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Abstract In this paper, we consider a type of delayed resonant differential
equations. We focus on the existence of periodic solutions. Employing the
Clark dual, we provide two sets of criteria on the existence of at least one
periodic solution. In fact, the periodic solutions are critical points minimizing
the dual functional of the coupled Hamiltonian system on certain subspaces
of a Banach space.
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1. Introduction

In 1962, Jones [9] firstly investigated the existence of periodic solutions to a scalar
delay differential equation. Since then much has been done for similar equations
by employing methods including fixed point theory, Hopf bifurcation theorems,
the coincidence degree theorem, and the Poincaré-Bendixson theory. We refer the
readers to papers [1, 17,18,22], monograph [7], and survey [27].

In 1974, Kaplan and Yorke [10] investigated the delay differential equation,

x′(t) = −f(x(t− 1)), x ∈ R, (1.1)

where R is the set of all real numbers, and f is odd and continuous such that
xf(x) > 0 for x 6= 0. They introduced a totally new technique, which reduced
the existence of periodic solutions of (1.1) to that of an associated planar system
of ordinary differential equations. By making use of this technique, it is shown
that (1.1) possesses a periodic solution with period 4. In the same paper, they also
considered the delay differential equation,

x′(t) = −f(x(t− 1))− f(x(t− 2))− · · · − f(x(t− n+ 1)), x ∈ R. (1.2)
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They claimed that under some appropriate assumptions, the existence of periodic
solutions to (1.2) can be obtained by that of an associated system of ordinary
differential equations.

In 1978, by making use of the fixed point theory, Nussbaum [22] showed that
Kaplan and Yorke’s conjecture is valid. In 1998, Li and He [11] tried to make use
of Kaplan and Yorke’s original idea to reinvestigate (1.2). They transformed the
existence of periodic solutions of (1.2) to that of a Hamiltonian system. By making
use of Lyapunov center theorem and some known results on convex Hamiltonian
systems, Li and He [12] established some results on the existence of periodic solu-
tions to (1.2). For more results, we refer to [11, 13, 16]. In 2006, Fei reduced the
existence of periodic solutions of (1.2) to the existence of some symmetric periodic
solutions of Hamiltonian systems. By making use of pseudo index theory, Fei [2, 3]
proved the existence of multiple periodic solutions to (1.2) with odd number and
even number of delays, respectively.

In 2005, Guo and Yu [5] directly built a variational structure for a delay differ-
ential system with one delay, where the variational functional contains the delay.
They showed that the existence of periodic solutions of delay differential equations
is equivalent to that of critical points of the associated variational functional. By
making use of pseudo index theory, Guo and Yu [5] obtained some sufficient condi-
tions guaranteeing the existence of multiple periodic solutions. Several years later,
Guo and Yu [6] and Zheng and Guo [28] respectively found the equivalence between
the existence of periodic solutions of delay differential systems with odd number and
even number of delays and that of critical points of associated variational function-
als, respectively. Two results were obtained on the existence of multiple periodic
solutions.

In 2013, Yu [26] found that the existence of periodic solutions to (1.1) depends
on the behavior of f(x)/x at both zero and infinity. Precisely, if

min{a1, a2} <
π

2
(1 + 4k) < max{a1, a2},

then (1.1) possesses a periodic solution with period 4/(1+4k), where a1 = limx→0 f(x)/x
and a2 = limx→∞ f(x)/x. In the same paper, results on the existence of periodic
solutions to (1.1) when min{a1, a2} < π/2 or max{a1, a2} > π/2 were also estab-
lished.

In 2016, Ge and Zhang studied the following delay system

ẋ(t) = −
n∑
i=1

∇F (x(t− i)), x ∈ RN .

Here N is a positive integer. They assumed that

∇F (x) = A∞x+ o(|x|), |x| → ∞,

∇F (x) = A0x+ o(|x|), |x| → 0,

where A∞, A0 ∈ RN×N are symmetric constant matrices and |·| denotes the norm in
RN . By making use of variational methods, the authors [4] proved the existence of
multiplicity of periodic solutions depends only upon the eigenvalues of both matrices
A0 and A∞. More results on this direction, we refer to [14,15].

Recently, based on the Kaplan-Yorke method, Han, Xu and Tian studied the
existence and multiple periodic solutions of delay differential equation ẋ(t) = bx(t−



Nontrivial periodic solutions. . . 2247

1) + εf(x(t), x(t − 1), ε). By making use of bifurcation theory, they proved the
existence of multiple solutions to the delay differential equations with period 4/(4k+
1) or 4/(4k + 3). We refer to reference [8].

We mention that, in most of the above references, the delay differential equations
are asymptotically linear at both zero and infinity. In 2012, Wu and Wu [23] studied
the following boundary value problem,u′(t) = −Λu(t+ r)− f(t, u(t− r)),

u(0) = −u(2r), u(0) = u(4r),
(1.3)

where r > 0 is a given constant and Λ ∈ (− π
2r ,

3π
2r ) is a parameter. By using some

results for strongly indefinite functionals, they got some results on the existence of
multiple periodic solutions to (1.3) under the non-resonance assumption. For more
results in this direction, we refer to [21,24,25].

In this article, we are going to investigate a type of delayed resonant differen-
tial equations, which can be viewed as a nonlinear perturbation at an arbitrary
eigenvalue. Precisely, we investigate the following equation,

x′(t) = −αx(t− 1)− f(t, x(t− 1)), x ∈ R, (1.4)

where α = (−1)k−1(2k− 1)π/2 and k is a positive integer. Assume that f : [0, 4]×
R→ R satisfies

(f1) f(t, x) is odd with respect to x and is 1-periodic with respect to t, i.e.,

f(t,−x) = −f(t, x), f(t+ 1, x) = f(t, x), (t, x) ∈ [0, 4]× R;

(f2) F (·, x) is measurable for each x ∈ R and F (t, ·) is convex and continuously
differentiable for a.e. t ∈ [0, 4], where F (t, x) =

∫ x
0
f(t, s)ds.

By making change of variables, one can reduce the existence of periodic solutions
of (1.4) to that of some symmetric periodic solutions of a coupled Hamiltonian sys-
tem. By searching the critical points of the dual variational functional, we prove the
existence of critical points, which minimize the dual functional on some subspaces
of a Banach space.

The rest of this article is organized as follows. In Section 2, we transform the
existence of periodic solutions of (1.4) to that of some symmetric periodic solutions
of a coupled Hamiltonian system. Then the dual variational functional associated
with the Hamiltonian system on some suitable subspaces of a Banach space is
established. Then in Section 3, we state and prove the main results.

2. Preliminaries

Denote by N∗, Z, and R+ the sets of all positive integers, integers, and non-negative
real numbers, respectively.

2.1. The coupled Hamiltonian system

Suppose that x(t) is a 4-periodic solution of (1.4) such that x(t) = −x(t− 2). Let

x1(t) = x(t), x2(t) = x(t− 1). (2.1)
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Denote y(t) = (x1(t), x2(t))τ and H(t, y) = F (t, x1) +F (t, x2), where τ denotes the
transpose of a vector. Then y satisfies

Jy′(t) = αy +∇H(t, y), (2.2)

where J =

 0 1

−1 0

 is the standard symplectic matrix. Computing directly, one

can verify the following lemma.

Lemma 2.1. Assume that f satisfies (f1). Then the following statements hold.

(1) Any solution x(t) of (1.4) such that x(t) = −x(t−2) will give a solution y(t) =
(x1(t), x2(t))τ of (2.2), where x1(t), x2(t) are defined by (2.1). Moreover, such
a solution y(t) possesses a symmetric structure as follows,

x1(t) = −x2(t− 1), x2(t) = x1(t− 1). (2.3)

(2) Any solution y(t) of (2.2) with the symmetric structure (2.3) will give a so-
lution of (1.4) by letting x(t) = x1(t). Moreover, x(t) = −x(t− 2).

To study the existence of periodic solutions of (2.2) with the symmetric struc-
ture (2.3), in the following, we provide the dual variational functional.

2.2. The dual variational functional

Let L2(0, 4;R2) be the Banach space of quadratic integrable 4-periodic functions
from R into R2. For y ∈ L2(0, 4;R2), it has the following Fourier expansion in the
sense that it is convergent under the norm defined on L2(0, 4;R2),

y(t) = a0 +

∞∑
j=1

[
aj cos

(π
2
jt
)

+ bj sin
(π

2
jt
)]
, (2.4)

where a0, aj , bj ∈ R2 for j ∈ N∗. Define a subset E of L2(0, 4;R2) as follows,

E =

y ∈ L2(0, 4;R2)

∣∣∣∣∣∣∣
y(t) =

∞∑
j=1

[
aj cos

(
π
2 (2j − 1)t

)
+ bj sin

(
π
2 (2j − 1)t

)]
,

where bj = (−1)jJaj for j ∈ N∗

 .

For any y ∈ E, computing directly, one has

Jy(t− 1) = J

{
∞∑
j=1

[
aj cos

(
π
2 (2j − 1)t− jπ + π

2

)
+ bj sin

(
π
2 (2j − 1)t− jπ + π

2

)]}

= J

∞∑
j=1

(−1)j
[
−aj sin

(π
2

(2j − 1)t
)

+ bj cos
(π

2
(2j − 1)t

)]
=

∞∑
j=1

[
−(−1)jJaj sin

(π
2

(2j − 1)t
)

+ (−1)jJbj cos
(π

2
(2j − 1)t

)]
= −

∞∑
j=1

[
bj sin

(π
2

(2j − 1)t
)

+ aj cos
(π

2
(2j − 1)t

)]
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= −y(t).

Consequently, −Jy(t−1) = y(t), that is, every element of E possesses the symmetric
structure (2.3).

Before going further, define

Z =

{
ω ∈ E

∣∣∣∣∫ 4

0

ω(t) sin(αt)dt =

∫ 4

0

ω(t) cos(αt)dt = 0

}
.

Obviously, Z is the kernel of the linear operator of A : E → R4, where

A(w) =

(∫ 4

0

w(t) sin(αt)dt,

∫ 4

0

w(t) cos(αt)dt

)
.

Therefore, Z is a closed linear subspace of E. One can easily verify the following
property on elements of Z.

Proposition 2.1. ω ∈ Z if and only if its Fourier series is

ω(t) =
∑
j∈N∗
j 6=k

[
aj cos

(π
2

(2j − 1)t
)

+ bj sin
(π

2
(2j − 1)t

)]
, (2.5)

where bj = (−1)jJaj for j ∈ N∗ \ {k}.

Let us consider the boundary value problem of the linear non-homogeneous
ordinary differential system,Jy′(t) = αy + z(t), z ∈ E,

y(0) = y(4).
(2.6)

Proposition 2.2. (2.6) has a unique solution in Z, denoted by Lz, if and only if
z ∈ Z.

Proof. On the one hand, suppose that (2.6) has a solution y ∈ Z. Then it follows
from (2.5) that

Jy′ − αy =
∑
j∈N∗
j 6=k

{[π
2

(2j − 1)Jbj − αaj
]

cos
(π

2
(2j − 1)t

)

+
[
− π

2
(2j − 1)Jaj − αbj ] sin

(π
2

(2j − 1)t
)]}

.

Set Aj = π
2 (2j − 1)Jbj − αaj and Bj = −π2 (2j − 1)Jaj − αbj . One can easily

check that (−1)jJAj = Bj for all j ∈ N∗ \ {k}. Then Proposition 2.1 yields that
z = Jy′ − αy ∈ Z.

On the other hand, suppose that z ∈ Z and its Fourier series is

z(t) =
∑
j∈N∗
j 6=k

[
aj cos

(π
2

(2j − 1)t
)

+ bj sin
(π

2
(2j − 1)t

)]
,
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where bj = (−1)jJaj for j ∈ N∗ \ {k}. According to (2.4), for any y ∈ L2(0, 4,R),
its Fourier series is

y(t) = A0 +

∞∑
l=1

[
Al cos

(π
2
lt
)

+Bl sin
(π

2
lt
)]
.

Direct computation yields

Jy′−αy = −αA0+

∞∑
l=1

[(π
2
lJBl − αAl

)
cos
(π

2
lt
)

+
(
− π

2
lJAl − αBl

)
sin
(π

2
lt
)]
.

If y satisfies Jy′ = z + αy, then

−αA0 =
π

2
(2l)JB2l − αA2l = −π

2
(2l)JA2l − αB2l = 0

for l ∈ N∗ and
π

2
(2l − 1)JB2l−1 − αA2l−1 = al, −π

2
(2l − 1)JA2l−1 − αB2l−1 = bl

for l ∈ N∗ \ {k}, that is,
A0 = A2l = B2l = 0

for l ∈ N∗ and
A2l−1 = γlal, B2l−1 = γlbl

for l ∈ N∗ \ {k}, where γl = 1
(−1)l−1(2l−1)π2−(−1)k−1(2k−1)π2

. It follows that

y(t) =
∑
l∈N∗
l 6=k

γl

[
al cos

(π
2

(2l − 1)t
)

+ bl sin
(π

2
(2l − 1)t

)]

+
[
A2k−1 cos

(π
2

(2k − 1)t
)

+B2k−1 sin
(π

2
(2k − 1)t

)]
.

Hence y ∈ Z if and only if A2k−1 = B2k−1 = 0. Therefore, (2.6) has a unique
solution Lz ∈ Z, where

(Lz)(t) =
∑
l∈N∗
l 6=k

γl

[
al cos

(π
2

(2l − 1)t
)

+ bl sin
(π

2
(2l − 1)t

)]
.

In what follows, we give an explicit expression of Lz in terms of z. For any
z ∈ Z, the general solution of (2.6) is given by

y(t) = exp(−Jαt)c−
∫ t

0

exp(−Jα(t− s))Jz(s)ds

= c cos(αt)− Jc sin(αt)−
∫ t

0

[Jz(s) cosα(t− s) + z(s) sinα(t− s)]ds, (2.7)

where c ∈ R2.

Proposition 2.3. For any z ∈ Z,

Lz(t) =
1

4

∫ 4

0

(4− s)[Jz(s) cos(α(t− s)) + z(s) sin(α(t− s))]ds

−
∫ t

0

[Jz(s) cosα(t− s) + z(s) sinα(t− s)]ds.
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Proof. The proof is done by direct computation. In fact, since Lz ∈ Z, we have∫ 4

0
Lz(t) cos(αt)dt = 0. As Lz has the expression (2.7), multiplying both sides

of (2.7) by cos(αt) and integrating over [0, 4], we have∫ 4

0

[c cos(αt)− Jc sin(αt)]cos(αt)]dt

=

∫ 4

0

∫ t

0

[Jz(s) cos(α(t− s)) + z(s) sin(α(t− s))]ds cos(αt)dt.

Note that∫ 4

0

[c cos(αt)− Jc sin(αt)] cos(αt)dt =

∫ 4

0

c cos(αt) cos(αt)dt = 2c

and ∫ 4

0

∫ t

0

[Jz(s) cos(α(t− s)) + z(s) sin(α(t− s))]ds cos(αt)dt

=

∫ 4

0

∫ 4

s

[Jz(s) cos(α(t− s)) cos(αt) + z(s) sin(α(t− s)) cos(αt)]dtds

=

∫ 4

0

[Jz(s)

∫ 4

s

cos(α(t− s)) cos(αt)dt+ z(s)

∫ 4

s

sin(α(t− s)) cos(αt)dt]ds

=
1

2

∫ 4

0

{
Jz(s)

[ 1

2α
sin
(
α(2t− s)

)
+ cos

(
αs
)
t
]∣∣∣4
s

+z(s)
[
− 1

2α
cos
(
α(2t− s)

)
+ sin

(
− αs

)
t
]∣∣∣4
s

]}
ds

=
1

2

∫ 4

0

{
Jz(s)

[
− 1

α
sin(αs) + (4− s) cos(αs)

]
+ z(s)[(4− s) sin(−αs)]

}
ds

=
1

2

∫ 4

0

(4− s)[Jz(s) cos(αs)− (4− s)z(s) sin(αs)]ds.

It follows that

c =
1

4

∫ 4

0

(4− s)[Jz(s) cos(αs)− z(s) sin(αs)]ds.

Then we can easily get the required result.
For given z ∈ Z, let y ∈ E be a solution to (2.6). Denote y = y − Lz. Then

y ∈ Y = Z⊥ = {ω ∈ E| ω(t) = c cos(αt)− Jc sin(αt), c ∈ R2}

and the general solution of (2.6) is given by

y(t) = y(t) + Lz(t). (2.8)

Suppose that y is a solution to (2.2) with the symmetric structure (2.3), that
is, y ∈ E. Let z(t) = Jy′(t) − αy(t). Then z(t) = ∇H(t, y(t)). By the reciprocal
formula, y satisfies the equation

y(t) = ∇H∗(t, z(t)) a.e. on [0, 4], (2.9)
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where H∗(t, ·) is the Fenchel transform of H(t, ·). Substituting (2.8) into (2.9), we
obtain

− Lz(t) +∇H∗(t, z(t)) = y(t) a.e. on [0, 4] (2.10)

or
− Lz(t) +∇H∗(t, z(t)) ∈ Y a.e. on [0, 4]. (2.11)

Conversely, if z ∈ Z satisfies (2.10) or (2.11), then defining y by (2.8), we see that
the elimination of z implies (2.2). Also, y satisfies the symmetric structure (2.3).
We note that (2.11) is the Euler equation for the critical points of χ on Z, where

χ(z) =

∫ 4

0

[
−1

2
(Lz(t), z(t)) +H∗(t, z(t))

]
dt. (2.12)

Now we are ready to search critical points of (2.12) restricted on the subspace Z.
For any z ∈ Z, it follows from (2.5) that

z(t) =
∑
m∈Z

m 6=−k+1,k

zme
i(2m−1)πt

2 , (2.13)

where z−m+1 = zm = z1m + iz2m such that z2m = (−1)m−1Jz1m and zim ∈ R2 for
i = 1, 2. Substituting (2.13) into Lz(t), we have

Lz(t) =
1

4

∫ 4

0

(4− s)[Jz(s) cosα(t− s) + z sinα(t− s)]ds

−
∫ t

0

[Jz(s) cosα(t− s) + z(s) sinα(t− s)]ds

=
1

4

∫ 4

0

(4− s)
[
J

∑
m∈Z

m 6=−k+1,k

zme
i(2m−1)πs

2 cos(α(t− s))

+
∑
m∈Z

m6=−k+1,k

zme
i(2m−1)πs

2 sin(α(t− s))
]
ds

−
∫ t

0

[
J

∑
m∈Z

m6=−k+1,k

zme
i(2m−1)πs

2 cosα(t− s)

+
∑
m∈Z

m6=−k+1,k

zme
i(2m−1)πs

2 sinα(t− s)
]
ds

=
∑
m∈Z

m 6=± 2
πα

Jzm

[ ∫ 4

0

4− s
4

e
i(2m−1)πs

2 cos(α(t− s))ds

−
∫ t

0

e
i(2m−1)πs

2 cosα(t− s)ds
]

+
∑
m∈Z

m6=−k+1,k

zm

[ ∫ 4

0

4− s
4

e
i(2m−1)πs

2 sin(α(t− s))ds

−
∫ t

0

e
i(2m−1)πs

2 sinα(t− s)ds
]
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=
∑
m∈Z

m 6=−k+1,k

Jzm

[ ∫ 4

0

e
i(2m−1)πs

2 cos(α(t− s))ds

−1

4

∫ 4

0

se
i(2m−1)πs

2 cos(α(t− s))ds

−
∫ t

0

e
i(2m−1)πs

2 cosα(t− s)ds
]

+
∑
m∈Z

m6=−k+1,k

zm

[ ∫ 4

0

e
i(2m−1)πs

2 sin(α(t− s))ds

−1

4

∫ 4

0

se
i(2m−1)πs

2 sin(α(t− s))ds

−
∫ t

0

e
i(2m−1)πs

2 sinα(t− s)ds
]

=
∑
m∈Z

m 6=−k+1,k

Jzm
(2m− 1)2

(2k − 1)2 − (2m− 1)2
1

i(2m− 1)π2
ei(2m−1)

π
2 t

+
∑
m∈Z

m6=−k+1,k

zm
(2m− 1)2

(2k − 1)2 − (2m− 1)2
(−1)k−1(2k − 1)π2

(i(2m− 1)π2 )2
ei(2m−1)

π
2 t

=
∑
m∈Z

m 6=−k+1,k

(2m−1)2

(2k−1)2−(2m−1)2

[
Jzm

1

i(2m−1)π2
+zm

(−1)k−1(2k−1)π2
(i(2m−1)π2 )2

]
ei(2m−1)

π
2 t.

Consequently,∫ 4

0

(Lz(t), z(t))dt

=

∫ 4

0

 ∑
m∈Z

m6=−k+1,k

(2m− 1)2

(2k − 1)2 − (2m− 1)2

[ Jzm
i(2m− 1)π2

+
zm(−1)k−1(2k − 1)π2

(i(2m− 1)π2 )2

]
ei(2m−1)

π
2 t,

∑
m∈Z

m6=−k+1,k

zme
i(2m−1)πt

2

 dt

=
∑
m∈Z

m 6=−k+1,k

(2m−1)2
(2m−1)2−(2k−1)2

[
4

(2m−1)π2
i(Jzm, z−m+1) + (−1)k−1(2k−1)2π

((2m−1)π2 )2 |zm|2
]
.

(2.14)

If zm = (z1m, z
2
m) with zjm = aj + ibj , j = 1, 2, then

i(Jzm, z−m+1) = i

 0 1

−1 0

a1 + ib1

a2 + ib2

 ,

a1 − ib1

a2 − ib2


= i[(a2 + ib2)(a1 − ib1) + (−a1 − ib1)(a2 − ib2)]
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= 2a2b1 − 2a1b2 = 2(a2,−a1)

 b1

b2

 = 2(a2,−a1)(−1)m−1J

a1

a2


= (−1)m−12(a21 + a22) = (−1)m−1(a21 + a22 + b21 + b22)

= (−1)m−1|zm|2. (2.15)

Substituting (2.15) into (2.14), one obtains∫ 4

0

(Lz(t), z(t))dt

=
∑
m∈Z

m 6=−k+1,k

(2m− 1)2

(2m− 1)2 − (2k − 1)2

[ 4(−1)m−1

(2m− 1)π2
+

(−1)k−1(2k − 1)2π

((2m− 1)π2 )2

]
|zm|2

=
∑
m∈Z

m 6=−k+1,k

8

π

1

(2m− 1)2 − (2k − 1)2

[
(−1)m−1(2m− 1) + (−1)k−1(2k − 1)

]
|zm|2

=
∑
m∈Z

m 6=−k+1,k

8

π

1

(−1)m−1(2m− 1)− (−1)k−1(2k − 1)
|zm|2

≤
∑
m∈Z

m 6=−k+1,k

2

π
|zm|2

=
1

2π
‖z‖2L2 .

3. Main results and their proofs

Now we are in the position to present our main results.

Theorem 3.1. Suppose that (f1) and (f2) hold and

H(t, y) = H(t, x1, x2) =

∫ x1

0

f(t, s)ds+

∫ x2

0

f(t, s)ds

satisfies the following conditions

(H1) There exists l ∈ L4(0, 4;R2) such that

H(t, y) ≥ (l(t), y) for all y ∈ R2 and a.e. t ∈ [0, 4];

(H2) There exist β ∈ (0, 2π) and γ ∈ L2(0, 4;R+) such that

H(t, y) ≤ β

2
|y|2 + γ(t) for y ∈ R2 and a.e. t ∈ [0, 4];

(H3)
∫ 4

0
H(t, b1 cos(αt) + b2 sin(αt))dt→∞ as |b1|+ |b2| → ∞, where b1, b2 ∈ R2.

Then (2.2) has at least one solution y such that z = Jy′ − αy minimizes the dual
functional χ on Z.
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Remark 3.1. The assumptions (H1-H3) had been used to study the existence
of periodic solutions to Hamiltonian systems. Here we refer the interested reader
to [19,20] and their references.

Let ε0 > 0 such that β+ ε0 < 2π. For ε ∈ (0, ε0), define Hε : [0, 4]×R2 → R by

Hε(t, y) =
1

2
ε|y|2 +H(t, y).

In order to prove Theorem 3.1, we consider the disturbed Hamiltonian system,Jy′(t) = αy +∇Hε(t, y),

y(0) = y(4).
(3.1)

The dual variational functional corresponding to (3.1) is

χε(z) =

∫ 4

0

[
− 1

2
(Lz(t), z(t)) +H∗ε (t, z(t))

]
dt.

Lemma 3.1. Assume that the assumptions of Theorem 3.1 hold. Then the disturbed
Hamiltonian system (3.1) possesses at least one solution yε such that zε = Jy′ε−αyε
minimizes the dual functional χε on Z.

Proof. It is easy to check that Hε(t, ·) is strictly convex and continuously differ-
entiable for a.e. t ∈ [0, 4] and Hε(·, y) is measurable on [0, 4] for every y ∈ R2. By
(H1) and (H2), we know that Hε satisfies

ε

2
|y|2 − |l(t)| · |y| ≤ Hε(t, y) ≤ (β + ε0)

|y|2

2
+ γ(t).

Consequently,

ε

4
|y|2 − |l(t)|

2

ε
≤ Hε(t, y) ≤ (β + ε0)

|y|2

2
+ γ(t). (3.2)

By Theorem 2.3 in [20], the functional

ϕε(z) =

∫ 4

0

H∗ε (t, z)dt

is continuously differentiable on Z. Define φ : Z→ R by

φ(z) = −
∫ 4

0

1

2
(Lz(t), z(t))dt.

Then φ is continuously differentiable on Z. Hence, χε(z) = φ(z) + ϕε(z) is contin-
uously differentiable on Z.

Since (3.2) holds, arguing similarly as in the proof of Proposition 2.2 of [20], we
have

H∗ε (t, z) ≥ 1

2(β + ε0)
|z|2 − γ(t).

Then

χε(z) ≥
1

2

( 1

β + ε0
− 1

2π

)
‖z‖2L2 −

∫ 4

0

γ(t)dt = δ0‖z‖2L2 − γ0, (3.3)
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where δ0 = 1
2 ( 1
β+ε0

− 1
2π ) > 0 and γ0 =

∫ 4

0
γ(t)dt. Therefore, χε is bounded from

below and every minimizing sequence for χε is bounded. Since ϕε is lower semi-
continuous and convex on Z, ϕε is weakly lower semi-continuous on Z. Since φ is
weakly continuous, χε is weakly lower semi-continuous on Z. Hence, χε attains its
minimum at some zε ∈ Z, for which

< χ′ε(zε), y >=

∫ 4

0

[−(Lzε(t), y(t)) + (∇H∗ε (t, zε(t)), y(t))]dt = 0 for all y ∈ Z.

It follows that
−Lzε +∇H∗ε (·, zε(·)) ∈ Y.

Set yε = −Lzε +∇H∗ε (·, zε(·)). Then yε = yε + Lzε is a solution of (3.1).

Lemma 3.2. Assume that the assumptions of Theorem 3.1 hold. Then ‖yε‖L2 and
‖y′ε‖L2 are both bounded for ε ∈ (0, ε0), where yε is the solution of (3.1).

Proof. For any y ∈ R2, let z = ∇H(t, y). Computing directly, by (H1) and (H2),
we have

1

2β
|z|2 − γ(t) ≤ H∗(t, z) = (z, y)−H(t, y) ≤ (|z|+ |l(t)|)|y|. (3.4)

If |z| ≥ 1, then (3.4) yields that

|∇H(t, y)| = |z| ≤ 2β[(1 + |l(t)|)|y|+ |γ|].

Hence

|∇H(t, y)| ≤ 2β[(1 + |l(t)|)|y|+ |γ|] + 1 for y ∈ R2. (3.5)

Define a function H : R4 → R by

H(a, b) =

∫ 4

0

H(t, a cos(αt) + b sin(αt))dt.

Because of (H2) and (3.5), applying Theorem 1.4 of [20], we know that H is con-
tinuously differentiable on R4. Then (H3) implies that H attains its minimum at
some point, denoted by (a, b), and∫ 4

0

∇H(t, a cos(αt) + b sin(αt)) cos(αt)dt

=

∫ 4

0

∇H(t, a cos(αt) + b sin(αt)) sin(αt)dt

= 0.

Thus ∇H(t, a cos(αt) + b sin(αt)) ∈ Z. Let

z(t) = ∇H(t, a cos(αt) + b sin(αt)).

By duality, we have

H∗(t, z(t)) = (z(t), a cos(αt) + b sin(αt))−H(t, a cos(αt) + b sin(αt))
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for a.e. t ∈ [0, 4]. Since F (·, y) is measurable for every y ∈ R2, F (·, y) and hence
H(·, y) are integrable. Moreover, H∗(t, z(t)) is integrable since (z(t), a cos(αt) +
b sin(αt)) is continuous. It follows from (3.3) that

δ0‖zε‖2L2 − γ0 ≤ χε(zε) ≤ χε(z) ≤ χ(z) = c1 <∞,

where c1 is a constant. Thus ‖zε‖L2 ≤ c2, where c2 is a constant independent of ε.
Consequently,

‖Jy′ε − αyε‖L2 = ‖zε‖L2 ≤ c2.

We note from Proposition 2.3 that the operator L : Z → Z is bounded. Let
ỹε = yε − yε. Then ‖ỹε‖L2 = ‖Lzε‖L2 ≤ c3 for some suitable constant c3 > 0.

Since H(t, ·) is convex, (H2) implies that

H
(
t,
yε(t)

2

)
= H

(
t,

1

2
yε(t)−

1

2
ỹε(t)

)
≤ 1

2
H(t, yε(t)) +

1

2
H(t,−ỹε(t))

≤ 1

2
(∇H(t, yε(t)), yε(t)) +

1

2
H(t, 0) +

β

4
|ỹε(t)|2 +

γ(t)

2

≤ 1

2
(Jy′ε(t)− ayε(t), yε(t)) + γ(t) +

β

4
|ỹε(t)|2.

It follows from zε = Jy′ε−αyε ∈ Z and yε ∈ Y that
∫ 4

0
(Jy′ε−αyε, yε)dt = 0. Then∫ 4

0

H
(
t,
yε(t)

2

)
dt ≤ 1

2

∫ 4

0

(Jy′ε(t)− ayε(t), yε(t))dt+

∫ 4

0

γ(t)dt+
β

4

∫ 4

0

|ỹε(t)|2dt

=
1

2

∫ 4

0

(Jy′ε(t)− ayε(t), ỹε(t))dt+

∫ 4

0

γ(t)dt+
β

4

∫ 4

0

|ỹε(t)|2dt

≤ 1

2
‖Jy′ε − ayε‖L2 · ‖ỹε‖L2 +

∫ 4

0

γ(t)dt+
β

4
‖ỹε‖2L2

≤ c4,

where c4 is a suitable positive constant independent of ε. By hypothesis (H3), there
exist positive constants c5, c6 and c7 such that ‖yε‖L2 ≤ c5 and hence ‖yε‖L2 ≤
c6, ‖Jy′ε‖L2 ≤ ‖zε‖L2 +‖αyε‖L2 ≤ c2 + |α|c6 = c7. Consequently, ‖y′ε‖L2 ≤ c7.

Proof of Theorem 3.1. For any ε ∈ (0, ε0), Lemma 3.1 implies that the disturbed
Hamiltonian system (3.1) possesses a solutions yε. By Lemma 3.2, both ‖yε‖L2 and
‖y′ε‖L2 are bounded. Since yε ∈ E, the mean value theorem implies that there exists
η ∈ [0, 4] depending on ε such that

yε(η) =
1

4

∫ 4

0

yε(t)dt = 0.

For any t ∈ [0, 4], we have

|yε(t)| = |yε(t)− yε(η)|

= |
∫ t

η

y′ε(τ)dτ |
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≤
∫ 4

0

|y′ε(t)|dt

≤
(∫ 4

0

|y′ε(t)|2dt
) 1

2
(∫ 4

0

dt
) 1

2

= 2‖y′ε‖L2 .

Thus {‖yε‖L∞} is bounded. For 0 ≤ s ≤ t ≤ 4, we have

|yε(t)− yε(s)| ≤
∫ t

s

|y′ε(τ)|dτ ≤ (t− s) 1
2

(∫ t

s

|y′ε(τ)|2dτ
) 1

2 ≤ ‖y′‖L2(t− s) 1
2 .

Hence {yε} is equi-continuous. By Ascoli-Arzela’s theorem, there is a sequence
{εn} ⊂ (0, ε0) tending to zero and some y ∈ C(0, 4;R2) such that yεn → y as
n → ∞. Obviously, {yεn} possesses the symmetric structure (2.3). Since the set
of functions satisfying the symmetry property is closed, y possesses the symmetric
structure (2.3). Integrating (3.1), one obtains

Jyεn(t)− Jyεn(0) =

∫ t

0

[αyεn +∇Hεn(t, yεn)]dt.

Since {yεn} converges to y,

Jy(t)− Jy(0)−
∫ t

0

[αy(s) +∇H(s, y(s))]ds = 0,

which implies that y is a solution of (2.2).

Since Hε(t, y) = ε/2|y|2 + H(t, y) ≥ H(t, y), we have H∗ε (t, z) ≤ H∗(t, z). It
follows that χεn(zεn) ≤ χεn(h) ≤ χ(h) for any h ∈ Z. Then

χεn(zεn) =

∫ 4

0

[
− 1

2
(Lzεn(t), zεn(t)) +H∗εn(t, zεn(t))

]
dt

=

∫ 4

0

[
− 1

2
(Lzεn(t), zεn(t)) + (yεn , zεn)−Hεn(t, yεn(t))

]
dt

=

∫ 4

0

[
− 1

2
(Lzεn(t), zεn(t)) + (yεn , zεn)−H(t, yεn(t))− 1

2
εn|yεn |2

]
dt.

Since zε = ∇H(t, yε), we have

lim
n→∞

χεn(zεn) =

∫ 4

0

[
− 1

2
(Lz, z) + (y,∇H(t, y))−H(t, y)

]
dt

=

∫ 4

0

[
− 1

2
(Lz, z) +H∗(t, z)

]
dt

= χ(z).

It follows that χ(z) ≤ χ(h) for all h ∈ H1
4 ∩ Z, where H1

4 denote the Sobolev
space which contains all 4-periodic functions with the property that themselves
and their weak derivatives are squarely integrable. This completes the proof of
Theorem 3.1.
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Theorem 3.2. Assume that f satisfies (f1) and (f2). Moreover, there exist positive
numbers α, β with 0 < α ≤ β < 2π and a function γ ∈ L2(0, 4;R+) such that, for
every y ∈ R2 and a.e. t ∈ [0, 4],

α

2
|y|2 − γ(t) ≤ H(t, y) ≤ β

2
|y|2 + γ(t).

Then (2.2) has at least one solution y such that z = Jy′ − αy minimizes the dual
functional χ on Z.

Proof. One can easily verify that (H2) and (H3) hold. As for the assumption
(H1), we have

H(t, y) ≥ α

2
|y|2 − γ(t) ≥ αy − α

2
− γ(t).

The rest of the proof is similar to that of Theorem 3.1 and hence is omitted.
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