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UPPER SEMICONTINUITY OF PULLBACK
ATTRACTORS FOR MULTI-VALUED

RANDOM COCYCLE

Ting Li

Abstract In this paper we study the upper semicontinuity of random at-
tractors for multi-valued random cocycle when small random perturbations
approach zero or small perturbation for random cocycle is considered. Fur-
thermore, we consider the upper semicontinuity of random attractors for multi-
valued random cocycle under the condition which the metric dynamical sys-
tems is ergodic.
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1. Introduction

The asymptotic behaviour of dynamical systems is one of the most important prob-
lems of modern mathematical physics and the theory has been greatly developed
over the last decade or so. In recent years, there is an increasing interest in the
study of multi-valued systems, see [2, 3, 5, 10–12, 17–20]. The attempts to extend
the notion of global attractor to the non-autonomous case led to the concept of the
so-called the theory of pullback (or cocycle) attractors, which has been developed
for both the non-autonomous and random dynamical systems (see [1] [6] [8] [9] [13]).
The concept of pullback attractors for random dynamical systems was introduced
by Crauel and Flandoli in [6, 7], as a generalization of the classical concept of the
global attractor for many models in Physics, Chemistry and Biology.

For single-valued case, the upper semicontinuity of attractors for small random
perturbation of dynamical systems was considered by [4, 15, 16]. For multi-valued
case, the upper semicontinuity of pullback attractors for multi-valued process has
been studied in [18] and the upper semicontinuity of pullback attractors for multi-
valued noncompact random dynamical systems was considered in [19].

In the present paper, we consider the upper semicontinuity of pullback attrac-
tors for multi-valued random cocycle. First, we consider the upper semicontinuity
of random attractors for multi-valued random cocycle when small random perturba-
tions approach zero, which can be considered as generalization of single-valued case
in [15]. Next, we consider the upper semicontinuity of random attractors for multi-
valued random cocycle when small perturbation for random cocycle is considered.
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This can be considered as generalization of single-valued case in [15]. Finally, if
invariant measure P of the metric dynamical systems θt is ergodic, then we can ob-
tain the upper semicontinuity of random attractors under weaker conditions. These
results are new even for single-valued case.

The paper is organized as follows. In Section 2, we recall some basic notations
and definitions, and give some results about the existence of random attractors for
multi-valued random cocycle. In Section 3, we establish the upper semicontinuity
of random attractors when small random perturbations approach zero. In section 4,
we establish the upper semicontinuity of random attractors when small perturbation
for random cocycle is considered.

2. Preliminaries.

In this section, we recall the theory of attractors for autonomous multi-valued semi-
dynamical systems and multi-valued random cocycle.

Let (Ω,F , P ) be a probability space, and (X, ‖ · ‖X) a Banach space with Borel
σ-algebra B(X). The Hausdorff semi-distance between two nonempty subsets A
and B of X is defined by

dist(A,B) = sup
a∈A

inf
b∈B
‖a− b‖.

Let 2X be the collection of all subsets of X. First we recall some notations of
attractors for multi-valued semiflow.

Definition 2.1. A family of mapping φ(t) : X → 2X , t ∈ R+, is called an au-
tonomous multi-valued semiflow if it satisfies the following conditions:

1. φ(0)x = {x}, ∀x ∈ X;

2. φ(s+ t)x = φ(s) ◦ φ(t)x, ∀s, t ∈ R+, x ∈ X.

Definition 2.2. A nonempty compact subset A0 of X is called a global attractor
for the autonomous multi-valued semiflow φ(t) if it satisfies:

1. A0 is an invariant set, that is

φ(t)A0 = A0, ∀t ∈ R+;

2. A0 attracts each bounded subset B of X, that is

lim
t→∞

dist(φ(t)B,A0) = 0.

Next, we recall some notations of attractors for multi-valued random cocycle.

Definition 2.3. (Ω,F , P, (θt)t∈R) is called a metric dynamical system if θ : R×Ω→
Ω is (B(R)×F ,F) measurable, θ0 is the identity on Ω, θs+t = θt◦θs for all s, t ∈ R
and θtP = P for all t ∈ R.

Definition 2.4. Let (Ω,F , P, (θt)t∈R) be a metric dynamical system. A multi-
valued mapping

φ : R+ × Ω×X → 2X ,

is called a multi-valued random cocycle over a metric dynamical system (Ω,F ,P,(θt)t∈R)

if for all ω ∈ Ω and t, s ∈ R+, the following conditions are satisfied:
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1. φ : R+×Ω×X, (t, ω, x) 7→ φ(t, ω, x), which is B(R)×F ×B(X) measurable;

2. φ(0, ω, ·) is the identity on X;

3. φ(t+ s, ω, ·) = φ(t, θsω, ·) ◦ φ(s, ω, ·).

For the composition of multi-valued mappings, for every nonempty V ⊂ X,
φ(t, ω, V ) is defined by

φ(t, ω, V ) =
⋃
x∈V

φ(t, ω, x).

Definition 2.5 (see [3]). A multi-valued random cocycle φ is said to be upper
semi-continuous if for all t ∈ R+ and ω ∈ Ω it follows that for given x ∈ X and a
neighbourhood of φ(t, ω, x), O(φ(t, ω, x)), there exists δ > 0 such that if d(x, y) < δ
then

φ(t, ω, y) ⊂ O(φ(t, ω, x)).

Similarly, φ is called lower semi-continuous if for all t ∈ R+ and ω ∈ Ω, for given
xn → x(n → ∞) and y ∈ φ(t, ω, x), there exist yn ∈ φ(t, ω, xn) such that yn → y.
It is said to be continuous if it is upper and lower semi-continuous.

Definition 2.6. Let D be a collection of random subsets of X. Then D is called
inclusion-closed if D = {D(ω)}ω∈Ω ∈ D and D̃ = {D̃(ω)}ω∈Ω with D̃(ω) ⊂ D(ω)
for all ω ∈ Ω imply that D̃ ∈ D.

Definition 2.7. LetD be a collection of random subsets ofX, and {K(ω)}ω∈Ω ∈ D.
Then {K(ω)}ω∈Ω is called a D-pullback absorbing set for φ if for every B ∈ D and
P − a.e.ω ∈ Ω, there exists T (B,ω) > 0 such that

φ(t, θ−tω,B(θ−tω)) ⊂ K(ω) for all t ≥ T (B,ω).

Definition 2.8. Let D be a collection of random subsets of X. A multi-valued
random cocycle φ is called D-pullback asymptotically upper semi-compact in X, if
for P−a.e.ω ∈ Ω and every family {B(ω)} ∈ D, any sequence {φ(tn, θ−tnω, xn)}∞n=1

has a convergent subsequence in X whenever tn → +∞, and xn ∈ B(θ−tnω).

Definition 2.9. Let D be a collection of random subsets of X. Then a random set
{A(ω)}ω∈Ω is called aD−random attractor ( orD−pullback attractor) for the multi-
valued random cocycle φ if the following conditions are satisfied, for P − a.e.ω ∈ Ω,

(1) A(ω) is compact and ω 7→ d(x,A(ω)) is measurable for every x ∈ X;

(2) {A(ω)} is invariant, that is,

φ(t, ω,A(ω)) = A(θtω), ∀t ≥ 0;

(3) {A(ω)} (pullback) attracts every set in D, that is, for every B = {B(ω)}ω∈Ω ∈
D,

lim
t→∞

dist(φ(t, θ−tω,B(θ−tω)),A(ω)) = 0.

Then we have the following existence result for a random attractor of a multi-
valued random cocycle, which can be proved following the proof of related results
in [12,18].
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Proposition 2.1. Let D be a collection of random subsets of X and φ a continuous
multi-valued random cocycle on X over (Ω,F , P, (θt)t∈R). Suppose that {K(ω)}ω∈Ω

is a closed random absorbing set for φ in D and φ is D-pullback asymptotically
upper-semi compact in X. Then φ has a unique D-random attractor {A(ω)}ω∈Ω

which is given by

A(ω) =
⋂
τ≥0

⋃
t≥τ

φ(t, θ−tω,K(θ−tω)).

3. Upper semicontinuity of attractors for multi-
valued random cocycle.

In this section, we establish the upper semicontinuity of random attractors when
small random perturbations approach zero. Let (X, ‖ · ‖) be a Banach space and φ
be an autonomous multi-valued semiflow defined on X. Given ε > 0, suppose φε is
a multi-valued random cocycle over a metric system (Ω,F , P, (θt)t∈R). We further
suppose that for P − a.e. ω ∈ Ω, t ≥ 0, εn → 0, and xn, x ∈ X with xn → x, the
following holds:

lim
n→∞

dist(φεn(t, ω, xn), φ(t)x) = 0. (3.1)

Let D be a collection of random subsets of X. Given ε > 0, suppose that φε
has a random attractor Aε = {Aε(ω)}ω∈Ω ∈ D and a random absorbing set Eε =
{Eε(ω)}ω∈Ω ∈ D such that for deterministic positive constant c and for P −a.e. ω ∈
Ω,

lim sup
ε→0

‖Eε(ω)‖X ≤ c, (3.2)

where ‖Eε(ω)‖X = sup
x∈Eε(ω)

‖x‖X . We assume that there exists ε0 > 0 such that for

P − a.e. ω ∈ Ω, ⋃
0<ε≤ε0

Aε(ω) is precompact in X. (3.3)

Let A0 be the global attractor of φ in X, which means that A0 is compact and
invariant with respect to φ and attracts every bounded subset of X uniformly.
Then we have the following theorem.

Theorem 3.1. Suppose the conditions (3.1),(3.2),(3.3) hold. Then for P−a.e. ω ∈
Ω,

dist(Aε(ω),A0)→ 0, as ε→ 0. (3.4)

Proof. If the conclusion is not true, then there exists a measurable set Ω1 ⊂ Ω
with P (Ω1) > 0 such that for every ω ∈ Ω1,

dist(Aε(ω),A0) 6→ 0, as ε→ 0.

Thus for every ω ∈ Ω1, there exist a positive number δ > 0 and a sequence {xn}∞n=1

with xn ∈ Aεn(ω) and εn → 0 such that

dist(xn,A0) ≥ δ. (3.5)

Since
⋃

0<ε≤ε0
Aε is precompact in X, it follows that there are y0 ∈ X and a subse-

quence of {xn}∞n=1 ( we still denote by {xn}∞n=1) such that

lim
n→∞

xn = y0.
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Next let us prove y0 ∈ A0. In order to do that, we take a sequence {tm}∞m=1 with
tm →∞. By the invariance of Aεn , we have

φεn(t1, θ−t1ω,Aεn(θ−t1ω)) = Aεn(ω),

and we find that there exists a subsequence {x1,n}∞n=1 with x1,n ∈ Aεn(θ−t1ω) such
that

xn ∈ φεn(t1, θ−t1ω, x1,n), ∀n ≥ 1.

By (3.3) again, there exist y1 ∈ X and a subsequence of {x1,n}∞n=1 (we still denote
by {x1,n}∞n=1) such that

lim
n→∞

x1,n = y1.

Since x1,n ∈ Aεn(θ−t1ω) and Aεn(θ−t1ω) ⊂ Eεn(θ−t1ω), by (3.2), we have

lim sup
n→∞

‖x1,n‖X ≤ lim sup
n→∞

‖Eεn(θ−t1ω)‖X ≤ c.

Thus we have
‖y1‖X ≤ c.

On the other hand, it follows from (3.1)

lim
n→∞

dist(φεn(t1, θ−t1ω, x1,n), φ(t1)y1) = 0.

It follows that

lim
n→∞

d(xn, φ(t1)y1) ≤ lim
n→∞

dist(φεn(t1, θ−t1ω, x1,n), φ(t1)y1) = 0.

Hence we have
y0 ∈ φ(t1)y1.

Similarly, for each m ≥ 2, repeating the above procedure, we can find that there is
ym ∈ X such that

y0 ∈ φ(tm)ym, ∀m ≥ 2,

and
‖ym‖X ≤ c, ∀m ≥ 2.

Letting tm →∞, we have

dist(y0,A0) ≤ lim sup
tm→∞

[dist(y0, φ(tm)ym) + dist(φ(tm)B(c),A0)] = 0,

where B(c) = {x ∈ X : ‖x‖X ≤ c}. This implies y0 ∈ A0, since A0 is compact.
Therefore we have

dist(xn,A0) ≤ ‖xn − y0‖ → 0, asn→∞,

a contradiction with (3.5). The proof is complete.

Remark 3.1. The idea of proof of theorem 3.1 is similar to that of the proof of
theorem in [15] for single value random cocycle. In [19], they also considered the
upper semicontinuity of multi-valued random noncompact dynamical systems, and
they supposed that the attractors are contained in a finite dimension subspace.
Furthermore, if let X be a complete metric space with metric d, and instead the
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condition (3.2) in theorem by the following condition : There exist a bounded set
B and ε1 > 0 such that for P − a.e. ω ∈ Ω,⋃

0<ε≤ε1

Eε(ω) ⊂ B. (3.6)

Therefore we have the following result. Suppose the conditions (3.1), (3.3),(3.6)
hold, then for P − a.e. ω ∈ Ω,

dist(Aε(ω),A0)→ 0, as ε→ 0.

Next we suppose that P is an ergodic measure with respect to θt. Then condition
(3.2) can be replaced by the following condition: There is a random map c(ω) : Ω→
R+ such that for P − a.e. ω ∈ Ω,

lim sup
ε→0

‖Eε(ω)‖X ≤ c(ω). (3.7)

Theorem 3.2. Suppose that P is an ergodic with respect to θt and the conditions
(3.1), (3.3), (3.7) hold. Then for P − a.e. ω ∈ Ω,

dist(Aε(ω),A0)→ 0, as ε→ 0. (3.8)

Proof. If it is not the case, then there exists a measurable set Ω1 ⊂ Ω with
P (Ω1) > 0 such that for every ω ∈ Ω1,

dist(Aε(ω),A0) 6→ 0, as ε→ 0.

There exist a measurable set Ω2 ⊂ Ω1 with P (Ω2) > 0 and a determined positive
constant C such that for every ω ∈ Ω2,

c(ω) ≤ C.

Thus for every ω ∈ Ω2, there exists a positive number δ > 0 and a sequence {xn}∞n=1

with xn ∈ Aεn(ω) and εn → 0 such that

dist(xn,A0) ≥ δ. (3.9)

Since
⋃

0<ε≤ε0
Aε is precompact in X, it follows that there are y0 ∈ X and a subse-

quence of {xn}∞n=1 ( we still denote by {xn}∞n=1) such that

lim
n→∞

xn = y0.

Let us prove y0 ∈ A0. By the ergodicity of P with respect to θt, and Poincare
recurrence theorem (see [14]), for P −a.e. ω ∈ Ω2, we can take a sequence {tm}∞m=1

with tm →∞ such that θ−tmω ∈ Ω2. Thus

lim sup
m→∞

‖Eεn(θ−tmω)‖X ≤ c(θ−tmω) ≤ C, ∀ m ≥ 1.

Next we can follow the line of the proof of theorem 3.1 to obtain a contradiction.
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4. Upper semicontinuity of attractors for multi-
valued random cocycle

In this section, we discuss the upper semicontinuity of pullback attractors of a
family of multi-valued random cocycles on a Banach space X. Suppose Λ is a
metric space. Given λ ∈ Λ, let φλ be a continuous multi-valued random cocycle
on X over (Ω,F , P, {θt}t∈R). Suppose there exists λ0 ∈ Λ such that for very t ∈
R+, ω ∈ Ω, λn ∈ Λ with λn → λ0, and xn, x ∈ X with xn → x, the following holds:

lim
n→∞

dist(φλn(t, ω, xn), φλ0(t, ω, x)) = 0. (4.1)

For each λ ∈ Λ, let Dλ be a collection of families of nonempty subsets of X. Suppose
there is a random map Rλ0

: Ω→ R+ such that the family

B = {B(ω) = {x ∈ X : ‖x‖X ≤ Rλ0
(ω), ω ∈ Ω} belongs to Dλ0

. (4.2)

Suppose further that for each λ ∈ Λ, Φλ has a Dλ pullback attractor Aλ ∈ Dλ and
a Dλ−pullback absorbing set Eλ ∈ Dλ such that for P − a.e. ω ∈ Ω,

lim sup
λ→λ0

‖Kλ(ω)‖X ≤ Rλ0(ω), (4.3)

where ‖S‖X = supx∈S ‖x‖X for a subset S of X. We finally assume that for
P − a.e. ω ∈ Ω, ⋃

λ∈Λ

Aλ(ω) is precompact in X. (4.4)

Theorem 4.1. Suppose the conditions (4.1) –(4.4) hold. Then for P − a.e. ω ∈ Ω,

dist(Aλ(ω),Aλ0
(ω))→ 0, as λ→ λ0. (4.5)

Proof. Suppose the conclusion is not true, then there exists a measurable set
Ω1 ⊂ Ω with P (Ω1) > 0 such that for every ω ∈ Ω1,

dist(Aλ(ω),Aλ0(ω)) 6→ 0, as λ→ λ0.

Thus for every ω ∈ Ω1, there exist a positive number δ > 0 and a sequence λn → λ0

such that for all n ∈ N,
dist(Aλn(ω),Aλ0

(ω)) ≥ δ. (4.6)

Therefore we can find a sequence {xn}∞n=1 with xn ∈ Aλn(ω) such that

dist(xn,Aλ0
(ω)) ≥ δ for all n ∈ N.

Since
⋃
λ∈Λ

Aλ(ω) is precompact in X, it follows that there are y0 ∈ X and a subse-

quence of {xn}∞n=1 ( we still denote by {xn}∞n=1) such that

lim
n→∞

xn = y0.

Next let us prove y0 ∈ Aλ0
(ω). In order to do that, we take a sequence {tm}∞m=1

with tm →∞. By the invariance of Aλn , for every n ∈ N,

φλn(t1, θ−t1ω,Aλn(θ−t1ω)) = Aλn(ω),
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we find that there exists a subsequence {x1,n}∞n=1 with x1,n ∈ Aλn(θ−t1ω) such
that,

xn ∈ φλn(t1, θ−t1ω, x1,n), ∀n ≥ 1.

By (4.4) again, there exists y1 ∈ X and a subsequence of {x1,n}∞n=1 (we still denote
by {x1,n}∞n=1) such that

lim
n→∞

x1,n = y1.

Since x1,n ∈ Aλn(θ−t1ω) and Aλn(θ−t1ω) ⊂ Eλn(θ−t1ω), by (4.3), we have

lim sup
n→∞

‖x1,n‖X ≤ lim sup
n→∞

‖Eλn(θ−t1ω)‖X ≤ Rλ0(θ−t1ω).

Thus we have
‖y1‖X ≤ Rλ0

(θ−t1ω).

On the other hand, it follows from (4.1)

lim
n→∞

dist(φλn(t1, θ−t1ω, x1,n), φλ0
(t1, θ−t1ω, y1) = 0.

It follows that

lim
n→∞

dist(xn, φλ0(t1, θ−t1ω, y1))≤ lim
n→∞

dist(φλn(t1, θ−t1ω, x1,n), φλ0(t1, θ−t1ω, y1))=0.

Thus
dist(y0, φλ0(t1, θ−t1ω, y1)) = 0.

Hence we have
y0 ∈ φλ0

(t1, θ−t1ω, y1).

Similarly, for each m ≥ 2, repeating the above procedure, we can find that there is
ym ∈ X such that

y0 ∈ φλ0
(tm, θ−tmω, ym), ∀m ≥ 2,

and
‖ym‖X ≤ Rλ0

(θ−tmω), ∀m ≥ 2.

Letting tm →∞, we have

dist(y0,Aλ0
(ω)) ≤ lim sup

tm→∞
dist(φλ0

(tm, θ−tmω, ym),Aλ0
(ω))

≤ lim sup
tm→∞

dist(φλ0
(tm, θ−tmω,B(θ−tmω)),Aλ0

(ω)) = 0.

This implies y0 ∈ Aλ0
(ω), since Aλ0

(ω) is compact. Therefore we have

dist(xn,Aλ0(ω)) ≤ ‖xn − y0‖ → 0, asn→∞,

a contradiction with (4.6). The proof is complete.

Remark 4.1. In theorem 4.1, pullback absorbing sets {Eλ(ω)} may depend on
λ ∈ Λ. It is not necessary to assume that {Eλ(ω)} are independence of λ.

In the definition of random attractors (definition 2.9), it is required that a ran-
dom attractor attracts every set in D. If we require weaker condition that a random
attractor only attracts every bounded set (non random) B ∈ X as in paper [4],
whether do we have the upper semicontinuity of random attractors for multi-valued
random cocycles? In this case, we also have the following theorem.



1956 T. Li

Theorem 4.2. Suppose that P is ergodic with respect to θt and the conditions (4.1)
(4.3) (4.4) hold. Then for P − a.e. ω ∈ Ω,

dist(Aλ(ω),Aλ0(ω))→ 0, as λ→ λ0. (4.7)

Proof. Suppose it is not the case, then there exists a measurable set Ω1 ⊂ Ω with
P (Ω1) > 0 such that for every ω ∈ Ω1,

dist(Aλ(ω),Aλ0
(ω)) 6→ 0, as λ→ λ0.

There exist a measurable set Ω2 ⊂ Ω1 with P (Ω2) > 0 and a determined positive
constant R such that for every ω ∈ Ω2,

Rλ0
(ω) ≤ R.

Thus for every ω ∈ Ω2, there exist a positive number δ > 0 and a sequence λn → λ0

such that for all n ∈ N,

dist(Aλn(ω),Aλ0
(ω)) ≥ δ.

Therefore we can find a sequence {xn}∞n=1 with xn ∈ Aλn(ω) such that for all n ∈ N,

dist(xn,Aλ0
(ω)) ≥ δ. (4.8)

Since
⋃
λ∈Λ

Aλ(ω) is precompact in X, it follows that there are y0 ∈ X and a subse-

quence of {xn}∞n=1 ( we still denote by {xn}∞n=1) such that

lim
n→∞

xn = y0.

Next let us prove y0 ∈ Aλ0(ω). By the ergodicity of P with respect to θt, and
Poincare recurrence theorem (see [14]), for P − a.e. ω ∈ Ω2, we can take a sequence
{tm}∞m=1 with tm →∞ such that θ−tmω ∈ Ω2.

We can follow the line of the proof of theorem 4.1 and find a sequence {ym}∞n=1

such that

‖ym‖ ≤ Rλ0(θ−tmω) ≤ R, ∀m ≥ 1

and

y0 ∈ φλ0(tm, θ−tmω, ym), ∀m ≥ 1.

Letting tm →∞, we have

dist(y0,Aλ0
(ω)) ≤ lim sup

tm→∞
dist(φλ0

(tm, θ−tmω, ym),Aλ0
(ω))

≤ lim sup
tm→∞

dist(φλ0
(tm, θ−tmω,B(R)),Aλ0

(ω)) = 0.

Where B(R) = {x ∈ X : ‖x‖ ≤ R}. This implies y0 ∈ Aλ0(ω), since Aλ0(ω) is
compact. Therefore we have

dist(xn,Aλ0
(ω)) ≤ ‖xn − y0‖ → 0, asn→∞,

a contradiction with (4.8). The proof is complete.
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