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Abstract In this work, we consider the fractional Schrödinger type equations
with critical exponent, concave nonlinearity and sign-changing weight function
on RN . With the aid of the symmetric Mountain Pass Theorem, we prove this
problem has infinitely many small energy solutions.
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1. Introduction and main result

In this paper, we are concerned the infinitely many solutions to the following frac-
tional Schrödinger equation with critical exponent (−4)su+ u = µh(x)|u|q−1u+ |u|2∗

s−2u, x ∈ RN ,

u ∈ Hs(RN ),
(1.1)

where µ > 0 is a parameter, 1 < q < 2, 0 < s < 1, N > 2s and 2∗s = 2N
N−2s

is a non-local fractional Sobolev exponent. Here, (−4)s is the fractional Laplace
operator (see [2]), which is defined as

(−4)su(x) := CN,s P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN .

The symbol P.V. represents the Cauchy principal value, CN,s is a normalization
constant that depends on N and s. The weight function h(x) satisfies the following
condition:

(H) h ∈ Lq∗(RN ), where q∗ =
2∗
s

2∗
s−q

and h+ = max{h, 0} 6= 0.

The fractional Schrödinger equation is a class of fundamental equation in frac-
tional quantum mechanics. It reflects the stable diffusion of particles of Lévy pro-
cesses, which was first discovered by Laskin [15, 16]. Through the equivalent def-
inition of fractional operator, the authors obtained the corresponding variational
principle and proved the existence of solutions in [3, 11, 19–21]. Specially, for the
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concave-convex nonlinearity, this type of problems has currently been actively s-
tudied, see [5, 8, 13, 22] and their references. Here, we are interested in the case of
the fractional Schrödinger equations involving concave-convex nonlinearities with
critical exponent.

For Schrödinger equations, Chabrowski and Drabek [10] studied the following
nonlinear elliptic problem:

−4u+ u = εh(x)|u|q−1u+ |u|2
∗
s−2u, x ∈ RN , (1.2)

where ε is a positive constant, 1 < q < 2 and N ≥ 3. Under the condition that

h is a nonnegative and nonzero function in L
2∗

2∗−q−1 (RN ) ∩ C(RN ), they obtained
infinitely many solutions of equation (1.2) for ε small.

For fractional Schrödinger equations, if the weight functions h(x) = 1, Barrios
etc [4] dealt with the following problem: (−4)su = λ|u|q−2u+ |u|2∗

s−2u, in Ω,

u = 0, in RN\Ω,
(1.3)

where Ω ⊂ RN is a smooth bounded domain, λ > 0, 0 < s < 1, N > 2s and
0 < q < 1. They obtained that there exist at least two positive solutions for every
0 < λ < Λ, at least one positive solution if λ = Λ, no positive solution if λ > Λ.
In [23], Zhang etc proved the existence of a nontrivial radially symmetric weak
solution to the following problem:

(−4)su+ V (x)u = k(x)f(u) + λ|u|2
∗
s−2u, x ∈ RN , (1.4)

where N ≥ 2, λ is a positive real parameter, V (x) and k(x) are positive and bounded
functions satisfying some suitable conditions.

Motivated by above papers, we consider the fractional problem (1.1) with critical
exponent on RN . The main difficulty is how to recover the compactness. To the
best of our knowledge, few papers deal with this problem with sign-changing weight
function up to now. Inspired by [9], the main purpose of this paper is to study the
existence of infinitely many small energy solutions of (1.1) for µ sufficiently small
via a new version of the symmetric Mountain Pass Theorem due to Kajikiya [14].

The main result of this paper is the following.

Theorem 1.1. Assume 1 < q < 2 and the condition (H) is fulfilled. There exists
µ∗ > 0 such that for all µ ∈ (0, µ∗), problem (1.1) possesses infinitely many non-
trivial solutions {uk}∞k=1 satisfying

1

2

∫
RN

(
|(−4)

s
2uk|2+|uk|2

)
dx−µ

q

∫
RN
h(x)|uk|qdx−

1

2∗s

∫
RN
|uk|2

∗
sdx→ 0−(k→∞).

The rest of this paper is organized as follows. In Section 2 we will introduce
some knowledge of dealing with the fractional Laplacian operator and get some
helpful results. We will finish the proof of Theorem 1.1 in Section 3.

2. Preliminaries

In this part we first recall some results on Sobolev spaces of fractional order. For a
deeper introduction to fractional Sobolev spaces can be found in [6, 18] and refer-
ences therein.



Solutions of critical fractional equation 133

Consider the fractional order Sobolev space

Hs(RN ) =
{
u ∈ L2(RN ) : [u]Hs(RN ) <∞

}
,

while

[u]Hs(RN ) =

(∫ ∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2

is the Gallardo semi-norm. Observe Proposition 3.6 in [18], we can get∫ ∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy =

∫
RN
|(−4)

s
2u(x)|2dx.

Thus, it follows that norm ‖u‖Hs(RN ) is equivalent to the norm

‖u‖ =

(∫
RN

[
|(−4)

s
2u(x)|2 + |u(x)|2

]
dx

) 1
2

(2.1)

and the corresponding inner product is

〈u, v〉 =

∫
RN

[
(−4)

s
2u(x)(−4)

s
2 v(x) + u(x)v(x)

]
dx. (2.2)

Throughout this paper, we will use ‖·‖ to represent the norm of Hs(RN ). As usual,
for 1 ≤ ν <∞, we let

|u|ν =

(∫
RN
|u|νdx

) 1
ν

, u ∈ Lν(RN ).

In order to discuss the weak solutions of (1.1), we need to find the critical points
of the energy functional I : Hs(RN )→ R defined by

I(u)=
1

2

∫
RN

[
|(−4)

s
2u|2dx+|u|2

]
dx− µ

q

∫
RN
h(x)|u|qdx− 1

2∗s

∫
RN
|u|2

∗
sdx. (2.3)

Under the condition (H), we can get the energy functional I is well-defined by
the Sobolev embedding theorem. It’s not hard to prove I ∈ C1(Hs(RN ),R) and its
derivative is given by

〈I ′(u), v〉 = 〈u, v〉 − µ
∫
RN

h(x)|u|q−2uvdx−
∫
RN
|u|2

∗
s−2uvdx.

Lemma 2.1 ( [18]). Let 0 < s < 1 such that N > 2s. The embedding Hs(RN ) ↪→
Lp(RN ) is continuous for any p ∈ [2, 2∗s] and the embedding Hs(RN ) ↪→ Lploc(RN )
is compact for any p ∈ [2, 2∗s).

We define the best Sobolev constant

S∗ = inf
u∈Hs(RN )\{0}

∫
RN |(−4)

s
2u(x)|2dx

(
∫
RN |u|2

∗
sdx)2/2∗

s
. (2.4)

Lemma 2.2. Assume 1 < q < 2 and the condition (H) holds. If un ⇀ u in Hs(RN ),
then ∫

RN
h(x)|un|qdx→

∫
RN

h(x)|u|qdx.
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Proof. The proof is similar to Lemma 3.4 in [12], we omit it.

Lemma 2.3. If there is a convergent subsequence for any sequence {un} ⊂ Hs(RN )
satisfying I(un) → c and I ′(un) → 0, we say that I satisfies the (PS)c condition.
Assume the condition (H) holds, the functional I for any λ > 0 satisfies the (PS)c
condition with

c ∈
(
−∞, s

N
S
N
2s
∗ − C0µ

q∗
)
,

where C0 = 1
q∗

[(
1
q −

1
2

)(
Nq
s2∗
s

) q
2∗s |h+|q∗

]q∗
.

Proof. Let {un} be a sequence in Hs(RN ) and satisfy

I(un)→ c, I ′(un)→ 0. (2.5)

First we prove that {un} is bounded in Hs(RN ). Arguing by contradiction, suppose
that ‖un‖ → ∞ as n→∞. By the Hölder inequality and (2.5) for sufficiently large
n ∈ N, we obtain

c+ 1 ≥ I(un)− 1

2∗s
〈I ′(un), un〉

=

(
1

2
− 1

2∗s

)
‖un‖2 + µ

(
1

2∗s
− 1

q

)∫
RN

h(x)|un|qdx

≥
(

1

2
− 1

2∗s

)
‖un‖2 − µ

(
1

q
− 1

2∗s

)
|h|q∗ |un|q2∗

s

≥
(

1

2
− 1

2∗s

)
‖un‖2 − µS

− q2
∗

(
1

q
− 1

2∗s

)
|h|q∗‖un‖q

→∞.

This implies {un} is bounded in Hs(RN ). Therefore, up to a subsequence, for some
u ∈ Hs(RN ), we get

un ⇀ u in Hs(RN ),

un ⇀ u in Lp(RN ), 2 ≤ p < 2∗s,

un(x)→ u(x) a.e. in RN .

Since I is C1, we have 〈I ′(u), u〉 = 0, which implies that

‖u‖2 = µ

∫
RN

h(x)|u|qdx+

∫
RN
|u|2

∗
sdx (2.6)

and

I(u) =I(u)− 1

2
〈I ′(u), u〉

=µ

(
1

2
− 1

q

)∫
RN

h(x)|u|qdx+

(
1

2
− 1

2∗s

)∫
RN
|u|2

∗
sdx

=µ

(
1

q
− 1

2

)∫
RN

[
h−(x)− h+(x)

]
|u|qdx+

(
1

2
− 1

2∗s

)∫
RN
|u|2

∗
sdx

≥ s

N

∫
RN
|u|2

∗
sdx− µ

(
1

q
− 1

2

)∫
RN

h+(x)|u|qdx. (2.7)
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By the Hölder and Young inequalities, we have

µ

(
1

q
− 1

2

)∫
RN
h+(x)|u|qdx

≤µ
(

1

q
− 1

2

)(∫
RN

(h+)q
∗
dx

) 1
q∗
(∫

RN
|u|2

∗
sdx

) q
2∗s

≤ s

N

∫
RN
|u|2

∗
sdx+ C0µ

q∗ . (2.8)

From (2.7) and (2.8), we obtain

I(u) ≥ −C0µ
q∗ . (2.9)

Taking wn = un − u, by the Brezis-Lieb lemma (see [7]) yields

‖un‖2 = ‖wn‖2 + ‖u‖2 + o(1) (2.10)

and ∫
RN
|un|2

∗
sdx =

∫
RN
|wn|2

∗
sdx+

∫
RN
|u|2

∗
sdx+ o(1). (2.11)

From (2.5), we have

1

2
‖un‖2 −

µ

q

∫
RN

h(x)|un|qdx−
1

2∗s

∫
RN
|un|2

∗
sdx = c+ o(1). (2.12)

Hence by (2.10), (2.11), (2.12) and Lemma 2.2, one has

1

2
‖wn‖2 −

1

2∗s

∫
RN
|wn|2

∗
sdx = c− I(u) + o(1). (2.13)

In view of 〈I ′(un), un〉 = o(1) and 〈I ′(u), u〉 = 0, we derive that

‖wn‖2 =

∫
RN
|wn|2

∗
sdx+ o(1). (2.14)

Now, we may assume that ‖wn‖2→L ≥ 0. By (2.14), it follows that
∫
RN |wn|

2∗
sdx→

L.

Let us suppose that L > 0. By applying the Sobolev inequality we know that

|wn|22∗
s
S∗ ≤ [wn]2Hs(RN ) ≤ ‖wn‖

2.

Hence we can deduce that L ≥ S
N
2s
∗ .

This fact combining with (2.9) and (2.13) yield

c ≥ s

N
S
N
2s
∗ − C0µ

q∗ ,

this contradicts the definition of c. Hence, ‖wn‖ → 0, i.e. ‖un − u‖ → 0. Thus, we
prove that {un} converges strongly to u in Hs(RN ).
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3. Proof of the main results

In this section, we will use some knowledge of genus, but it will not be listed here.
Detailed definition and properties of genus can be seen in [1]. In [17], the author
first established the following new version of the symmetric mountain-pass lemma
based on R. Kajikiya [14].

Theorem 3.1. Let X be infinite dimensional Banach space and I ∈ C1(X,R)
satisfy (B1) and (B2) below.

(B1) I is even, bounded from below, I(0) = 0 and I satisfies the (PS)c condition.

(B2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak I(u) < 0, where
Γk signifies a family of closed symmetric subsets A of X with 0 6∈ A and
γ(A) ≥ k.

Then I admits a sequence of critical points {uk} such that I(uk) ≤ 0, uk 6= 0 and
limk→∞ uk = 0.

In order to get infinitely many solutions we need the following arguments. Like
(2.8), by the Hölder and Young inequalities, we have

µ

q

∫
RN
h+(x)|u|qdx

≤µ
q

(∫
RN

(h+)q
∗
dx

) 1
q∗
(∫

RN
u2∗

sdx

) q
2∗s

≤ 1

2∗s

∫
RN
|u|2

∗
sdx+ Cµq

∗
, (3.1)

where C = 1
qq∗ |h

+|q
∗

q∗ > 0. From (3.1) and the Sobolev embedding, we can infer
that

I(u) =
1

2
‖u‖2 − µ

q

∫
RN

h(x)|u|qdx− 1

2∗s

∫
RN
|u|2

∗
sdx

≥1

2
‖u‖2 − µ

q

∫
RN

h+(x)|u|qdx− 1

2∗s

∫
RN
|u|2

∗
sdx

≥1

2
‖u‖2 − 2

2∗s

∫
RN
|u|2

∗
sdx− Cµq

∗

≥1

2
‖u‖2 − 2

2∗sS
2∗
s/2
∗
‖u‖2

∗
s − Cµq

∗

:=A‖u‖2 −B‖u‖2
∗
s − Cµq

∗
, (3.2)

where A,B,C are some positive constants.

Let Q(t) = At2 −Bt2∗
s − Cµq∗ . Then

I(u) ≥ Q(‖u‖)

and

Q′(t) = t
(

2A− 2∗sBt
2∗
s−2
)
.
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By simple mathematical analysis, there exists µ1 =
(

2sA
NC

) 1
q∗
(

2A
2∗
sB

)N−2s
2sq∗

such that

for µ ∈ (0, µ1), Q(t) attains its positive maximum. That means, there exists

t∗ =

(
2A

2∗sB

)N−2s
4s

such that

e = max
t≥0

Q(t) = Q(t∗) =
2sA

N

(
2A

2∗sB

)N−2s
2s

− Cµq
∗
> 0.

Therefore, for e0 ∈ (0, e), we may find t0 ∈ (0, t∗) such that Q(t0) = e0. Now we
choose a cut-off function χ(t) ∈ C∞0 (RN ) such that 0 ≤ χ(t) ≤ 1. Set

χ(t) =

1, 0 ≤ t ≤ t0,
At2−Cµq

∗
−e

Bt2
∗
s

, t > t∗.

We consider the perturbation of I(u):

G(u) :=
1

2
‖u‖2 − µ

q
χ (‖u‖)

∫
RN

h(x)|u|qdx− 1

2∗s
χ (‖u‖)

∫
RN
|u|2

∗
sdx. (3.3)

Therefore
G(u) ≥ A‖u‖2 −Bχ (‖u‖) ‖u‖2

∗
s − Cµq

∗
:= Q̄ (‖u‖) ,

where Q̄(t) = At2 −Bχ(t)t2
∗
s − Cµq∗ and

Q̄(t) =

Q(t), 0 ≤ t ≤ t0,

e, t > t∗.

It is easy to see that G is even, G(0) = 0 and bounded from below. In Lemma

2.3, let µ2 =
(

s
C0N

S
N
2s
∗

)1/q∗

such that for µ ∈ (0, µ2), we have s
N S

N
2s
∗ − C0µ

q∗ > 0.

Hence there exists µ∗ = min{µ1, µ2}, for µ ∈ (0, µ∗), G satisfies a (PS)c condition
with

c < e0 < min{e, s
N
S
N
2s
∗ − C0µ

q∗}.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. If we can prove that G(u) has a sequence of nontrivial
weak solutions {un} satisfying un → 0 as n → ∞ in Hs(RN ), Theorem 1.1 holds.
In fact, in this case, it is clear that I(u) = G(u) for ‖u‖ < t0. Next we just need to
verify that G(u) satisfies the conditions of Theorem 3.1.

Let Ek be a k-dimensional subspace of Hs(RN ). By the equivalence of any norm
in finite dimensional space, we obtain

αk = inf
u∈Ek,‖u‖=1

∫
RN

h+(x)|u|qdx > 0. (3.4)

We take u ∈ Ek with norm ‖u‖ = 1 and ρ > 0 small enough, we get

G(ρu) =I(ρu)
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=
1

2
‖ρu‖2 − µ

q

∫
RN

h(x)|ρu|qdx− 1

2∗s

∫
RN
|ρu|2

∗
sdx

=
1

2
‖ρu‖2−µ

q

∫
RN
h+(x)|ρu|qdx+

µ

q

∫
RN
h−(x)|ρu|qdx− 1

2∗s

∫
RN
|ρu|2

∗
sdx.

By the Hölder and Young inequalities, we have

µ

q

∫
RN
h−(x)|ρu|qdx ≤ 1

2∗s

∫
RN
|ρu|2

∗
sdx+ C2µ

q∗ , (3.5)

where C2 = 1
qq∗ |h

−|q
∗

q∗ ≥ 0.

From (3.4) and (3.5), we get

G(ρu) ≤ ρ2

2
− µ

q
αkρ

q + C2µ
q∗ := −β(k) < 0.

The above inequality implies that

{u ∈ Ek : ‖u‖ = ρ} ⊂
{
u ∈ Hs(RN ) : G(u) ≤ −β(k)

}
.

Therefore, letting Ak =
{
u ∈ Hs(RN ) : G(u) ≤ −β(k)

}
. By genus proposition,

we have γ(Ak) ≥ γ ({u ∈ Ek : ‖u‖ = ρ}) ≥ k. We can also see Ak ∈ Γk and
supu∈Ak G(u) ≤ −β(k) < 0. We define ck = infA∈Γk supu∈AG(u), then −∞ <
ck < 0. This shows G(u) satisfies assumptions (B1) and (B2) of Theorem 3.1. This
means that G has a sequence of solutions uk converging to zero. �
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