.
>\C>\§S ( A ’ )\ ) +
If s =1, then we have ky(z,y) = mand
¢!
17| = kg)()\l) _ 1 s s
pi/rat/a  pl/ral/e A2 sin(%)

5. Conclusions

In this paper, by the use of the weight functions and the idea of introducing param-
eters, a discrete Mulholland-type inequality with the general homogeneous kernel
and the equivalent form are given in Lemma 2.2 and Theorem 3.1. The equivalent
statements of the best possible constant factor related to some parameters are con-
sidered in Theorem 3.2. The operator expressions and some particular examples
are given in Theorem 4.1 and Examples 4.1-4.3. The lemmas and theorems provide
an extensive account of this type of inequalities.
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