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Abstract In this paper using the monotone iterative technique we establish
the existence and uniqueness of positive solutions for a nonlinear discrete frac-
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1. Introduction

For a, b ∈ R, let [a, b]E = [a, b] ∩ E for some set E with a < b. In this paper
we investigate the existence and uniqueness of positive solutions for the following
nonlinear discrete fractional boundary value problem with a p-Laplacian operator:∆ν

ν−1(φp(∆
ν
ν−1y(t))) = f(y(t+ ν − 1)), t ∈ [0, T ]Z,

y(ν − 1) = y(ν + T ),∆ν
ν−1y(ν − 1) = ∆ν

ν−1y(ν + T ),
(1.1)

where ν ∈ (0, 1) is a real number, ∆ν
ν−1 is a discrete fractional operator, and

φp(s) = |s|p−2s is the p-Laplacian with s ∈ R, p > 1. For the nonlinearity f , we
assume that

(H1) f ∈ C(R+,R+), and f(y) > 0 if y > 0,

†the corresponding author. Email address: cyj720201@163.com(Y. Cui)
1School of Mathematical Sciences, Chongqing Normal University, Chongqing
401331, China

2Key Laboratory for Optimization and Control of the Ministry of Education,
Chongqing Normal University, Chongqing 400047, China

3School of Mathematics, Statistics and Applied Mathematics, National University
of Ireland, Galway, Ireland

4State Key Laboratory of Mining Disaster Prevention and Control Co-founded
by Shandong Province and the Ministry of Science and Technology, Shandong
University of Science and Technology, Qingdao 266590, China
∗The authors were supported by Natural Science Foundation of China (Nos.
11571207, 11601048, 51774197), Natural Science Foundation of Chongqing (No.
cstc2016jcyjA0181), the Science and Technology Research Program of Chongqing
Municipal Education Commission(No. KJQN201800533), Natural Science Foun-
dation of Chongqing Normal University (No. 16XYY24), and the Tai’shan Schol-
ar Engineering Construction Fund of Shandong Province of China.

http://jaac.ijournal.cn
http://dx.doi.org/10.11948/20190051


1960 W. Cheng, J. Xu, D. O’Regan & Y. Cui

(H2) f(y) is nondecreasing about y, and for l ∈ (0, 1), there exists α(l) ∈ (l, 1)
such that

f(ly) ≥ (α(l))p−1f(y), for y ∈ R+.

(H3) f(y) is nonincreasing in y, and there exist two positive-valued functions
ϕ(τ), ω(τ) on [ν − 1, ν + T − 1]Zν−1

such that ϕ : [ν − 1, ν + T − 1]Zν−1
→ (0, 1)

is a surjection and ω(τ) > ϕ(τ), ∀τ ∈ [ν − 1, ν + T − 1]Zν−1
with f

(
y

ϕ(τ)

)
≥

(ω(τ))p−1f(y), ∀τ ∈ [ν − 1, ν + T − 1]Zν−1
, y ≥ 0.

Fractional-order models are used in in physics, chemistry, polymer rheology,
economics, control theory, biophysics and blood flow phenomena. For example,
in [32] the authors studied the abstract evolution of the system for HIV-1 population
dynamics, which takes the fractional form:

Dα
t u(t) + λf(t, u(t), Dβ

t u(t), v(t)) = 0,

Dγ
t v(t) + λg(t, u(t)) = 0, 0 < t < 1,

Dβ
t u(0) = Dβ+1

t u(0) = 0, Dβ
t u(1) =

∫ 1

0
Dβ
t u(s)dA(s),

v(0) = v′(0) = 0, v(1) =
∫ 1

0
v(s)dB(s);

(1.2)

here f : (0, 1)× [0,+∞)3 → (−∞,+∞), and g : (0, 1)× [0,+∞)→ (−∞,+∞) are
two semipositone functions (for other related models see [8, 9, 15, 18, 30, 41, 43–48,
53,56] and the references therein).

However there are only a small number of papers in the literature on discrete
fractional equations (see for example [1, 6, 7, 10–12, 16, 21, 26, 29, 37, 42, 54]). In [10]
the author used the Guo-Krasnosel’skii fixed point theorem to establish a positive
solution for the discrete fractional boundary value problem

∆νy(t) = λf(t+ ν − 1, y(t+ ν − 1)), t ∈ [0, T ]Z,

y(ν − 1) = y(ν + T ) +
N∑
i=1

F (ti, y(ti)),
(1.3)

where f is a semipositone nonlinearity and satisfies the sublinear growth condition:

lim
y→+∞

f(t, y)

y
= 0, uniformly for t ∈ [ν − 1, ν + T ]Zν−1

.

In [1, 37], the authors extended (1.3) to systems of discrete equations and used the
fixed point index to establish the existence of positive solutions for their systems.
In [54] for p-Laplacian systems the authors used the contraction mapping theorem
and the Brouwer fixed point theorem to study the existence and uniqueness of
solutions for the discrete fractional boundary value problem:

∆β(φp(∆
αy(t))) + f(α+ β + t− 1, y(α+ β + t− 1)) = 0, t ∈ [0, b]N0 ,

∆αy(β − 2) = ∆αy(β + b) = 0,

y(α+ β − 4) = y(α+ β + b) = 0,

(1.4)

where f : [α+ β − 4, α+ β + b]Nα+β−4
× R→ R is a Lipschitz function.

The monotone iterative technique combined with the method of lower and upper
solutions can be used in studying the existence of solutions for nonlinear problems
(see [2–5, 14, 17, 19, 20, 22–25, 27, 28, 31, 33–36, 38–40, 49–52, 55] and the references
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therein). In [2] the authors studied the boundary value problems for the nonlinear
fractional differential equation:{

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1.5)

where α ∈ (1, 2] is a real number, and Dα
0+ is the Riemann-Liouville fractional

derivative. When f satisfies an appropriate Lipschitz condition the authors used
the Banach’s contraction mapping principle and the theory of linear operators to
establish the uniqueness of solutions for (1.5) and they presented an iterative se-
quence (for other similar papers see [3, 4, 33, 39]). In [36], the authors studied the
fractional differential equation with a p-Laplacian operator:{

−Dα
0+(φp(−Dγ

0+z(x))) = f(x, z(x)), x ∈ (0, 1),

z(0) = 0, Dγ
0+z(0) = Dγ

0+z(1) = 0, z(1) =
∫ 1

0
z(x)dχ(x),

(1.6)

where Dα
0+, D

γ
0+ are the Riemann-Liouville fractional derivative,

∫ 1

0
z(x)dχ(x) is a

Riemann-Stieltjes integral and χ is a function of bounded variation. The authors
used the condition

(H)Zhang f(x, z) is decreasing in z and for any r ∈ (0, 1), there exists µ ∈ (0, 1
p−1 )

with p > 1 such that

f(x, rz) ≤ r−µf(x, z),∀(x, z) ∈ (0, 1)× (0,+∞),

to establish a unique solution for (1.6) and using an iterative technique the au-
thors presented appropriate sequences converging uniformly to the unique positive
solution (in addition they derived estimates of the approximation error and the
convergence rate).

Motivated by the above in this paper we investigate the existence and uniqueness
of positive solutions for the discrete fractional p-Laplacian problem (1.1) and we
present iterative sequences which uniformly converge to the unique solution.

2. Preliminaries

In this section we give some necessary definitions from discrete fractional calculus.

Definition 2.1 (see [11]). We define tν := Γ(t+1)
Γ(t+1−ν) for any t, ν ∈ R for which the

right-hand side is well-defined. We use the convention that if t+ 1− ν is a pole of
the Gamma function and t+ 1 is not a pole, then tν = 0.

Definition 2.2 (see [11]). For ν > 0, the ν−th fractional sum of a function f is

∆−νa f(t) =
1

Γ(ν)

t−ν∑
s=a

(t− s− 1)ν−1f(s), for t ∈ Na+N−ν .

We also define the ν−th fractional difference for ν > 0 by

∆ν
af(t) = ∆N∆ν−N

a f(t), for t ∈ Na+N−ν ,

where N ∈ N with 0 ≤ N − 1 < ν ≤ N .
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Let φq = φ−1
p with 1/q + 1/p=1. Then we have the following lemma.

Lemma 2.1. The discrete fractional boundary value problem (1.1) can be trans-
formed into its equivalent sum equation, which takes the form

y(t) =

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(y(r + ν − 1))

)
, t ∈ [ν−1, ν+T−1]Zν−1 ,

(2.1)
where

G(t, s) =


(ν+T−s−1)ν−1tν−1

Γ(ν)−(ν+T )ν−1 + (t− s− 1)ν−1, 0 ≤ s ≤ t− ν ≤ T,
(ν+T−s−1)ν−1tν−1

Γ(ν)−(ν+T )ν−1 , t− ν < s ≤ T.
(2.2)

Proof. Let φp(∆
ν
ν−1y(t)) = x(t). Then from (1.1) we have∆ν

ν−1x(t) = f(y(t+ ν − 1)), t ∈ [0, T ]Z,

x(ν − 1) = x(ν + T ).
(2.3)

Using [10] and [37], we obtain

x(t) =

T∑
s=0

G(t, s)

Γ(ν)
f(y(s+ ν − 1)), t ∈ [ν − 1, ν + T − 1]Zν−1 . (2.4)

Note that φp(∆
ν
ν−1y(t)) = x(t), and thus ∆ν

ν−1y(t) = φq(x(t)). Hence, from (1.1)
we have ∆ν

ν−1y(t) = φq(x(t+ ν − 1)), t ∈ [0, T ]Z,

y(ν − 1) = y(ν + T ).
(2.5)

Using [10] and [37] again, we get

y(t) =

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(y(r + ν − 1))

)
, t ∈ [ν−1, ν+T−1]Zν−1

.

(2.6)
This completes the proof.

Lemma 2.2 (see [10, Lemma 2.5]). Let C∗ = 1 + Γ(ν)−(ν+T )ν−1

(ν+T−1)ν−1 for (t, s) ∈ [ν −
1, ν + T − 1]Zν−1 × [0, T ]Z. Then the Green’s function G satisfies:

0<
(ν+T )ν−1

Γ(ν)−(ν+T )ν−1 (ν+T−s−1)ν−1≤G(t, s)≤ C∗Γ(ν)

Γ(ν)−(ν + T )ν−1 (ν+T−s−1)ν−1.

(2.7)

Let E be the collection of all maps from [ν − 1, ν + T − 1]Zν−1
to R with the

norm
‖y‖ = max

t∈[ν−1,ν+T−1]Zν−1

|y(t)|.

Then (E , ‖ · ‖) is a Banach space, Then we define two sets on E as follows:

P = {y ∈ E : y(t) ≥ 0,∀t ∈ [ν − 1, ν + T − 1]Zν−1
},

P0 =

{
y ∈ E : y(t) ≥ (ν + T )ν−1

C∗Γ(ν)
‖y‖,∀t ∈ [ν − 1, ν + T − 1]Zν−1

}
.
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Now P, P0 are cones on E . From Lemma 2.1 we can define an operator S on E as
follows:

(Sy)(t)=

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ν−1, r)

Γ(ν)
f(y(r+ν−1))

)
, t∈ [ν−1, ν+T−1]Zν−1

.

From the Arzelà-Ascoli theorem a standard argument guarantees that S : E → E
is a completely continuous operator and the existence of solutions for (1.1) follows
from the existence of fixed points for S. Moreover, by Lemma 2.2 we easily obtain
that S(P ) ⊂ P0(see [10]).

For x, y ∈ E , x ∼ y is defined by: there exist δ, γ > 0 such that δx ≤ y ≤ γx.
Let Ph = {x ∈ E : x ∼ h}, where h ∈ P\{0}.

Lemma 2.3 (see [38, Theorem 2.1]). Let h > 0 and P be a normal cone. Assume
that:

(D1) S : P → P is nondecreasing, and there exist δ, γ > 0 such that δh ≤ Sh ≤
γh, i.e., Sh ∈ Ph,

(D2) for any y ∈ P and l ∈ (0, 1), there exists α(l) ∈ (l, 1) such that S(ly) ≥
α(l)Sy.

Then the following two conclusions hold:

(i) there are u0, v0 ∈ Ph and l ∈ (0, 1) such that lv0 ≤ u0 < v0, u0 ≤ Su0 ≤
Sv0 ≤ v0,

(ii) the operator equation y = Sy has a unique positive solution in Ph.

Lemma 2.4 (see [13]). Let E be a partially ordered Banach space, and x0, y0 ∈
E with x0 ≤ y0, D = [x0, y0]. Suppose that S : D → E satisfies the following
conditions:

(i) S is an increasing operator,

(ii) x0≤Sx0, y0≥Sy0, i.e., x0 and y0 is a subsolution and a supersolution of S,

(iii) S is a continuous compact operator.

Then S has the smallest fixed point y∗ and the largest fixed point y∗ in [x0, y0],
respectively. Moreover, y∗ = limn→∞ Snx0, and y∗ = limn→∞ Sny0.

3. Main Results

We give our main results in this paper.

Theorem 3.1. Suppose that (H1)-(H2) hold and f(0) 6= 0. Then (1.1) has a unique
positive solution in Ph. Moreover, for any y0 ∈ P \ {0}, constructing successively
the sequence (n=0,1,2,...)

yn+1(t)=

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ν−1, r)

Γ(ν)
f(yn(r+ν−1))

)
, t∈ [ν−1, ν+T−1]Zν−1

,

we have that yn(t) converges uniformly to y∗(t) in t ∈ [ν − 1, ν + T − 1]Zν−1
.

Proof. From (H2) and f(0) 6= 0 we obtain that S : P → P is nondecreasing and
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0 is not a fixed point of S. For l ∈ (0, 1) and y ∈ P , by (H2) we have

(Sly)(t) =

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(ly(r + ν − 1))

)

≥
T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
(α(l))p−1f(y(r + ν − 1))

)

= α(l)

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(y(r + ν − 1))

)
= α(l)(Sy)(t), t ∈ [ν − 1, ν + T − 1]Zν−1 .

Therefore, S(ly) ≥ α(l)Sy, for y ∈ P , l ∈ (0, 1).

Let h(t) =
T∑
s=0

G(t,s)
Γ(ν) φq

(
T∑
r=0

G(s+ν−1,r)
Γ(ν)

)
, for t ∈ [ν − 1, ν + T − 1]Zν−1

. Then

from Lemma 2.2 we have

T∑
s=0

(ν + T )ν−1(ν + T − s− 1)ν−1

Γ(ν)(Γ(ν)− (ν + T )ν−1)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)

)

≤ h(t) ≤
T∑
s=0

C∗(ν + T − s− 1)ν−1

Γ(ν)− (ν + T )ν−1 φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)

)
,

for t ∈ [ν − 1, ν + T − 1]Zν−1 .

For convenience let

κ1 =

T∑
s=0

(ν + T )ν−1(ν + T − s− 1)ν−1

Γ(ν)(Γ(ν)− (ν + T )ν−1)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)

)
,

κ2 =

T∑
s=0

C∗(ν + T − s− 1)ν−1

Γ(ν)− (ν + T )ν−1 φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)

)
.

Then for t ∈ [ν − 1, ν + T − 1]Zν−1
, we have

(Sh)(t) =

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(h(r + ν − 1))

)

≤
T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(κ2)

)
= φq(f(κ2))h(t),

and

(Sh)(t) =

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(h(r + ν − 1))

)

≥
T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(κ1)

)
= φq(f(κ1))h(t).
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Let Ph = {y ∈ E : φq(f(κ1))h(t) ≤ y(t) ≤ φq(f(κ2))h(t), t ∈ [ν−1, ν+T −1]Zν−1
}.

Then Sh ∈ Ph. From Lemma 2.3, there exist u0, v0 ∈ Ph and l ∈ (0, 1) such that

lv0 ≤ u0 < v0, u0 ≤ Su0 ≤ Sv0 ≤ v0, (3.1)

and S has a unique fixed point in Ph, denoted by y. We have proved that (1.1) has
a unique positive solution in Ph. Next, from (3.1) note all the conditions of Lemma
2.4 are satisfied with D = [u0, v0] ⊂ Ph. Consequently, for any y0 ∈ D(y0 ∈ P\{0}),
by the monotonicity of S, we have

Snu0 ≤ Sny0 ≤ Snv0, for n ∈ N.

If we let yn+1 = Syn then by induction yn = Sny0, n = 0, 1, 2, .... Therefore, from
limn→∞ Snu0 = limn→∞ Snv0 = y we have

yn(t) =

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(yn−1(r + ν − 1))

)
→ y(t),

uniformly in t ∈ [ν − 1, ν + T − 1]Zν−1
. This completes the proof.

Theorem 3.2. Suppose that (H1)-(H3) hold. Then (1.1) has a unique positive
solution y∗ in P \ {0}. Moreover, for any y0 ∈ P \ {0}, constructing successively
the sequence (n=0,1,2,..)

yn+1(t)=

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ν−1, r)

Γ(ν)
f(yn(r+ν−1))

)
, t∈ [ν−1, ν+T−1]Zν−1

,

we have that yn(t) converges uniformly to y∗(t) in t ∈ [ν − 1, ν + T − 1]Zν−1
.

Proof. Step 1. Problem (1.1) has a positive solution.
From (H3) we see that Sy is nonincreasing in y. Note that, for all τ ∈ [ν−1, ν+

T − 1]Zν−1
, then τ̃ = τ − ν + 1 ∈ [0, T ]Z. Hence, from (H3) we have

S

(
1

ϕ(τ)
y

)
(t) =

T∑
s=0

G(t, s)

Γ(ν)
φq

[
T∑
r=0

G(s+ν−1, r)

Γ(ν)
f

(
1

ϕ(τ̃+ν−1)
y(r+ν−1)

)]

≥
T∑
s=0

G(t, s)

Γ(ν)

[
T∑
r=0

G(s+ν−1, r)

Γ(ν)
(ω(τ̃+ν−1))p−1f (y(r+ν−1))

] 1
p−1

= ω(τ̃ + ν − 1)

T∑
s=0

G(t, s)

Γ(ν)
φq

[
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f (y(r + ν − 1))

]
= ω(τ)(Sy)(t), τ ∈ [ν − 1, ν + T − 1]Zν−1

, τ̃ ∈ [0, T ]Z,
(3.2)

for y ∈ P , t ∈ [ν−1, ν+T−1]Zν−1
. Let L =

T∑
s=0

C∗(ν+T−s−1)ν−1

Γ(ν)−(ν+T )ν−1 φq

(
T∑
r=0

G(s+ν−1,r)
Γ(ν)

)
.

Then L > 0. Since f(y) > 0 if y > 0, and from Lemma 2.2, for t ∈ [ν − 1, ν + T −
1]Zν−1

, we have

(ν+T )ν−1

C∗Γ(ν)
φq(f(L))L ≤ S(L)=

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ν−1, r)

Γ(ν)
f(L)

)
≤φq(f(L))L.

(3.3)
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Therefore, we can choose a sufficiently small number e ∈ (0, 1) such that

eL ≤ S(L) ≤ L

e
. (3.4)

As a result, there exists τ0 ∈ [ν − 1, ν + T − 1]Zν−1 such that ϕ(τ0) = e, and then
we have

ϕ(τ0)L ≤ S(L) ≤ L

ϕ(τ0)
. (3.5)

Note that ω(τ0)
ϕ(τ0) > 1, and we can take a sufficiently large positive integer k such that[

ω(τ0)

ϕ(τ0)

]k
≥ 1

ϕ(τ0)
, and

[
ϕ(τ0)

ω(τ0)

]k
≤ ϕ(τ0). (3.6)

Define u0 = [ϕ(τ0)]kL, v0 = [ϕ(τ0)]−kL. Then we have

u0 = [ϕ(τ0)]2kv0 < v0, and u0 ≥ λv0 if λ ∈ (0, [ϕ(τ0)]2k] ∈ (0, 1). (3.7)

From the monotonicity of S, we have Sv0 ≤ Su0. Moreover, from (3.2), (3.6)
and (H3) we have

Sv0 = S
(
[ϕ(τ0)]−kL

)
= S

(
1

ϕ(τ0)
[ϕ(τ0)]−k+1L

)
≥ ω(τ0)S

(
[ϕ(τ0)]−k+1L

)
≥ · · ·

≥ [ω(τ0)]kS(L) ≥ [ω(τ0)]kϕ(τ0)L ≥ [ϕ(τ0)]kL = u0.
(3.8)

On the other hand, from (3.2) and (H3) we obtain

Sy = S

(
1

ϕ(τ)
ϕ(τ)y

)
≥ ω(τ)S(ϕ(τ)y), and S(ϕ(τ)y) ≤ 1

ω(τ)
Sy. (3.9)

Thus, from (3.6) we have

Su0 = S([ϕ(τ0)]kL) = S(ϕ(τ0)[ϕ(τ0)]k−1L) ≤ 1

ω(τ0)
S([ϕ(τ0)]k−1L) ≤ · · ·

≤ 1

[ω(τ0)]k
S(L) ≤ 1

[ω(τ0)]k
L

ϕ(τ0)
≤ [ϕ(τ0)]−kL = v0.

(3.10)

Therefore, we can construct successively the sequences

un = Svn−1, vn = Sun−1, n = 1, 2, .... (3.11)

From the monotonicity of S, we have u1 = Sv0 ≤ Su0 = v1. By induction, we
obtain un ≤ vn for n = 1, 2, .... Moreover, from (3.8), (3.10), we know that the
sequences {un}∞n=1, {vn}∞n=1 satisfy the inequalities:

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (3.12)

Note that u0 ≥ λv0 if λ ∈ (0, [ϕ(τ0)]2k] ∈ (0, 1), and thus un ≥ u0 ≥ λv0 ≥ λvn,
n = 1, 2, .... Let

λn = sup{λ > 0 : un ≥ λvn}, n = 1, 2, .... (3.13)

Then we have un≥λnvn and thus un+1≥un≥λnvn≥λnvn+1, n = 1, 2, .... Note that
λn+1 = sup{λ > 0 : un+1 ≥ λvn+1}, so λn+1 ≥ λn, i.e., {λn}∞n=1 is an increasing
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sequence with λn ∈ (0, 1] for n = 1, 2, .... Let λ∗ = limn→∞ λn. Now we show that
λ∗ = 1. Indeed, if λ∗ ∈ (0, 1), from (H4) there exists τ∗ ∈ [ν − 1, ν + T − 1]Zν−1

such that ϕ(τ∗) = λ∗. Now, we consider the following two possible cases.
Case 1. There is a N ∈ N such that λn = λ∗ for n ≥ N .
Hence, for n ≥ N , from (3.2) we have

un+1 = Svn ≥ S
(

1

λ∗
un

)
= S

(
1

ϕ(τ∗)
un

)
≥ ω(τ∗)Sun = ω(τ∗)vn+1.

Note the definition of λn and we have

λn+1 = λ∗ ≥ ω(τ∗) > ϕ(τ∗) = λ∗,

and this is a contradiction.
Case 2. For all n ∈ N, λn < λ∗.
This implies λn

λ∗ ∈ (0, 1), and there exists µn ∈ [ν − 1, ν + T − 1]Zν−1
such that

ϕ(µn) = λn
λ∗ . Consequently, from (3.2) we have

un+1 = Svn ≥ S
(

1

λn
un

)
= S

(
1
λn
λ∗

1

λ∗
un

)
= S

(
1

ϕ(µn)

1

ϕ(τ∗)
un

)
≥ ω(µn)ω(τ∗)Sun = ω(µn)ω(τ∗)vn+1.

Note the definition of λn and we have

λn+1 ≥ ω(µn)ω(τ∗) > ϕ(µn)ω(τ∗) =
λn
λ∗
ω(τ∗).

Let n→∞, so

λ∗ ≥ λ∗

λ∗
ω(τ∗) > ϕ(τ∗) = λ∗,

and this is also a contradiction.
Combining the above two cases we have limn→∞ λn = 1.
Finally, we prove that the two sequences {un}∞n=1, {vn}∞n=1 are convergent, and

we first show that {un}∞n=1 is a Cauchy sequence in E . Indeed, from (3.12) we
obtain

0 ≤ un+m(t)− un(t) ≤ vn(t)− λnvn(t) = (1− λn)vn(t)

≤ (1− λn)v0(t), ∀m ∈ N, t ∈ [ν − 1, ν + T − 1]Zν−1 .

This implies that

‖un+m − un‖ ≤ (1− λn)‖v0‖,

i.e., {un} is a Cauchy sequence in E since λn → 1 (n → ∞). Consequently, there
exists y∗ ∈ P\{0} such that limn→∞ un(t) = y∗(t) for t ∈ [ν− 1, ν+T − 1]Zν−1

. On
the other hand, for all n ∈ N, we have

vn(t)− un(t) ≤ vn(t)− λnvn(t) ≤ (1− λn)v0(t), for t ∈ [ν − 1, ν + T − 1]Zν−1 .

This implies that {vn}∞n=1 converges to the same limit as {un}∞n=1, i.e., limn→∞vn(t)=
y∗(t) for t ∈ [ν − 1, ν + T − 1]Zν−1

. From the monotonicity of S, we have

un+1(t) = (Svn)(t) ≤ (Sy∗)(t) ≤ (Sun)(t) ≤ vn+1.
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Let n → ∞. Then Sy∗ = y∗, i.e., y∗ is a solution of (1.1). Moreover, y∗(t) =
(Sy∗)(t) ≥ (Svn)(t) = un+1(t) ≥ u0(t) ≡ [ϕ(τ0)]kL > 0, so y∗ is also a positive
solution.

Step 2. Problem (1.1) has a unique solution.
Suppose that (1.1) has two positive solutions, y∗, x∗ ∈ P\{0} with y∗(t) 6= x∗(t)

for t ∈ [0, 1]. From step 1, we have that y∗, x∗ have positive upper and lower bounds,
so there exists η ∈ (0, 1] such that

ηy∗(t) ≤ x∗(t) ≤ 1

η
y∗(t), for t ∈ [ν − 1, ν + T − 1]Zν−1

.

Let

η0 = sup

{
η ∈ (0, 1] : ηy∗(t) ≤ x∗(t) ≤ 1

η
y∗(t), for t ∈ [ν − 1, ν + T − 1]Zν−1

}
.

We claim η0 = 1. If false, we have η0 ∈ (0, 1) and there is a τ1 ∈ [ν−1, ν+T−1]Zν−1

such that ϕ(τ1) = η0. Consequently, from (3.2) and (3.9) we have

x∗ = Sx∗ ≥ S
(

1

η0
y∗
)

= S

(
1

ϕ(τ1)
y∗
)
≥ ω(τ1)Sy∗ = ω(τ1)y∗,

and

x∗ = Sx∗ ≤ S (η0y
∗) = S (ϕ(τ1)y∗) ≤ 1

ω(τ1)
Sy∗ =

1

ω(τ1)
y∗.

As a result, we have

η0y
∗ = ϕ(τ1)y∗ < ω(τ1)y∗ ≤ x∗ ≤ 1

ω(τ1)
y∗ <

1

ϕ(τ1)
y∗ =

1

η0
y∗.

This contradictsthe definition of η0. Thus η0 = 1. Therefore, (1.1) has a unique
solution.

Step 3. We establish an iterative sequence, which converges uniformly to the
unique positive solution of (1.1).

For any y0 ∈ P\{0}, we can choose a sufficiently small number ê ∈ (0, 1) such
that

êL ≤ y0 ≤
L

ê
. (3.14)

From (H3) there exists τ2 ∈ [ν−1, ν+T−1]Zν−1
such that ϕ(τ2) = ê. Consequently,

we have

ϕ(τ2)L ≤ y0 ≤
L

ϕ(τ2)
. (3.15)

This implies that there exists a k ∈ N large enough such that[
ω(τ2)

ϕ(τ2)

]k
≥ 1

ϕ(τ2)
.

Define

û0 = [ϕ(τ2)]kL, v̂0 =
L

[ϕ(τ2)]k
.

Consequently, we find û0 < y0 < v̂0, and let

ûn = Sv̂n−1, v̂n = Sûn−1,
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and

yn(t) =

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(yn−1(r + ν − 1))

)
,

for t ∈ [ν − 1, ν + T − 1]Zν−1
, n = 0, 1, 2, .... By induction, we get ûn ≤ yn ≤ v̂n for

n = 0, 1, 2, .... Similarly with the above two steps, there exists ŷ ∈ P\{0} such that

lim
n→∞

ûn = lim
n→∞

v̂n = ŷ, and Sŷ = ŷ.

Note the uniqueness of positive solutions, and we have y∗ = ŷ, and thus

yn+1(t) =

T∑
s=0

G(t, s)

Γ(ν)
φq

(
T∑
r=0

G(s+ ν − 1, r)

Γ(ν)
f(yn(r + ν − 1))

)
→ y∗(t),

uniformly in t ∈ [ν − 1, ν + T − 1]Zν−1
. This completes the proof.
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