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HOPF BIFURCATION ANALYSIS OF A
DENSITY PREDATOR-PREY MODEL WITH

CROWLEY-MARTIN FUNCTIONAL
RESPONSE AND TWO TIME DELAYS∗

Chunxia Liu1, Shumin Li 2,† and Yan Yan1

Abstract In this paper, a delayed density dependent predator-prey model
with Crowley-Martin functional response and two time delays for the predator
is considered. By analyzing the corresponding characteristic equations, the
local stability of each of the feasible equilibria of the system is addressed and
the existence of Hopf bifurcation at the coexistence equilibrium is established.
With the help of normal form method and center manifold theorem, some
explicit formulas determining the direction of Hopf bifurcation and the stability
of bifurcating period solutions are derived. Finally, numerical simulations are
given to illustrate the theoretical results.
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1. Introduction

Since the pioneer work of Lotka and Volterra [5], the Lotka-Volterra system has
been extensively investigated. A general two dimensional predator-prey model is
given by the following system

ẋ(t) = Xf(X)− g(X,Y )Y,

ẏ(t) = cg(X,Y )Y − dY, (1.1)

where X and Y denote prey and predator densities at time t, respectively. The
term f(X) stands for the prey growth rate in the absence of predators, while the
term g(X,Y ) denotes the average feeding rate of a predator (i.e. the functional
response of predators to prey density). The parameters c and d denote the effi-
ciency of predators to convert the consumed prey into predator’s new offspring and
predator’s mortality rate respectively. Crowley-Martin [2] assumed that predator’s
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predation will decrease due to high predator density (interference among the preda-
tor individual) even when prey density is high (presence of handling or searching
of prey by predator individual) [1, 8, 12]. There are a few literatures available on
predator-prey model with Crowley-Martin functional response [1–3, 8, 12, 13]. The
Crowley-Martin functional response is predator dependent. The per capita feeding
rate for predator y in this formulation is

η(x, y) =
bx

(1 + a1x)(1 + b1y)
.

In 2016, Syed Abbas and Swati Tyagi devoted their attention to the bifurcating
phenomenons of a predator-prey system with a single time delay [10]. The system
is described by the following form

Ẋ = X(A−BX − CY

A1 +B1X + C1Y +B1C1XY
),

Ẏ = Y (−D−EX)+
FX(T−τ̄)Y (T−τ̄)

A1+B1X(T−τ̄) + C1Y (T − τ̄) +B1C1X(T − τ̄)Y (T − τ̄)
.

(1.2)

Let X = Ax/B, y = Y, t = AT, τ = τ̄ /A. System (1.2) is reduced to the following
dimensionless form of a delayed predator-prey system:

ẋ(t) = x(t)− x2(t)− cx(t)y(t)

1 + a1x(t) + b1y(t) + c1x(t)y(t)
,

ẏ(t) = −dy(t)− ey2(t) +
cx(t− τ)y(t− τ)

1 + a1x(t− τ) + b1y(t− τ) + c1x(t− τ)y(t− τ)
, (1.3)

where c = C/AA1, a1 = AB1/A1B, c1 = AB1C1/A1B, d = D/A, e = E/A, f =
FA/AA1B. X and Y denote prey and predator densities at time t, respectively.
All the parameters A,B,C,D,E, F,A1, B1, C1 in the system are assumed to be
only positive values and will be considered as constants throughout discussion.
Because the initial conditions are positive, the food of predator is assumed to be
partial dependent on the prey of the system. In [10], by choosing τ as bifurcation
parameter, the authors showed that when τ passes through the critical value, the
positive equilibrium lost its stability and the system exhibited Hopf bifurcation.

In this paper, we consider the following system

ẋ(t) = x(t)− x2(t)− cx(t− τ1)y(t− τ1)

1 + a1x(t− τ1) + b1y(t− τ1) + c1x(t− τ1)y(t− τ1)
,

ẏ(t) = −dy(t)− ey2(t) +
cx(t− τ1)y(t− τ1)

1 + a1x(t− τ2) + b1y(t− τ2) + c1x(t− τ2)y(t− τ2)
.

(1.4)

This paper is organized as follows: In Section 2, the local stability of each
of the feasible equilibria for system (1.4) is discussed and the existence of Hopf
bifurcation at the coexistence equilibrium is established. In Section 3, the formulas
for determining the direction of Hopf bifurcation and the stability of bifurcating
period solutions are derived. In Section 4, numerical simulations are presented. A
brief conclusion is given in Section 5.
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2. Local stability and Hopf bifurcation

In this section, we shall discuss the local stability of each of the feasible equilibria of
system (1.4) and the existence of Hopf bifurcation at the coexistence equilibrium.
It is easy to see that system (1.4) has a trivial equilibrium E∗1 (0, 0) and a predator-
extinction equilibrium E∗2 (1, 0). Further, if the following holds:

(H1)(1 + a1x
∗)(1− x∗) > 0, c− (b1 + c1x

∗)(1− x∗) > 0,

system (1.4) has a coexistence equilibrium E∗3 (x∗, y∗), where x∗ is a root of the
following quintic equrtion about z

ζz5 + ξz4 + µz3 + βz2 + γz + δ = 0,

where

ζ = c21f,

ξ = 2c21f(b21 − c),
µ = a1c(a1e− c1d) + f(b21 + c21 + 2cc1 − 4b1c1),

β = c((−c1)d+ a1d(c1 − b1))− a1ce(a1 + 2) + f(2b1c− 2cc1 − 2b21 + 2b1c1),

γ = cd(c1 − b1) + a1cd(b1 − c)− ce(1 + 2a1) + f(c2 − b21 − 2b1c),

δ = cd(b1 − c)− ce,

y∗ =
(1 + a1x

∗)(1− x∗)
c− (b1 + c1x∗)(1− x∗)

.

We now study the local stability of the trivial equilibrium E∗1 (0, 0) and the
predator-extinction equilibrium E∗2 (1, 0). The characteristic equation of system
(1.4) at E∗1 (0, 0) takes the form

(λ− 1)(λ+ d) = 0. (2.1)

Hence, E∗1 (0, 0) is always unstable since system (1.4) has a positive root λ = 1.
The characteristic equation of system (1.4) at E∗2 (1, 0) is of the form

(λ+ 1)(λ+ d− f

1 + a1
e−λτ2) = 0, (2.2)

where λ = −1 is a negative eigenvalue. Hence the root of (2.2) is determined by
the following equation:

λ+ d− f

1 + a1
e−λτ2 = 0. (2.3)

By analyzing (2.3), when τ2 = 0 and d > f
1+a1

, the equilibrium E∗2 (1, 0) is locally
asymptotically stable. Letλ = iω, we get

ω(1 + a1) = −f sinωτ2,

d(1 + a1) = f cosωτ2,

that is, ω2 = ( f
1+a1

)2 − d2. If the f
1+a1

> d, (2.3) has a positive root ω. Therefore,
there is a positive constant τ ′, such that for τ2 > τ ′, E∗2 (1, 0) is unstable.

According the above discussions, we obtain the following results.
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Theorem 2.1. For system (1.4),

(i) the trivial equilibrium E∗1 (0, 0) is always unstable;

(ii) if τ2 > τ ′, the predator-extinction equilibrium E∗2 (1, 0) is unstable; if τ2 =
0, d > f

1+a1
, E∗2 is locally asymptotically stable.

In the following, we will consider the local stability of the coexistence equilibrium
E∗3 and the existence of Hopf bifurcations at E∗3 .

Remark 2.1. The sufficient conditions for the global asymptotic stability of the
positive equilibrium solution E∗3 of the non-delayed system (1.2) implies that the
interior equilibrium solution E∗3 of the delayed system (1.4) is globally asymptotic
stable if E∗3 of the non-delayed system is globally asymptotic stable and conditions
of the Ref [10] hold.

In this section, we shall study the direction of Hopf bifurcation and stability of
the periodic solutions bifurcating from the steady state E∗3 , by using normal form
method and center manifold theorem introduced by Hassard et al. [4]. Through-
out this section, without loss of generality, we always assume that system (1.4)
undergoes Hopf bifurcation at the steady state E∗3 for one of the critical values.

Let x1(t) = x(t) − x∗, y1(t) = y(t) − y∗, and denote u = (x1(t), y1(t)). Still
denote x1(t), y1(t) by x(t), y(t), respectively. Using Taylor expansion to expand the
system (1.4) at the positive equilibrium E∗3 ( Proof in Ref [10]), we have

ẋ(t)=a11x(t−τ1)+a12y(t−τ1)+a13x(t)+
∑

i+j+l≥2

f
(ijl)
1 xi(t−τ1)yj(t−τ1)xl(t),

ẏ(t)=a21x(t−τ2)+a22y(t−τ2)+b23y(t)+
∑

i+j+l≥2

f
(ijl)
2 xi(t−τ2)yj(t−τ2)yl(t),

(2.4)
where

a11 = − cy∗(1 + b1y
∗)

(1 + a1x∗ + b1y∗ + c1x∗y∗)2
,

a12 = − cx∗(1 + a1x
∗)

(1 + a1x∗ + b1y∗ + c1x∗y∗)2
,

a13 = 1− 2x∗,

b11 =
fy∗(1 + b1y

∗)

(1 + a1x∗ + b1y∗ + c1x∗y∗)2
,

b12 =
fx∗(1 + a1x

∗)

(1 + a1x∗ + b1y∗ + c1x∗y∗)2
,

b13 = −d− 2ey∗,

f
(ijl)
1 =

1

i!j!l!

∂i+j+lf1
∂xi(t− τ1)∂yj(t− τ1)∂xl(t

|(x∗,y∗),

f
(ijl)
2 =

1

i!j!l!

∂i+j+lf2
∂xi(t− τ2)∂yj(t− τ2)∂yl(t)

|(x∗,y∗),

f1 = x(t)− x2(t)− cx(t− τ1)y(t− τ1)

1 + a1x(t− τ1) + b1y(t− τ1) + c1x(t− τ1)y(t− τ1)
,

f2 = −dy(t)− y2(t) +
fx(t− τ2)y(t− τ2)

1 + a1x(t− τ2) + b1y(t− τ2) + c1x(t− τ2)y(t− τ2)
.
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Then the linearized system of the corresponding equation at E∗3 is as follows:

ẋ(t) = a11x(t− τ1) + a12y(t− τ1) + a13x(t),

ẏ(t) = a21x(t− τ2) + a22y(t− τ2) + b23y(t). (2.5)

The characteristic equation of system (1.3) is

λ2 +Aλ+H + e−λτ1(Bλ+ C) + e−λτ2(Dλ+ E) + Fe−λ(τ1+τ2) = 0. (2.6)

Case 1: τ1 = τ2 = 0.
The characteristic Eq.(2.6) is

λ2 + (A+B +D)λ+ C + E + F +H = 0. (2.7)

By Routh-Hurwitz criterion, if

(H11) : A+B +D > 0, C + E + F +H > 0,

all roots of Eq.(2.6) with τ1 = τ2 = 0 have negative real parts. Namely, the
equilibrium point E∗3 is locally asymptotically stable when the condition (H11) is
satisfied.

Case 2: τ1 = 0, τ2 > 0.
When τ1 = 0, then (2.6) becomes

λ2 + λ(A+B) + C +H + e−λτ2(Dλ+ E + F ) = 0. (2.8)

For ω2 > 0, let iω2 be a root of (2.8), and separating real and imaginary parts,
we have

Dω2 sin(ω2τ2) + (E + F ) cos(ω2τ2) = ω2
2 − C −H,

Dω2 cos(ω2τ2)− (E + F ) sin(ω2τ2) = −ω2(A+B), (2.9)

which leads to

ω4
2 + e1ω

2
2 + e2 = 0, (2.10)

where e1 = (A + B)2 − 2(C + H) − D2, e2 = (C + H)2 − (E + F )2. Let ω2
2 = v1,

then (2.10) becomes

v21 + e1v2 + e2 = 0. (2.11)

Denote

f1(v1) = v21 + e1v1 + e2. (2.12)

Since f1(0) = e2, limv1→+∞ f1(v1) = +∞, and from (2.12), we have

f ′1(v1) = 2v1 + e1. (2.13)

After similar discussions about the roots of (2.13) as in [9], we have the following
lemma.

Lemma 2.1. For the polynomial Eq.(2.11), we have the following results:
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(H21) If (A+B)2 − 2(C +H)−D2 < 0, (2.11) has at least one positive root;

(H22) If (A+B)2− 2(C+H)−D2 ≥ 0, (2.11) has at least one positive root if and
only if there exists z∗ > 0, such that G′(z∗) = 0 and G(z∗) ≥ 0.

Suppose that (2.11) has positive roots. Without loss of generality, we assume
that it has two positive roots, which are denoted as v11 and v12. Then (2.10) has
two positive roots ω2k =

√
v1k, k = 1, 2. The corresponding critical value of time

delay τ
(j)
2k is

τ
(j)
2k =

1

ω2k
{arccos

(ω2
2k − C −H)(E + F )− ω2

2kD(A+B)

ω2
2kD

2 + (E + F )2
+ 2jπ}, (2.14)

where ±ω2k is a pair of purely imaginary roots of (2.8) with τ2 = τ
(j)
2k , and let

τ20 = mink∈{1,2}{τ
(0)
2k }, ω20 = ω2k0 .

According to the Hopf bifurcation theorem [6, 7, 11, 14], we need to verify the
transversality condition. Differentiating (2.8) with respect to τ2, and noticing that
λ is a function of τ2, we can obtain

(
dλ

dτ2
)−1 =

(2λ+A+B)eλτ2

λ(Dλ+ E + F )
+

D

(Dλ+ E + F )
− τ2
λ
, (2.15)

which leads to

Re(
dλ

dτ2
)−1 = Re(

(2λ+A+B)eλτ2

λ(Dλ+ E + F )
+

D

(Dλ+ E + F )
)λ=iω20

+Re(
τ2
λ

)λ=iω20
.

Noting that {d(Reλ)dτ2
}λ=iω20

and {Re( dλdτ2 )−1}λ=iω20
have the same sign, we have

{d(Reλ)

dτ2
}λ=iω20 = {Re( dλ

dτ2
)−1}λ=iω20 .

Therefore, {d(Reλ)dτ2
}λ=iω20

6= 0 if the following condition holds:

(H23) 2ω2
20 + (A+B)2 − 2(C +H)−D2 6= 0.

By the above discussion, we have the following results.

Theorem 2.2. For system(1.4), τ1 = 0,

(i) if (H21) holds, the positive equilibrium E∗3 (x∗, y∗) is asymptotically stable for
all τ2 ≥ 0;

(ii) if (H22) and (H23) holds, the positive equilibrium E∗3 (x∗, y∗) is asymptotically
stable for all τ2 ∈ [0, τ20) and unstable for τ2 > τ20. Furthermore, system
(1.4) undergoes a Hopf bifurcation at the positive equilibrium E∗3 (x∗, y∗) when
τ2 = τ20.

Case 3: τ2 = 0, τ1 > 0.
The calculation is very similar to Case 2, we have the following results.

Theorem 2.3. For system (1.4), τ2 = 0, the positive equilibrium E∗3 (x∗, y∗) is
asymptotically stable for all τ1 ∈ [0, τ10) and unstable for τ1 > τ10. Furthermore,
system (1.4) undergoes a Hopf bifurcation at the positive equilibrium E∗3 (x∗, y∗)
when τ1 = τ10, where τ10 represents the minimum critical value of time delay τ1 for
the occurrence of Hopf bifurcation when τ2 = 0.
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Case 4: τ1 = τ2 = τ = 0.

Theorem 2.4. For system (1.4), τ1 = τ2 = τ = 0, the positive equilibrium
E∗3 (x∗, y∗) is asymptotically stable for all τ ∈ [0, τ0) and unstable for τ > τ0.
Furthermore, system (1.2) undergoes a Hopf bifurcation at the positive equilibri-
um E∗3 (x∗, y∗) when τ = τ0, where τ0 represents the minimum critical value of time
delay τ for the occurrence of Hopf bifurcation.

Case 5: τ1 > 0, τ2 ∈ [0, τ20) and τ1 6= τ2.
We consider (2.6) with τ2 in its stable interval, and τ1 is regarded as the param-

eter. Let iω1(ω1 > 0) be the root of (2.6), then we can obtain

E11 sin(ω1τ1) + E12 cos(ω1τ1) = E13,

E11 cos(ω1τ1)− E12 sin(ω1τ1) = E14. (2.16)

E11 = ω1B − F sin(ω1τ2),

E12 = C + F cos(ω1τ2),

E13 = ω2
1 −H − ω1D sin(ω1τ2)− E cos(ω1τ2),

E14 = E sin(ω1τ2)− ω1D cos(ω1τ2)− ω1A.

From (2.16), we can get

ω4
1 + e1ω

2
1 + e2 + (e3ω

2
1 + e4) cosω1τ2 + (e5ω

3
1 + e6ω1) sinω1τ2 = 0, (2.17)

where e1 = A2 + D2 − B2 − 2H, e2 = H2 + E2 − C2 − F 2, e3 = 2AD − 2E, e4 =
2HE − 2CF, e5 = −2D, e6 = 2HD + 2BF − 2AE.

In order to give the main results, Suppose that Eq.(2.17) has at least finite

positive root, we denote the positive roots of (2.17) as ω
(1)
2 , ω

(2)
2 , ω

(3)
2 and ω

(4)
2 . For

every ω
(i)
2 (i = 1, 2, 3, 4) the corresponding critical value of time delay τ

(j)
1i (j = 1, 2)

is

τ
(j)
1i =

1

ω1
arccos{E12E13 + E11E14

E2
11 + E2

12

+ 2jπ}ω1=iω
j
1
, i = 1, 2, 3, 4; j = 0, 1, 2, · · · .

Let τ ′10 = min{τ (0)1i |i = 1, 2, ...6; j = 0, 1, 2...}, ω′10 is the corresponding root of
(2.17) with τ ′10.

In the following, we differentiate both sides of (2.6) with respect to τ1 to verify
the transversality condition. Taking the derivative of λ with respect to τ1 in (2.6)
and substituting λ = iω′10, we get

Re(
dλ

dτ1
)−1λ=iω10

= Re(
P +Qi

M +Ni
) = Re(

PM +QN

M2 +N2
),

where

P =A−Bτ1ω10 sinω10τ1 + (B − Cτ1) cosω10τ1 + (−Dω10τ2 + (τ1 + τ2)

F sinω10τ1) sinω10τ2 + (D − Eτ2 − (τ1 + τ2)F cosω10τ1) cosω10τ2,

Q =2ω10 + (Cτ1 −B) sinω10τ1 −Bτ1ω10 cosω10τ1 + (−Dω10τ2 + (τ1 + τ2)

F sinω10τ1) cosω10τ2 + (−D + Eτ2 + (τ1 + τ2)F cosω10τ1) sinω10τ2,

M =ω10C sinω10τ1 − ω2
10B cosω10τ1 + ω10F sinω10τ1 cosω10τ2
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+ ω10F sinω10τ1 cosω10τ2,

N =ω10C cosω10τ1 + ω2
10B sinω10τ1 + ω10F cosω10τ1 cosω10τ2

− ω10F sinω10τ1 sinω10τ2.

As can be seen from the above formula, it is obvious that the transversality

condition {d(Reλ)dτ1
}λ=iω10

> 0. for the occurrence of Hopf bifurcation is well satisfied
provided PM +QN > 0.

By the discussion above, we have the following results.

Theorem 2.5. For system (1.4), τ1 > 0, τ2 ∈ [0, τ20) and τ1 6= τ2. Suppose that the

conditions Eq.(2.17) has at least finite positive root and {d(Reλ)dτ1
}λ=iω10

> 0 hold,
the positive equilibrium E∗3 (x∗, y∗) is asymptotically stable for all τ1 ∈ [0, τ10) and
unstable for τ1 > τ10. Furthermore, system (1.4) undergoes a Hopf bifurcation at
the positive equilibrium E∗3 (x∗, y∗) when τ1 = τ10.

Case 6: τ2 > 0, τ1 ∈ [0, τ10) and τ1 6= τ2.
We consider (2.6) with τ1 in its stable interval, and τ2 is regarded as a parameter.

The calculation is very similar to Case 5, we can obtain the following theorem.

Theorem 2.6. For system (1.4), τ2 > 0, τ1 ∈ [0, τ10) and τ1 6= τ2, the positive
equilibrium E∗3 (x∗, y∗) is symptotically stable for all τ2 ∈ [0, τ20) and unstable for
τ2 > τ20. Furthermore, the system (1.4) undergoes a Hopf bifurcation at the positive
equilibrium E∗3 (x∗, y∗) when τ2 = τ20, where τ20 represents the minimum critical
value of time delay τ2 for the occurrence of Hopf bifurcation when τ1 ∈ [0, τ10).

3. Direction and stability of Hopf bifurcation

By the above discussions, we have shown that the system (1.4) undergoes Hopf
bifurcation for different combinations of τ1 and τ2. Now, we shall study the direction
of Hopf bifurcation and the stability of bifurcating periodic solutions of system (1.4)
with respect to τ2 and τ1 ∈ [0, τ10). The theoretical approach applied is based on
the normal form theory and center manifold theorem [4]. It is considered that
system (1.4) undergoes Hopf bifurcation at τ2 = τ ′20, τ1 ∈ [0, τ10). Without loss of
generality, we assume that τ ′20 > τ ′1.

Let τ2 = τ ′20+µ, µ ∈ R, t = sτ2, x(sτ2) = x̂(s), y(sτ2) = ŷ(s), denote x = x̂, y = ŷ
and t = s, then system (1.4) can be written as a functional differential equation
(FDE) in C = C([−1, 0], R2):

U̇(t) = (τ ′20 + µ)(B1U(t) +B2U(t− τ ′1
τ2

) +B3U(t− 1) + f(x, y)), (3.1)

where U(t) = (x(t), y(t))T , f = (f1, f2)T , and

f1 =
∑

i+j+k≥2

1

i!j!k!
f1ijlx

i(t− τ ′1
τ2

)yj(t− τ ′1
τ2

)xl(t),

f2 =
∑

i+j+k≥2

1

i!j!k!
f2ijlx

i(t− 1)yj(t− 1)yl(t).

Denote

Lµφ = (τ ′20 + µ)(B1φ(0) +B2φ(−τ
′
1

τ2
) +B3φ(−1)),
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φ = (φ1, φ2)T ε((−1, 0], R2), (3.2)

where

B1 =

a13 0

0 a23

 , B2 =

a11 a12
0 0

 , B2 =

 0 0

a21 a22

 .
Hence, by the Riesz representation theorem, there exists a 2×2 matrix function

η(θ, µ) of bounded variation for θ ∈ [−1, 0], such that Lµφ is the form

Lµφ =

∫ 0

−1
dη (θ, µ)φ(θ), for φ ∈ C. (3.3)

δ(θ) is the Dirac delta function. In fact, we can choose

η(θ, µ) =


(τ ′20 + µ)(B1 +B2 +B3), θ = 0,

(τ ′20 + µ)(B2 +B3), θ ∈ [− τ
′
1

τ2
, 0),

(τ ′20 + µ)B3, θ ∈ [−1,− τ
′
1

τ2
),

0, θ = −1,

(3.4)

where

A(µ)φ =


dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1 dη(s, µ)φ(s), θ = 0,
(3.5)

and

Rφ =

{
0, θ ∈ [−1, 0),

h(µ,Φ), θ = 0,
(3.6)

where

h(µ,Φ) = (τ ′20 + µ)

h1
h2

 , (3.7)

where

h1 =
∑

i+j+k≥2

1

i!j!k!
f1ijlφ

i
1(−τ

′
1

τ2
)φj2(−τ

′
1

τ2
)φl1(0),

h2 =
∑

i+j+k≥2

1

i!j!k!
f2ijlφ

i
1(−1)φj2(−1)φl2(0).

Then Eq.(3.1) can be written as

u̇t = A(µ)ut +Rut. (3.8)

Assume that q(θ) is the eigenvector of A(0) corresponding to iω0τ
′
20, then

A(0)q(θ) = iω0τ
′
20q(θ). It follows from the definition of A(0) that iω0 − a11e−iω0τ

′
1 − a13 −b11e−iω0τ

′
1

−b11e−iω0τ
′
20 iω0 − b12e−iω0τ

′
20 − b13

 q(θ) =

 0

0

 .
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Thus, we can easily compute q(θ) = (1, α)T eiω0τ
′
20θ, where

α =
iω0 − a11e−iω0τ

′
1 − a13

b11e−iω0τ ′1
. (3.9)

Similarly, it can be verified that q∗(s) = D(1, α∗)eiω0τ
′
20s is the eigenvector

corresponding to the eigenvalue −iω0τ
′
20 of A∗, which is the adjoint operator of

A(0), where

α∗ =
−iω0 − a11e−iω0τ

′
1 − a13

b11e−iω0τ ′20
. (3.10)

In order to assure the bilinear inner product < q∗(s), q(θ) >= 1, we have

〈q∗(θ), q(θ)〉 = D̄(1, ᾱ∗)(1, α)T

−
∫ 0

−1
∫ θ
ξ=0

D̄(1, ᾱ∗)e−i(ξ−θ)ω0τ
′
20dη(θ)(1, α)T eiξω0τ

′
20dξ

= D̄(1 + αᾱ∗ −
∫ 0

−1 (1, ᾱ∗)θeiθω0τ
′
20dη(θ)(1, α)T )

= D̄(1 + αᾱ∗ + (b12ᾱ∗ + b13αᾱ∗)τ
′
20e
−iω0τ

′
20

+ τ ′1(a11 + a12)e−iω0τ
′
1).

(3.11)

Therefore, we can choose D̄ as

D̄ = [(1 + αᾱ∗ + (b12ᾱ∗ + b13αᾱ∗)τ
′
20e
−iω0τ

′
20 + τ ′1(a11 + a12)e−iω0τ

′
1)]−1

= 1
Re(D−1)+iIm(D−1) .

We can get < q∗(s), q̄(θ) >= 0. In what follows, we will obtain the coordinates to
describe the center manifold C0 at τ = τ0. Noticing that ut(θ) = (xt(θ), yt(θ))

T =
zq(θ) + z̄q̄(θ) +W (t, θ), we have

x1t(0) =z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+W

(1)
30 (0)

z3

6

+W
(1)
21 (0)

z2z

2
+ · · · ,

x2t(0) =zα+ z̄ᾱ+W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2

+W
(2)
30 (0)

z3

6
+W

(2)
21 (0)

z2z

2
+ · · · ,

x1t(−1) =ze−iωkτk + z̄eiωkτk +W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2

+W
(1)
30 (−1)

z3

6
+W

(1)
21 (−1)

z2z

2
+ · · · ,

x2t(−1) =zαe−iωkτk + z̄ᾱeiωkτk +W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz̄ +W

(2)
02 (−1)

z̄2

2

+W
(2)
30 (−1)

z3

6
+W

(2)
21 (−1)

z2z

2
+ · · · .

(3.12)
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Thus, from Eq.(3.2) we have

g(z, z̄) = q̄∗(0)f0(z, z̄) = τ ′20D̄(1, α∗)

h1

h2


= τ ′20D̄(k11x

2
1t(−

τ ′1
τ ′20

) + k12x1t(− τ ′1
τ ′20

)x2t(− τ ′1
τ ′20

+ k13x
2
2t(−

τ ′1
τ ′20

) + k14x
2
1t

+ ᾱ∗(k21x
2
1t(−1) + k22x

2
2t(−1) + k23x1t(−1)x2t(−1) + k24x

2
2t(−1))),

(3.14)
where

h1 = k11φ
2
1(− τ ′1

τ ′20
) + k12φ1(

τ ′1
τ ′20

)φ2(− τ ′1
τ ′20

) + k13φ
2
2(− τ ′1

τ ′20
) + k14φ

2
1(0),

h1 = k21φ
2
1(−1) + k22φ

2
2 + k23φ1(−1)φ2(−1) + k24φ

2
2(0),

k11 =
−2cy∗(a1 + c1y

∗ + a1b1y
∗ + b1c1(y∗)2)

(1 + a1x∗ + b1y∗ + c1x∗y∗)3
,

k12 =
c(1 + a1x

∗ + b1y
∗ − c1x∗y∗ + 2a1b1x

∗y∗)

(1 + a1x∗ + b1y∗ + c1x∗y∗)3
,

k13 =
−2cx∗(b1 + c1x

∗ + a1b1x
∗ + a1c1(x∗)2)

(1 + a1x∗ + b1y∗ + c1x∗y∗)3
,

k14 = −2,

k21 =
f

c
k11,

k22 =
f

c
k12,

k23 =
f

c
k13,

k24 = −2e.

Comparing the coefficients with (3.14), we can obtain

g20 =2τ ′20D̄((k11 + k12α+ k13α
2)e−2iω0τ

′
1 + k14 + ᾱ∗(k21 + k22α

2 + k23α)e−2iω0τ
′
20

+ k24α
2),

g11 =τ ′20D̄(2k11 + k12(α+ ᾱ) + 2k13αᾱ+ 2k14 + ᾱ∗(2k21 + 2αᾱk22 + (α+ ᾱ)k23

+ 2αᾱk24)),

g02 =2τ ′20D̄((k11 + k12ᾱ+ k13ᾱ
2)e2iω0τ

′
1 + k14 + ᾱ∗(k21 + k22ᾱ

2

+ k23ᾱ)e2iω0τ
′
20 + k24ᾱ

2),

g21 =2τ ′20D̄[(k142W
(1)
11 (0) + 2k21ᾱ∗W

(1)
11 (−1)e−iω0τ

′
20 + αᾱ∗k23W

(1)
11 (−1)

e−iω0τ
′
20 + k14(W

(1)
20 (0) + ᾱ∗k21W

(1)
20 (−1)eiω0τ

′
20 +

1

2
k23W

(1)
20 (−1)

eiω0τ
′
20 + 2k22W

(2)
11 (−1)e−iω0τ

′
20αᾱ+ k23W

(2)
11 (−1)e−iω0τ

′
20 ᾱ∗

+ 2k24W
(2)
11 (0)αᾱ∗ + k22W

(2)
20 (−1)ᾱᾱ∗ +

1

2
k23W

(2)
20 (−1)ᾱ∗e−iω0τ

′
20

+ k24W
(2)
20 (0)ᾱᾱ∗) + 2k11W

(3)
11 (− τ ′1

τ ′20
)e−iω0τ

′
10 + k12W

(3)
11 (− τ ′1

τ ′20
)
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e−iω0τ
′
10 + k12W

(3)
11 (− τ ′1

τ ′20
)e−iω0τ

′
10α+ 2k13W

(3)
11 (− τ ′1

τ ′20
)α

+ k11W
(3)
20 (− τ ′1

τ ′20
)eiω0τ

′
10 +

1

2
k12W

(3)
20 (− τ ′1

τ ′20
)eiω0τ

′
10

+
1

2
ᾱk12W

(3)
20 e

iω0τ
′
10 + ᾱk13W

(3)
20 (− τ ′1

τ ′20
)eiω0τ

′
10 ].

In order to obtain g21, we need to compute W20(θ) and W11(θ),

Ẇ = ẋt − żq − żq̄ =

AW − 2Re{q̄∗(0)f0q(θ)}, θ ∈ [0, 1),

AW − 2Re{q̄∗(0)f0q(θ)}+ f0, θ = 0.
(3.15)

Substituting the corresponding series into (3.15) and comparing the coefficients,
we obtain

(A− 2iτ ′20ω0)W20(θ) = −H20(θ), AW11(θ) = −H11(θ). (3.16)

For θ ∈ [−1, 0), from (3.15), we also know that

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −gq(θ)− ḡq̄(θ). (3.17)

Comparing the coefficients with (3.17), we have

H20(θ) = −g20q(θ)− ḡ02q̄(θ), (3.18)

and
H11(θ) = −g11q(θ)− ḡ11q̄(θ). (3.19)

From (3.16), (3.17) and the definition of A, we can easily get

Ẇ20(θ) = 2iτ ′20ω0W20(θ) + g20q(θ) + ḡ02q̄(θ). (3.20)

Notice that q(θ) = (1, α)T eiθω0τ
′
0 , hence

W20(θ) =
ig20
τ ′20ω0

q(0)eiθω0τ
′
20 +

iḡ02
3τ ′20ω0

q̄(0)e−iθω0τ
′
20 + E1e

2iθω0τ
′
20 , (3.21)

where E1 = (E
(1)
1 , E

(2)
1 ) ∈ R2 is a constant vector. Similarly, we can obtain

W11(θ) = − ig11
τ ′20ω0

q(0)eiθω0τ
′
20 +

iḡ11
τ ′20ω0

q̄(0)e−iθω0τ
′
20 + E2, (3.22)

where E2 = (E
(1)
2 , E

(2)
2 ) ∈ R2 is a constant vector.

In what follows, we shall seek appropriate E1 and E2. According to the definition
of A and (3.16), we have∫ 0

−1
dη(θ, 0)W20(θ) = 2iτ ′20ω0W20(0)−H20(0). (3.23)

and ∫ 0

−1
dη(θ, 0)W11(θ) = −H11(0), (3.24)
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where η(θ) = η(θ, 0). From (3.15) and (3.17), we have

H20(0) = −g20q(0)−ḡ02q̄(0)+2τ ′20

 (k11 + k12α+ k13α
2)e−2iω0τ

′
10 + k14

(k21 + k23α+ k22α
2)e2iω0τ

′
20 + k24α

2

 (3.25)

and

H11(0)=−g11q(0)−ḡ11q̄(0)+2τ ′20

 2k11+k12Reα+k12Reᾱ+2k13αᾱ+2k14

2k21+k23Reα+k23Reᾱ+2k22αᾱ+2k24αᾱ

 .
(3.26)

Substituting (3.21) and (3.25) into (3.23) and noticing that

(iω0τ
′
20I −

∫ 0

−1
eiω0τ

′
20θdη(θ))q(0) = 0,

and

(−iω0τ
′
20I −

∫ 0

−1
e−iω0τ

′
20θdη(θ))q(0) = 0,

we have

(2iω0τ
′
20I−

∫ 0

−1
e2iω0τ

′
20θdη(θ))E1 =2τ ′20

 (k11+k12α+k13α
2)e−2iω0τ

′
10 +k14

(k21+k23α+k22α
2)e2iω0τ

′
20 +k24α

2

 .

That is, 2iω0 − a13 − a11x∗e
−iω0(−

τ′1
τ′20

)
a12x

∗e
−iω0(−

τ′1
τ′20

)

−a21y∗e−iω0τ
′
20 2iω0 − a23 − a22y∗e−iω0τ

′
20

E1

= 2

 (k11 + k12α+ k13α
2)e−2iω0τ

′
10 + k14

(k21 + k23α+ k22α
2)e2iω0τ

′
20 + k24α

2

 .

(3.27)

According to the Crammer’s criteria, the solutions of (3.27) are described by

E1=2

 2iω0−a13−a11x∗e
−iω0(−

τ′1
τ′20

)
a12x

∗e
−iω0(−

τ′1
τ′20

)

−a21y∗e−iω0τ
′
20 2iω0−a23−a22y∗e−iω0τ

′
20


−1

×

 (k11 + k12α+ k13α
2)e−2iω0τ

′
10 + k14

(k21 + k23α+ k22α
2)e2iω0τ

′
20 + k24α

2

 .

(3.28)
Similarly, substituting (3.22) and (3.26) into (3.24), we have

E2 = 2

−a11 − a13 −a12

−a21 −a22 − a23

−1
 2k11 + k12Reα+ k12Reᾱ+ 2k13αᾱ+ 2k14

2k21 + k23Reα+ k23Reᾱ+ 2k22αᾱ+ 2k24αᾱ

 .

(3.29)
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Thus, we can compute the following values

c1(0) = i
2ω0τ ′20

(g20g11 − 2|g11|2 − 1
3 |g02|

2) + g21
2 ,

µ2 = − Re{c1(0)}
Re{λ′(τ ′20)}

,

β2 = 2Re{c1(0)},

T2 = − Im(c1(0))+µ2Im{λ′(τ ′20)}
ω0τ ′20

,

which determines the quantities of bifurcating periodic solutions in the center mani-
fold at the critical value τ20, i.e., µ2 determines the directions of a Hopf bifurcation:
if Re{λ′(τ0)} > 0, µ2 > 0(resp. µ2 < 0), the Hopf bifurcation is supercritical (resp.
subcritical) and the periodic solutions exist for τ > τ0(τ < τ0). β2 determines the
stability of the bifurcation periodic solutions: the bifurcating periodic solutions are
stable(unstable) if β2 < 0(β2 > 0). The period of the bifurcating periodic solutions
is determined by the sign of T2 : if T2 > 0(T2 < 0), the bifurcating periodic solutions
increase(decrease).

4. Numerical simulations

In this section, we present some numerical simulations by using Matlab 7.0 to
illustrate the analytical results, and the corresponding wave form and the phase
plots of system (1.4) are drawn.

Let a1 = 1.05, b1 = 0.8, c = 2.49, d = 0.1, e = 0.1, c1 = 0.0005, f = 0.8. Then,
we have the following particular example of system (1.4): ẋ(t) = x(t)− x2(t)− 2.49x(t−τ1)y(t−τ1)

1+1.05x(t−τ1)+0.8y(t−τ1)+0.005x(t−τ1)y(t−τ1) ,

ẏ(t) = −0.1y(t)− 0.1y2(t) + 0.8x(t−τ2)y(t−τ2)
1+1.05x(t−τ2)+0.8y(t−τ2)+0.005x(t−τ2)y(t−τ2) .

(4.1)

System (4.1) has a positive equilibrium E∗(0.3256, 0.4640).
For τ1 = 0, τ2 > 0, we can get ω20 = 0.1549, τ20 = 6.7756. From Theorem 2.2, we

know that the positive equilibrium E∗ is asymptotically stable when τ2 ∈ [0, τ20).
When the time delay τ2 passes through the critical value τ20, the positive equilibrium
E∗ loses its stability and a Hopf bifurcation occurs, and a family of periodic solutions
bifurcate from the positive equilibrium E∗. The corresponding wave form and the
phase plots are depicted in Figures 1 and 2.

Figure 1. When τ1 = 0, E∗ is asymptotically stable for τ2 = 2.75 < τ20 = 6.7756.
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Figure 2. When τ1 = 0, E∗ undergoes a Hopf bifurcation for τ2 = 3.8 < τ20 = 6.7756.

For τ2 = 0, τ1 = 1.01657 < τ10 = 1.4340, The positive equilibrium E∗ is asymp-
totically stable. we can get ω10 = 0.4303. when the time delay τ1 passes through the
critical value τ10, the positive equilibrium E∗ lose its stability and a Hopf bifurcation
occurs. The corresponding wave form and the phase plots are depicted in Figures 3
and 4. For τ1 = 0.1, when τ2 = 7, According to Theorem 2.5, E∗ is asymptotically

Figure 3. When τ2 = 0, E∗ is asymptotically stable for τ1 = 0.98 < τ10 = 1.4340.

Figure 4. When τ2 = 0, E∗ undergoes a Hopf bifurcation for τ1 = 1.01657 < τ10 = 1.4340.

Figure 5. E∗ is asymptotically stable for τ1 = 0.10, τ2 = 1.9 < τ20 = 6.7756.
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Figure 6. E∗ undergoes a Hopf bifurcation for τ1 = 0.1, τ2 = 7.0 > τ20 = 6.7756.

stable and unstable whenτ2 > τ ′20. After the computation of (3.17), we can obtain
c1(0) = −1.1183e + 03 + 1.0511e + 02i, µ2 = 11.9746, β2 = −2.2365e + 03, T2 =
−88.8339, From Theorem 3.1, the Hopf bifurcation is supercritical, the bifurcating
periodic solutions are stable, which can be depicted in Figures 5 and 6. Similarly,
for τ1 = 2.8, τ2 = 6.7464, we can obtain ω′10 = 0.4102, τ ′10 = 1.5460.

5. Conclusions.

In this paper, a density dependent predator-prey model with Crowley-Martin func-
tional response and two time delays is considered. By analyzing the corresponding
characteristic equations, we investigate on local stability of each of the feasible
equilibria and establish the existence of Hopf bifurcations at the coexistence equi-
librium. It has been shown that, the time delay due to the gestation of the predator
is marked because the critical value of τ2 is smaller than that of τ1 we only consider,
respectively. We can obtain that system becomes unstable if time delays are large
enough. It shows that the densities of the predator and prey population will keep
in an oscillatory case. By applying the normal form theory and center manifold
theorem, the explicit formulas which determine the direction of Hopf bifurcation
and stability of the bifurcating periodic solution are derived. The numerical results
in which the Hopf bifurcation is super critical and the bifurcation periodic solutions
are stable are in accord with the theoretical analysis.

In addition, owing to the lack of hunting ability of the immature predator,
stage structured. However, some predator species dislike hunting immature preys,
or many immature preys are concealed in the caves or nests to keep from being
attacked by the predators in the natural world. Because of these, it deserves our
attention to explore the influence concerning stage structure for the prey in system
(1.4) for further discussion.
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