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Abstract In this paper, we establish a result on the existence of random
D-pullback attractors for norm-to-weak continuous non-autonomous random
dynamical system. Then we give a method to prove the existence of random
D-pullback attractors. As an application, we prove that the non-autonomous
stochastic reaction diffusion equation possesses a random D-pullback attractor
in H1

0 with polynomial growth of the nonlinear term.
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1. Introduction

The asymptotic behavior of autonomous dynamical system is captured by attrac-
tors, which are compact invariant set attracting all the orbits. For a non-autonomous
dynamical system, the asymptotic behavior is captured by pullback attractors,
which are families of compact invariant sets pullback attracting all the orbits. In
either case, it is an important problem to prove the existence of attractors in dy-
namical systems. Many authors have paid much attention to these problems for a
quite long time and have made a lot of progress (see references [3,8,9,12–14,16,22]).

Recently, the theory of random attractors has been well developed for random
dynamical systems (see [2, 4, 7, 10, 11, 15, 23]), where a random attractor is a mea-
surable random compact invariant set attracting any bounded random set, that
is, for a random dynamical system (ϕ, θ) on a separable Banach space X, a set
A = {A(ω) : ω ∈ Ω} is called a random attractor if the following hold:

(i) A(ω) is a random compact set;
(ii) A = {A(ω)}ω∈Ω is ϕ-invariant; that is, for P-a.s. ω ∈ Ω, ϕ(t, ω)A(ω) =

A(θtω);
(iii) A attracts every set in X; i.e., for all bounded B ⊂ X,

lim
t→∞

d(ϕ(t, θ−tω)B(θ−tω), A(ω)) = 0.

In fact, this definition is an extension of the notion of the attractors of au-
tonomous dynamical system in the framework of random dynamical system, these
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can be found in [1, 17, 18, 24, 25]. Motivated by these problems and some ideas
in [7, 9, 12], we consider the existence of attractors for non-autonomous random
dynamical system, called the random D-pullback attractors, see Definition 2.6.

Obviously, random D-pullback attractors are also an extension of the D-pullback
attractors (see [3, 9, 14]) of non-autonomous dynamical system in the framework of
random dynamical system. A few authors consider this problem.

For norm-to-weak continuous autonomous random dynamical system, the exis-
tence of random attractors has been proved in [11]; for continuous non-autonomous
random dynamical system, the existence of random D-pullback attractors has been
proved in [26], here we consider the existence of random D-pullback attractors for
norm-to-weak continuous non-autonomous random dynamical system.

In this paper, we establish a result on the existence of random D-pullback at-
tractors for norm-to-weak continuous non-autonomous random dynamical system by
using the theory of measure of non-compactness. We continue the works in [7,9,12]
and give a method to verify the existence of random D-pullback attractors.

As an application of our abstract results, we study the existence of random
D-pullback attractors for the following stochastic reaction diffusion equation:

du− (∆u− f(u) + g(t))dt = bu(t) ◦ dW (t), x ∈ D, t ∈ R

u(x, τ) = uτ (x), x ∈ D, τ ≤ t,

u(x, t)|∂D = 0,

(1.1)

where g(·) ∈ L2
loc(R, L2(D)), W (t) is a two-sided real-valued Wiener process on a

probability space.
Non-autonomous system instead of autonomous system is considered in refer-

ence [14], for autonomous stochastic system (1.1), many authors have studied the
existence of random attractors (see [2, 4, 7, 10, 11, 18, 24, 25]); for non-autonomous
case of (1.1), it has also been studied (see [18,24,25]) by many authors under some
strict conditions, where the domain D is unbounded, f(u) is replaced by f(u) +λu,
λ > 0. The term λu is required for the case of unbounded domain in order to
obtain the dissipativity of the linear part. In fact, without this term, the pullback
asymptotic compactness does not hold true. It is also difficult to get the pullback
asymptotic compactness in H1

0 even for the problem in bounded domains. However,
a few authors consider the problem when the domain is bounded, especially with
the exponential growth of the external force and polynomial growth of the nonlinear
term. Here we will prove that the system (1.1) exists a random D-pullback attractor
under some dissipative conditions.

The rest of the paper is organized as follows. In section 2, we recall some basic
concepts about attractors. In section 3, we present some sufficient conditons for the
existence of random D-pullback attractors for a norm-to-weak continuous random
dynamical system. In section 4, we prove that the system (1.1) exists a random
D-pullback attractor.

2. Preliminaries

In this section, we introduce some concepts related to random D-pullback attractors
for random dynamical system, which are extensions of D-pullback attractors for
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non-autonomous dynamical system. The reader is referred to [6-8,11-14,16,18] for
more details.

Let (X, ‖ · ‖X) be a separable Banach space with Borel σ-algebra B(X) and
(Ω,F ,P) be a probability space. In this paper, the term P-a.s.(the abbreviation
for P almost surely) denotes that an event happens with probability one. In other
words, the set of possible exception may be non-empty, but it has probability zero.

Definition 2.1 ( [2, 4, 7, 10, 11]). (Ω,F ,P, (θt)t∈R) is called a metric dynamical
systems if θ : R×Ω→ Ω is (B(R)⊗F ,F)-measurable, and θ0 is the identity on Ω,
θs+t = θt ◦ θs for all t, s ∈ R and θtP = P for all t ∈ R.

Definition 2.2 ( [7, 10, 11, 18, 24–26]). A random dynamical system (RDS)(ϕ, θ)
on X over a metric dynamical system (Ω,F ,P, (θt)t∈R) is a mapping

ϕ(t, τ, ω) : X → X, (t, τ, ω, x)→ ϕ(t, τ, ω)x,

which represents the dynamics in the state space X and satisfies the properties
(i) ϕ(τ, τ, ω) is the identity on X;
(ii) ϕ(t, τ, ω) = ϕ(t, s, θs−τω)ϕ(s, τ, ω) for all τ ≤ s ≤ t;
(iii) ω → ϕ(t, τ, ω)x is F-measurable for all t ≥ τ and x ∈ X.

Remark 2.1. A RDS (ϕ, θ) is called a continuous random dynamical system if
ϕ(t, τ, ω) : X → X is continuous for all t ≥ τ and ω ∈ Ω. A RDS (ϕ, θ) is called
a norm-to-weak continuous random dynamical system if xn → x, ϕ(t, τ, ω)xn ⇀
ϕ(t, τ, ω)x for all t ≥ τ , and ω ∈ Ω.

Obviously, a continuous random dynamical systems is also a norm-to-weak con-
tinuous random dynamical system.

Definition 2.3 ( [7, 10, 11, 18, 24–26]). A random set D is a multivalued mapping
D : Ω → B(X) such that, for every x ∈ X, the mapping ω → d(x,D(ω)) is
measurable, where d(x,B) is the distance between the element x and the set B.
It is said that the random set is bounded(resp., closed or compact) if D(ω) is
bounded(resp., closed or compact) for P- a.s. ω ∈ Ω.

In the sequel, we use D to denote a collection of some families of nonempty
subsets of X:

D′ ∈ D, D′ = {D(t, ω) ∈ B(X) : t ∈ R, ω ∈ Ω}.

Definition 2.4 ( [17,18,26]). A set B′ ∈ D is called a random D-pullback bounded
absorbing set for RDS (ϕ, θ) if for any t ∈ R and any D′ ∈ D, there exists τ0(t,D′)
such that ϕ(t, τ, θτ−tω)D(τ, θτ−tω) ⊂ B(t, ω) for any τ ≤ τ0.

Definition 2.5 ( [17,18,26]). A set A = {A(t, ω) : t ∈ R, ω ∈ Ω} is called a random
D-pullback attractor for {ϕ, θ} if the following hold:

(i) A(t, ω) is a random compact set;
(ii) A is invariant; that is, for P-a.s. ω ∈ Ω, and τ ≤ t, ϕ(t, τ, ω)A(τ, ω) =

A(t, θt−τω);
(iii) A attracts all set in D; that is, for all B′ ∈ D and P-a.s. ω ∈ Ω,

lim
τ→−∞

d(ϕ(t, τ, θτ−tω)B(τ, θτ−tω), A(t, ω)) = 0,

where d is the Hausdorff semimetric given by dist(B,A) = supb∈B infa∈A ‖
b− a ‖X .

We will use the following measure of non-compactness.
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Definition 2.6 ( [9, 12,20,22]). Let X be a metric space and B a bounded subset
of X. The Kuratowski measure of non-compactness α(B) of B is defined by

α(B) = inf{δ > 0 : B admits a finite cover by sets of diameter≤ δ}.
The following summarizes some of the basic properties of this measure of non-

compactness.

Lemma 2.1 ( [7, 9, 12, 20, 22]). Let X be Banach space, α be the measure of non-
compactness. Then

(1) α(B) = 0 if, and only if, B is compact;

(2) α(B1 +B2) ≤ α(B1) + α(B2);

(3) α(B1) ≤ α(B2) for B1 ⊂ B2;

(4) α(B1

⋃
B2) ≤ max{α(B1), α(B2)};

(5) α(B) = α(B);

(6) If F1 ⊃ F2... are non-empty closed sets in X such that α(Fn) → 0 as
n→∞, then F =

⋂∞
n=1 Fn is nonempty and compact.

In addition, let X be an infinite dimensional Banach space with a decomposition
X = X1 ⊕X2 and let P : X → X1, Q : X → X2 be projectors with dimX1 < ∞.
Then

(7) α(B(ε))) = 2ε, where B(ε) is a ball of radius ε.

(8) α(B) < ε for any bounded subset B of X for which the diameter of QB is
less than ε.

Definition 2.7 ( [7, 9, 12, 17]). A RDS (ϕ, θ) on a Banach space X is said to be
random pullback limit set compact if for any D′ ∈ D, ε > 0 and ω ∈ Ω there exists
a T (D′, ε, ω) ≤ t such that

α(
⋃
τ≤T

ϕ(t, τ, θτ−tω)D(τ, θτ−tω)) < ε,

where α is a measure of non-compactness defined on the subsets of X.

Definition 2.8 ( [9, 17, 20]). A RDS (ϕ, θ) on a Banach space X is said to be
random pullback asymptotically compact in X if for any D′ ∈ D, each ω ∈
Ω and any sequence τn → −∞ and xn ∈ D(τn, θτn−tω), n = 1, 2, · · · , the set
{ϕ(t, τn, θτn−tω)xn, k = 1, 2, · · · .} is precompact in X.

Let ω ∈ Ω be arbitrary but fixed, define D-pullback limit set A(B′, t, ω) of
B′ ∈ D by

A(B′, t, ω) =
⋂
s≤t

⋃
τ≤s

ϕ(t, τ, θτ−tω)B(τ, θτ−tω),

which can be characterized, analogously to [5], by

y ∈ A(B′, t, ω)⇔

 there exist sequences τn ≤ t, and xn ∈ B(τn, θτn−tω) such

that τn → −∞, and ϕ(t, τn, θτn−tω)xn → y as n→∞.
(2.1)

3. Existence of random D-pullback attractors

In this section, we study the existence of random D-pullback attractors for norm-
to-weak continuous RDS.



The existence of random D-pullback attractors 1575

Let (X, ‖·‖X) be a separable Banach space with Borel σ-algebra B(X), (Ω,F ,P)
be a probability space, (Ω,F ,P, (θt)t∈R) be a metric dynamical systems, (ϕ, θ) be
a RDS on X.

Lemma 3.1. Assume that the RDS (ϕ, θ) is pullback limit set compact, D′ ∈
D, D′ = {D(t, ω) ∈ B(X) : t ∈ R, ω ∈ Ω}, then for any sequence τn ≤ t, τn → −∞
as n → ∞, and any sequence xn ∈ D(τn, θτn−tω), there exists a convergent subse-
quence of {φ(t, τn, θτn−tω)xn} whose limit lies in A(D′, t, ω).

Proof. For each ω ∈ Ω and ε > 0, there exists Tε = Tε(D, ε, ω) such that

α(
⋃
τ≤Tε

ϕ(t, τ, θτ−tω)D(τ, θτ−tω)) < ε.

Now, we choose ε = 1
n , Tn = Tε(D, ε, ω), for n = 1, 2, · · · , with T1 > T2 > · · · , we

get that

α(
⋃

τn≤Tn

ϕ(t, τn, θτn−tω)D(τn, θτn−tω)) <
1

n
.

By (3) and (5) of Lemma 2.1, we get

α(
⋃

τn≤Tn

ϕ(t, τn, θτn−tω)xn) <
1

n
,

and

α(
⋃

τn≤Tn

ϕ(t, τn, θτn−tω)xn) <
1

n
.

Property (6) of Lemma 2.1 implies that

F (t, ω) =

∞⋂
n=1

⋃
τn≤Tn

ϕ(t, τn, θτn−tω)xn

is a nonempty compact set. By (2.1), for any y ∈ F (t, ω), there exists nk →∞ such
that ϕ(t, τnk , θτnk−tω)xnk → y.

Theorem 3.1. Let (ϕ, θ) be a RDS on a separable Banach space X and (ϕ, θ) be
pullback limit set compact. Then for any D′ ∈ D the following conditions hold true:

(1)A(D′, t, ω) is nonempty and random compact set in X;
(2) lim

τ→−∞
dist(ϕ(t, τ, θτ−tω)D(τ, θτ−tω), A(D′, t, ω))=0;

(3) if Y = {Y (t, ω) : t ∈ R, ω ∈ Ω} is a closed random set attracting D′, then
A(D′, t, ω) ⊂ Y (t, ω).

Proof. (1) By Lemma 3.1, A(D′, t, ω) is nonempty and compact, we only prove
that A(D′, t, ω) is a random set in X, that is

ω → d(x,A(D′, t, ω)

is (F ,B(R)) measurable for each x ∈ X.
A(D′, t, ω) is a compact set, hence there exists y ∈ A(D′, t, ω) such that

d(x,A(D′, t, ω)) = ||x− y||X .
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By (2.1) there exist τn ≤ t, τn → −∞ as n→∞, and xn ∈ D(τn, θτn−t) such that

y = lim
n→∞

ϕ(t, τn, θτn−tω)xn.

By the Definition 2.1 and 2.2, we know that θtω is (B(R) ⊗ F ,F)-measurable,
ϕ(t, τ, ω)x is F-measurable, hence ϕ(t, τn, θτn−tω)xn is F-measurable, we get

∞⋂
n=1

⋃
τm≤τn

ϕ(t, τm, θτm−tω)xm

is F-measurable, and by (2.1), we know that

y =

∞⋂
n=1

⋃
τm≤τn

ϕ(t, τm, θτm−tω)xm,

and

d(x,A(D′, t, ω)) = ||x− y||X

= ||x− lim
n→∞

ϕ(t, τn, θτn−tω)xn||X

= lim
n→∞

||x− ϕ(t, τn, θτn−tω)xn||X

= ||
∞⋂
n=1

⋃
τm≤τn

(x− ϕ(t, τm, θτm−tω)xm)||X .

x − ϕ(t, τm, θτm−tω)xm is F-measurable, hence
∞⋂
n=1

⋃
τm≤τn

(x− ϕ(t, τm, θτm−tω)xm)

is F-measurable, therefore by the continuous of norm, we get

d(x,A(D′, t, ω)) = ||
∞⋂
n=1

⋃
τm≤τn

(x− ϕ(t, τm, θτm−tω)xm)||X

is F-measurable.
(2) We prove that A(D′, t, ω) pullback attracts D′ by contradiction.
Suppose there exists an ω∈Ω, ε0>0, sequence τn→−∞ and xn∈D(t, τn, θτn−tω)

such that
d(ϕ(t, τn, θτn−tω)xn, A(D′, t, ω)) ≥ ε0, ∀N ∈ N. (3.1)

Then, by the pullback limit set compact of (ϕ, θ) and Lemma 3.1, there exists a
convergent subsequence of {ϕ(t, τn, θτn−tω)xn} such that ϕ(t, τnk , θτnk−tω)xnk → y.
By Lemma 3.1, we have y ∈ A(D′, t, ω), contradicting (3.1). Hence, A(D′, t, ω)
pullback attracts D′.

(3) For any x ∈ A(D′, t, ω), there exist τn, τn → −∞ as n → ∞, and xn ∈
D(τn, θτn−tω) such that

x = lim
n→∞

ϕ(t, τn, θτn−tω)xn.

Since Y (t, ω) is a closed random set attracting D′, we get

lim
n→∞

d(ϕ(t, τn, θτn−tω)xn, Y (t, ω)) = 0,

i.e., d(x, Y (t, ω)) = 0, thus we have x ∈ Y (t, ω). Therefore, A(D′, t, ω) ⊂ Y (t, ω).
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Theorem 3.2. Suppose (ϕ, θ) is a norm-to-weak continuous RDS on a separa-
ble Banach space X. If (ϕ, θ) is pullback limit set compact and have a random
D−pullback absorbing sets B′ = {B(t, ω) : t ∈ R, ω ∈ Ω} ∈ D, i.e., for any D′ ∈ D,
there exists a T (t,D′) ≤ t such that ϕ(t, τ, θτ−tω)D(τ, θτ−tω) ⊂ B(t, ω) for any
τ ≤ T , then there exists a random D-pullback attractor A = {A(t, ω) : t ∈ R, ω ∈ Ω}
and

A(t, ω) =
⋂
s≤t

⋃
τ≤s

ϕ(t, τ, θτ−tω)B(τ, θτ−tω). (3.2)

By Theorem 3.1, we know that A(t, ω) is a nonempty and random compact set
in X. Next, we only prove that A(t, ω) is invariant and pullback atrracts any set in
D.

Proof. First we prove that A(t, ω) is invariant, i.e., ϕ(t, τ, ω)A(τ, ω) = A(t, θt−τω),
∀t ∈ R, ω ∈ Ω.

For any y ∈ ϕ(t, τ, ω)A(τ, ω), then y = ϕ(t, τ, ω)x for some x ∈ A(τ, ω), hence
there exist two sequences τn ≤ t and xn ∈ B(τn, θτn−τω) such that ϕ(τ, τn, θτn−τω)xn
→ x. By the norm-to-weak continuous of ϕ, we get

ϕ(t, τn, θτn−τω)xn = ϕ(t, τn, θτn−tθt−τω)xn = ϕ(t, τ, ω)ϕ(τ, τn, θτn−τω)xn

⇀ ϕ(t, τ, ω)x = y.

Since ϕ is D-pullback limit set compact, by Lemma 3.1, ϕ(t, τn, θτn−τω)xn has
a convergent subsequence ϕ(t, τnj , θτnj−τω)xnj . Let ϕ(t, τnj , θτnj−τω)xnj → φ, by

(2.1), we know that φ ∈ A(t, θt−τω). Obviously y = φ, which implies

ϕ(t, τ, ω)A(τ, ω) ⊂ A(t, θt−τω). (3.3)

Conversely, if φ ∈ A(t, θt−τω), by (2.1) there exist τn ≤ t and xn ∈ B(τn, θτn−τω) =
B(τn, θτn−tθt−τω) such that

ϕ(t, τn, θτn−tθt−τω)xn = ϕ(t, τn, θτn−τω)xn → φ,

and
ϕ(t, τn, θτn−τω)xn = ϕ(t, τ, ω)ϕ(τ, τn, θτn−τω)xn.

ϕ is D-pullback limit set compact, by Lemma 3.1, ϕ(τ, τn, θτn−τω)xn has a conver-
gent subsequence, we denote by ϕ(τ, τnj , θτnj−τω)xnj and ϕ(τ, τnj , θτnj−τω)xnj →
ψ, we know ψ ∈ A(τ, ω), and

ϕ(t, τnj , θτnj−τω)xnj = ϕ(t, τ, ω)ϕ(τ, τnj , θτnj−τω)xnj ⇀ ϕ(t, τ, ω)ψ,

hence, ϕ(t, τ, ω)ψ = φ, which shows that

ϕ(t, τ, ω)A(τ, ω) ⊃ A(t, θt−τω). (3.4)

Combinbing with (3.3), we have

ϕ(t, τ, ω)A(τ, ω) = A(t, θt−τω).

Now we prove that

d(ϕ(t, τ, θτ−tω)D(τ, θτ−tω), A(t, ω)) = 0, ∀D′ ∈ D.
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Since B′ = {B(t, ω) : t ∈ R, ω ∈ Ω} is a D-pullback absorbing set of ϕ, for any
D′ ∈ D, there exists T ≤ t such that ϕ(t, τ, θτ−tω)D(τ, θτ−tω) ⊂ B(t, ω) for any
τ ≤ T . For any s ≥ t

d(ϕ(s, τ, θτ−sω)D(τ, θτ−sω), A(s, ω))

= d(ϕ(s, t, θt−sω)ϕ(t, τ, θτ−sω)D(τ, θτ−sω), A(s, ω))

≤ d(ϕ(s, t, θt−sω)B(t, θt−sω), A(s, ω)).

By (2) of Theorem 3.1, we know that d(ϕ(s, t, θt−sω)B(t, θt−sω), A(s, ω)) → 0
as t→ −∞. Hence

lim
τ→−∞

d(ϕ(s, τ, θτ−sω)D(τ, θτ−sω), A(s, ω)) = 0,

which shows that A(s, ω) attracts D′.

Remark 3.1. By (3) of Theorem 3.1, we see that the random D-pullback attractors
A = {A(t, ω) : t ∈ R, ω ∈ Ω} given in (3.2) is unique and minimal.

Now we present a method to verify the pullback limit set compact of the RDS
(ϕ, θ) in X.

Definition 3.1. A RDS (ϕ, θ) on a Banach space X is said to be pullback flattening
if for every random bounded set B′ = {B(t, ω) : t ∈ R, ω ∈ Ω} ∈ D, for any ε > 0
and ω ∈ Ω there exists a T (B′, ε, ω) < t and a finite dimensional subspace Xε such
that

(i) P (
⋃
τ≤Tε ϕ(t, τ, θτ−tω)B(τ, θτ−tω)) is bounded, and

(ii)||(I − P )(
⋃
τ≤Tε ϕ(t, τ, θτ−tω)B(τ, θτ−tω))||X < ε,

where P : X → Xε is a bounded projector.

Theorem 3.3. A RDS (ϕ, θ) on a Banach space X satisfying pullback flattening is
pullback limit set compact. Moreover, if X is a uniform convex Banach space then
the converse is true.

Proof. From (2) of Lemma 2.1, for any t ∈ R, ω ∈ Ω, B′ ∈ D, ε > 0, there exists
T (B′, ε, ω) < t such that

α(
⋃
τ≤T ϕ(t, τ, θτ−tω)B(τ, θτ−tω)) ≤ α(P

⋃
τ≤T ϕ(t, τ, θτ−tω)B(τ, θτ−tω))

+ α((I − P )
⋃
τ≤T ϕ(t, τ, θτ−tω)B(τ, θτ−tω))

≤ 0 + α(BX(0, ε)) = 2ε,

where BX(0, ε) is the open ball in X with centre 0 and radius ε, P : X → Xε and
the dimension of Xε is finite. This means that the RDS (ϕ, θ) is pullback limit-set
compact.

On the other hand, if (ϕ, θ) is pullback limit set compact, for any ε > 0, there
exists T (B′, ε, ω) < t such that α(

⋃
τ≤T ϕ(t, τ, θτ−tω)B(τ, θτ−tω)) < ε. By Def-

inition 2.6, there exist finite subsets of A1, A2, · · · , An with diameters less than
ε. Let xi ∈ Ai and Xε = span{x1, x2, · · · , xn}. Since X is a uniformly convex
Banach space, there exists a projector P : X → Xε such that for any x ∈ X,
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||x − Px|| = d(x,Xε). So ||(I − P )x|| ≤ dist(x, {x1, x2, · · · , xn}) ≤ ε for any
x ∈

⋃
τ≤T ϕ(t, τ, θτ−tω)B(τ, θτ−tω). Hence (ϕ, θ) is pullback flattening.

In fact, if X is a uniformly convex Banach space, the following three properties
of a random dynamical system on X are equivalent:

(1) pullback limit set compact;
(2) pullback flattening;
(3) pullback asymptotically compact.
The detailed proof can be found in [7].

By Theorem 3.2 and Theorem 3.3, we get the following result:

Theorem 3.4. Suppose that (ϕ, θ) is a norm-to-weak continuous RDS on a uni-
formly convex Banach space X. If (ϕ, θ) possesses a random D−pullback bounded
absorbing sets B′ = {B(t, ω) : t ∈ R, ω ∈ Ω} and (ϕ, θ) is pullback flattening, i.e.,
for any ε > 0 and ω ∈ Ω there exists a T (B′, ε, ω) < t and a finite dimensional
subspace Xε such that

(i) P (
⋃
τ≤Tε ϕ(t, τ, θτ−tω)B(τ, θτ−tω)) is bounded,

(ii)||(I − P )(
⋃
τ≤Tε ϕ(t, τ, θτ−tω)B(τ, θτ−tω))||X < ε,

where P : X → Xε is a bounded projector, then there exists a random D-pullback
attractor A = {A(t, ω) : t ∈ R, ω ∈ Ω} and

A(t, ω) =
⋂
s≤t

⋃
τ≤s

ϕ(t, τ, θτ−tω)B(τ, θτ−tω).

4. Random D-pullback attractors for reaction dif-
fusion equations

In this section, we will use our abstract theory developed in Section 3 to obtain
the D-pullback attractors for non-autonomous stochastic reaction-diffusion equation
(SRDE) with multiplicative noise on the bounded domian D ⊂ Rn, i.e., we consider
the following equation

du− (∆u− f(u) + g(t))dt = bu(t) ◦ dW (t), x ∈ D, t ∈ R, (4.1)

with the initial boundary value conditionsu(x, τ) = uτ (x), x ∈ D, τ ≤ t,

u(x, t)|∂D = 0,
(4.2)

where g(·) ∈ L2
loc(R, L2(D)) and there exist p ≥ 2, l > 0, αi, ki > 0(i = 1, 2, 3) such

that

α1|u|p − k1 ≤ f(u)u ≤ α2|u|p + k2, (4.3)

|f(u)| ≤ α3|u|p−1 + k3, (4.4)

fu(u) ≥ −l, (4.5)

for all u ∈ R, W (t) is a two-sided real-valued Wiener process on a probability space
(Ω,F ,P), where

Ω = {ω ∈ C(R,R) : ω(0) = 0},
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F is the Borel algebra induced by the compact open topology of Ω, and P is the
corresponding Wiener measure on {Ω,F}. We identify ω(t) with W (t), i.e.,

W (t) = W (t, ω) = ω(t), t ∈ R.

Define the Wiener time shift by

θtω(s) = ω(s+ t)− ω(t), ω ∈ Ω, t, s ∈ R.

Then (Ω,F ,P, θt) is an ergodic metric dynamical system. We introduce an Ornstein-
Uhlenbeck process,

z(θt(ω)) := −
∫ 0

−∞
eτ (θtω)(τ)dτ, t ∈ R.

We known from [6], it is the solution of Langevin equation

dz + zdt = dW (t).

From [2,10,11,18–21,24–26], it is known that the random variable z(ω) is tem-

pered and there exists a θt-invariant set of full measure Ω̃ ⊂ Ω such that for all
ω ∈ Ω̃:

lim
t→±∞

z(θtω)

t
= 0, lim

t→±∞

1

t

∫ t

0

z(θsω)ds = 0. (4.6)

We set A := −∆, λ denotes the first eigenvalue of A, and H = L2(D) with a
scalar product (·, ·) and a norm | · |. Let ‖ · ‖ the norm of H1

0 (D), | · |p the norm of
Lp(D). Moreover, we suppose for any t ∈ R, there exists 0 < ε0 ≤ λ

4 such that∫ t

−∞
e(λ−ε0)s|g(s)|2ds <∞, for all t ∈ R, (4.7)

which implies that∫ t

−∞
eαs|g(s)|2ds <∞, for all t ∈ R, α ≥ λ− ε0.

Let v(s) = e−bz(θs−tω)u(s) for s ≤ t, then dv = −be−bz(θs−tω)u(s)dz+e−bz(θs−tω)du,
by Langevin equation and (4.1), we get the following evolution equation with ran-
dom parameter but without white noise:

dv

ds
−∆v − bz(θs−tω)v(s) + e−bz(θs−tω)f(u) = e−bz(θs−tω)g(s), x ∈ D, s ≤ t, (4.8)

and with the initial boundary value conditions v(x, τ) = e−bz(θτ−tω)u(τ), x ∈ D,

v(x, s)|∂D = 0,
(4.9)

where v(t) = e−bz(ω)u(t). By using Proposition 4.3.3 in [1], there exists random
variable r(ω) > 0 such that

1

r(ω)
≤ e−bz(ω) ≤ r(ω).
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By a standard Galerkin approximation method, we can show that for all vτ ∈
L2(D) and ω ∈ Ω̃, the equations (4.8)-(4.9) admit a unique weak solution (see
[13,14,16,22])

v(t, τ, ω)vτ ∈ C([τ, T );L2(D)) ∩ L2(τ, T ;H1
0 (D)) ∩ Lp(τ, T ;Lp(D)),

and v(t, τ, ω)vτ is norm-to-weak continuous with respect to vτ in L2(D) and F-
measurable for all t ≥ τ . The proof is the same as in the autonomous case and can
be found in [10,13,16,22,25,26], the first reference where this has been done in the
autonomous case suffices.

For convenience, let ϕ(t, τ, ω)uτ = u(t, τ, ω) for uτ ∈ L2(D), t ≥ τ and for
all ω ∈ Ω̃. Obviously ϕ(t, τ, θτ−tω)uτ = u(t, τ, θτ−tω) = v(t, τ, θτ−tω)ebz(ω) is a
solution of (4.1)-(4.2) and hence {ϕ(t, τ, ω)} is a norm-to-weak continuous RDS on
H1

0 and u(t, τ, θτ−tω)uτ is F-measurable for all t ≥ τ and uτ ∈ L2(D).
Let D denote the collection of families of nonemptey subsets of H, D ∈ D,

D = {D(t, ω) : t ∈ R, ω ∈ Ω̃, D(t, ω) ⊂ H} satisfies

lim
t→−∞

e
λ
2 tr(t, ω) = 0, r(t, ω) = sup{|ϕ(x)|2 : ϕ(x) ∈ D(t, ω)}.

B(r0(t, ω)) denote the closed ball in H1
0 with radius

r0(t, ω) = (ρ(ω)(1 +

∫ t

−∞
e
λ
4 (s−t)|g(s)|2ds)) 1

2 .

Hereafter, c or c(ω) be an arbitrary positive constant, which depends on ω and
may be different from line to line and even in the same line.

Theorem 4.1. Assume that (4.3)-(4.7) hold, uτ ∈ H. Then for ω ∈ Ω̃, there exists
T > 0, for all t− τ ≥ T , the weak solution of (4.1)-(4.2) satisfies

|v(t)|2 ≤ ρ(ω)(1 + e−
3
4λ(t−τ)|u(τ)|2 +

∫ t

−∞
e

3
4λ(s−t)|g(s)|2ds), (4.10)

and∫ t

τ

e
λ
2 (s−t)+2b

∫ t
s
z(θr−tω)dr‖v‖2ds ≤ ρ(ω)(1 + e−

λ
4 (t−τ)|uτ |2 + c

∫ t

τ

e
λ
4 (s−t)|g(s)|2ds).

(4.11)

Proof. Taking the inner product of Eq.(4.8) with v(s), we obtain

1

2

d

ds
|v|2 + ‖v‖2 − bz(θs−tω)|v|2 + e−2bz(θs−tω)(f(u), u) = e−bz(θs−tω)(g(s), v),

thanks to Young’s inequality and Poincaré inequality, we get

|e−bz(θs−tω)(g(s), v)| ≤ λ

4
|v|2 +

1

λ
e−2bz(θs−tω)|g(s)|2, λ|v|2 ≤ ‖v‖2.

It follows that

d

ds
|v|2 +

3

2
‖v‖2 − 2bz(θs−tω)|v|2 + 2e−2bz(θs−tω)(f(u, u) ≤ 2

λ
e−2bz(θs−tω)|g(s)|2.
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By (4.3), we get

d

ds
|v|2 +

3

2
‖v‖2 − 2bz(θs−tω)|v|2 + 2α1e

−2bz(θs−tω)|u|pp

≤ 2k1m(D)e−2bz(θs−tω) +
2

λ
e−2bz(θs−tω)|g(s)|2,

here m(D) denotes the measure of D, which implies that

d

ds
|v|2 + (λ− 2bz(θs−tω))|v|2 + 2α1e

−2bz(θs−tω)|u|pp ≤ ce−2bz(θs−tω)(1 + |g(s)|2).

(4.12)
d

ds
|v|2 + (

λ

2
− 2bz(θs−tω))|v|2 + ‖v‖2 ≤ ce−2bz(θs−tω)(1 + |g(s)|2). (4.13)

By (4.12), we obtain

d

ds
(eλs−2b

∫ s
τ
z(θr−tω)dr|v|2) + 2α1e

λs−2b
∫ s
τ
z(θr−tω)dr−2bz(θs−tω)|u|pp

≤ ceλs−2b
∫ s
τ
z(θr−tω)dr−2bz(θs−tω)(1 + |g(s)|2).

(4.14)

Integrating (4.14) with respect to s over (τ, t), we get

|v(t)|2 + 2α1

∫ t
τ
eλ(s−t)+2b

∫ t
s
z(θr−tω)dr−2bz(θs−tω)|u|ppds

≤ e−λ(t−τ)+2b
∫ t
τ
z(θr−tω)dr|v(τ)|2

+c
∫ t
τ
eλ(s−t)+2b

∫ t
s
z(θr−tω)dr−2bz(θs−tω)(1 + |g(s)|2)ds

(4.15)

and

|v(t)|2 ≤e−λ(t−τ)+2b
∫ t
τ
z(θr−tω)dr−2bz(θτ−tω)|u(τ)|2

+ c

∫ t

τ

eλ(s−t)+2b
∫ t
s
z(θr−tω)dr−2bz(θs−tω)(1 + |g(s)|2)ds.

(4.16)

By (4.6), for ω ∈ Ω̃ and ε > 0, there exists B(ε) > 0, such that for any |t| ≥ B, we
have

2b

|t|
(|
∫ t

0

z(θsω)ds|+ |z(θtω)|) < ε. (4.17)

Taking ε = λ
4 , for any t ∈ R, we find that

|2b|(|
∫ t

0

z(θsω)ds|+ |z(θtω)|) < c(ω) +
λ

4
|t|, (4.18)

and ∫ t

τ

eλ(s−t)+2b
∫ t
s
z(θr−tω)dr−2bz(θs−tω)(1 + |g(s)|2)ds

=

∫ 0

τ−t
eλs+2b

∫ 0
s
z(θrω)dr−2bz(θsω)(1 + |g(s+ t)|2)ds
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≤ ec(ω)

∫ 0

τ−t
e3λs/4(1 + |g(s+ t)|2)ds

= ec(ω)

∫ t

τ

e3λ(s−t)/4(1 + |g(s)|2)ds

≤ ρ(ω)(1 +

∫ t

−∞
e3λ(s−t)/4|g(s)|2ds),

where ρ(ω) = max{ 1
λ ,

c
λ , 1, c}e

c(ω). By (4.15), we get

|v(t)|2 ≤ ρ(ω)(1 + e−3λ(t−τ)/4|u(τ)|2 +

∫ t

−∞
e3λ(s−t)/4|g(s)|2ds), (4.19)

and ∫ t

τ

eλ(s−t)+2b
∫ t
s
z(θr−tω)dr−2bz(θs−tω)|u|ppds

≤ ρ(ω)(1 + e−3λ(t−τ)/4|u(τ)|2 +

∫ t

−∞
e3λ(s−t)/4|g(s)|2ds).

(4.20)

By (4.13), we obtain

d

ds
e
λ
2 s−2b

∫ s
τ
z(θr−tω)dr|v|2

≤ −eλ2 s−2b
∫ s
τ
z(θr−tω)dr‖v‖2 + ce

λ
2 s−2b

∫ s
τ
z(θr−tω)dr−2bz(θs−tω)(1 + |g(s)|2).

Integrating with respect to s over (τ, t), we get∫ t

τ

e
λ
2 (s−t)+2b

∫ t
s
z(θr−tω)dr‖v‖2ds

≤e−λ2 (t−τ)+2b
∫ t
τ
z(θr−tω)dr−2bz(θτ−tω)|uτ |2

+ c

∫ t

τ

e
λ
2 (s−t)+2b

∫ t
s
z(θr−tω)dr−2bz(θs−tω)(1 + |g(s)|2)

≤ρ(ω)(1 + e−
λ
4 (t−τ)|uτ |2 +

∫ t

τ

e
λ
4 (s−t)|g(s)|2ds).

The proof of Theorem 4.1 has been completed.

Theorem 4.2. Assume that (4.3)-(4.7) hold, uτ ∈ H. Then for ω ∈ Ω̃, there exists
T > 0, for all t− τ ≥ T , the weak solution of (4.1)-(4.2) satisfies

‖v(t)‖2 ≤ ρ(ω)(e−
λ
4 (t−τ)|uτ |2 +

∫ t

−∞
e
λ
4 (s−t)|g(s)|2ds). (4.21)

Proof. Taking the inner product of Eq.(4.8) with −∆v(s), we have

1

2

d

ds
‖v‖2+|∆v|2−bz(θs−tω)‖v‖2+e−bz(θs−tω)(f(u),−∆v)=e−bz(θs−tω)(g(s),−∆v)).

By (4.5), we find that

e−bz(θs−tω)(f(u),−∆v) = e−2bz(θs−tω)(f(u),−∆u) ≥ le−2bz(θs−tω)|∇u|2 = l‖v‖2.
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Since

|e−bz(θs−tω)(g(s),−∆v))| ≤ 1

2
|∆v|2 +

1

2
e−2bz(θs−tω)|g(s)|2,

it follows that

d

ds
‖v‖2 + |∆v|2 − 2bz(θs−tω)‖v‖2 ≤ 2l‖v‖2 + e−2bz(θs−tω)|g(s)|2

and

d

ds
‖v‖2 + (λ− 2bz(θs−tω))‖v‖2 ≤ 2l‖v‖2 + e−2bz(θs−tω)|g(s)|2, (4.22)

which implies that

d

ds
((s− τ)eλs−2b

∫ s
τ
z(θr−tω)dr‖v‖2)

= eλs−2b
∫ s
τ
z(θr−t)dr((1 + 2l(s− τ))‖v‖2 + (s− τ)e−2bz(θs−tω)|g(s)|2).

(4.23)

Integrating from τ to t and using (4.11), we find that

‖v(t)‖2 ≤ 1

t− τ

∫ t

τ

eλ(s−t)+2b
∫ t
s
z(θr−tω)dr((1 + 2l(s− τ))‖v‖2

+ (s− τ)e−2bz(θs−τω)|g(s)|2)ds

≤(2l +
1

t− τ
)

∫ t

τ

eλ(s−t)+2b
∫ t
s
z(θr−tω)dr‖v‖2ds

+

∫ t

τ

eλ(s−t)+2b
∫ t
s
z(θr−tω)dr−2bz(θs−tω)|g(s)|2ds

≤ρ(ω)(2l +
1

t− τ
)(1 + e−

λ
4 (t−τ)|uτ |2 +

∫ t

τ

e
λ
4 (s−t)|g(s)|2ds)

+ ρ(ω)

∫ t

τ

e
λ
2 (s−t)|g(s)|2ds

≤ρ(ω)(1 + e−
λ
4 (t−τ)|uτ |2 +

∫ t

−∞
e
λ
4 (s−t)|g(s)|2ds).

By Theorem 4.2, we know that for the RDS u(t, τ, ω) exists a family of random
D-pullback bounded absorbing sets {B(r0(t, ω) : t ∈ R, ω ∈ Ω̃} ∈ D in H1

0 . Using
Theorem 3.3, we come to the following result.

Theorem 4.3. Assume that (4.3)-(4.7) hold, then the RDS u(t, τ, ω) generated by
Eq. (4.1)-(4.2) possesses a random D-pullback attractor in H.

Next, we will prove that the RDS u(t, τ, ω) generated by Eq. (4.1)-(4.2) possesses
a random D-pullback attractor in H1

0 , i.e., we will get the following Theorem.

Theorem 4.4. Assume that (4.3)-(4.7) hold, then the RDS u(t, τ, ω) generated by
Eq.(4.1)-(4.2) possesses a random D-pullback attractor in H1

0 .

By Theorem 4.2, we know that the RDS u(t, τ, ω) exists a family of random
bounded absorbing sets in H1

0 , we only proof that the RDS u(t, τ, ω) satisfies The-
orem 3.6.
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Proof. Taking the inner product of Eq.(4.8) with |v|p−2v, we get

1

p

d

ds
|v|pp + (p− 1)

∫
D
|v|p−2|∇v|2dx− bz(θs−tω)|v|pp

+e−pbz(θs−tω)(f(u), |u|p−2u) = e−bz(θs−tω)(g(s), |v|p−2v).

By (4.3) and Young’s inequality, we obtain

d

ds
|v|pp − pbz(θs−tω)|v|pp +

α1

2
pe−pbz(θs−tω)|u|2p−2

2p−2

≤ ce−pbz(θs−tω)(1 + |g(s)|2),

it follows that

d

ds
((s−τ)eλs−pb

∫ s
τ
z(θr−tω)dr|v|pp)+

α1

2
p(s−τ)eλs−pb

∫ s
τ
z(θr−tω)dr−pbz(θs−tω)|u|2p−2

2p−2

≤ eλs−pb
∫ s
τ
z(θr−tω)dr(1 + λ(s− τ)|v|pp + c(s− τ)(e−pbz(θs−tω)(1 + |g(s)|2))).

Using (4.16),(4.17) and (4.20), we get

1

t− τ

∫ t

τ

(s− τ)eλ(s−t)+pb
∫ t
s
z(θr−tω)dr−pbz(θs−tω)|u|2p−2

2p−2

≤ ρ(ω)(1 +
1

t− τ
+ e−

λ
4 (t−τ)|u(τ)|2 +

∫ t

−∞
e
λ
4 (s−t)|g(s)|2ds.

(4.24)

Since A−1 is a continuous compact operator in H, by the classical spectral
theorem, there exists a sequence {λj}∞j=1 satisfing

0 < λ1 ≤ λ2 ≤ · · ·λj ≤ · · · , λj → +∞, as j → +∞,

and a family of elements {ej}∞j=1 of H1
0 which are orthonormal in H such that

Aej = λjej , ∀j ∈ N+.

Let Hm = span{e1, e2, · · · , em} in H and Pm : H → Hm be an orthogonal
projector. For any v ∈ H we write

v = Pmv + (I − Pm)v = v1 + v2.

Taking the inner product of (4.8) with −∆v2, we have

1

2

d

ds
‖v2‖2 + |∆v2|2 − bz(θs−tω)‖v2‖2 + e−bz(θs−tω)(f(u),−∆v2)

= e−bz(θs−tω)(g(s),−∆v2)).

Thanks to Poincaré inequality and Young’s inequality we get

λm‖v2‖2≤|∆v2|2, |e−bz(θs−tω)(f(u),−∆v2)|≤ 1

4
|∆v2|2+e−2bz(θs−tω)

∫
D

|f(u)|2dx,
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and

|e−bz(θs−tω)(g(s),−∆v2))| ≤ 1

4
|∆v2|2 + e−2bz(θs−tω)|g(s)|2.

By (4.4), we obtain ∫
D

|f(u)|2dx ≤ c(1 + |u|2p−2
2p−2).

Hence

d

ds
‖v2‖2 + (λm − 2bz(θs−tω))‖v2‖2 ≤ ce−2bz(θs−tω)(1 + |u|2p−2

2p−2 + |g(s)|2).

Thus we have

d

ds
((s− τ)eλms−2b

∫ s
τ
z(θr−tω)dr‖v2‖2)

≤ ceλms−2b
∫ s
τ
z(θr−tω)dr(‖v2‖2 + (s− τ)e−2bz(θs−tω)(1 + |u|2p−2

2p−2 + |g(s)|2).

(4.25)

Integrating (4.26) with respect to s from τ to t, we have

‖v2(t)‖2 ≤c( 1

t− τ

∫ t

τ

eλm(s−t)+2b
∫ t
s
z(θr−tω)dr‖v(s)‖2)

+

∫ t

τ

eλm(s−t)+2b
∫ t
s
z(θr−tω)dr−2bz(θs−tω)(1 + |u|2p−2

2p−2 + |g(s)|2).

(4.26)

For the right-hand side of (4.26), using (4.7),(4.11),(4.24) and Lebesgue’s dominated
convergence theorem, we obtain

1

t− τ

∫ t

τ

eλm(s−t)+2b
∫ t
s
z(θr−tω)dr‖v(s)‖2ds

≤ ρ(ω)

t− τ

∫ t

τ

e(λm−λ2 )(s−t)e
λ
2 (s−t)+2b

∫ t
s
z(θr−tω)‖v‖2ds→ 0, as m→ +∞, (4.27)

∫ t

τ

eλm(s−t)+2b
∫ t
s
z(θr−tω)dr−2bz(θs−tω)ds

≤ ρ(ω)

∫ t

τ

e(λm−λ4 )(s−t)ds

≤ 4ρ(ω)

4λm − λ
→ 0 as m→ +∞, (4.28)

∫ t

τ

eλm(s−t)+2b
∫ t
s
z(θr−tω)dr−2bz(θs−tω)|u|2p−2

2p−2ds

=

∫ t

τ

e(λm−λ)(s−t)−(p−2)b
∫ t
s
z(θr−tω)dr+(p−2)bz(θs−tω), (4.29)

eλ(s−t)+pb
∫ t
s
z(θr−tω)dr−pbz(θs−tω)|u|2p−2

2p−2ds

≤ ρ(ω)

∫ t

τ

e(λm− 3λ
2 )(s−t)eλ(s−t)+pb

∫ t
s
z(θr−tω)dr−pbz(θs−tω)|u|2p−2

2p−2ds

→ 0 as m→ +∞, (4.30)
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and ∫ t

τ

eλm(s−t)+2b
∫ t
s
z(θr−tω)dr−2bz(θs−tω)|g(s)|2ds

≤ ρ(ω)

∫ t

−∞
e(λm−λ4 )(s−t)|g(s)|2ds

→ 0 as m→ +∞.

(4.31)

Then by (4.26)-(4.30), for any ε > 0, there exists B ∈ N+, for any m ≥ B, we have

‖v2(t, τ, ω)‖2 < ε,

which means that the RDS u(t, τ, ω) satisfies pullback flattening.
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