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Abstract In this paper we consider the system of fractional differential equa-
tions with positive and negative coefficients. We use the Banach contraction
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1. Introduction

In this paper, we consider the system of fractional differential equations with positive
and negative coefficients

Dα
t [r(t)x(t) + P (t)x(t− θ)]′ −Q1(t)x(t− τ) +Q2(t)x(t− σ) = h(t), (1.1)

where Dα
t is Liouville fractional derivatives of order α ≥ 0 on the half-axis, θ, τ, σ >

0, r ∈ C
(
[t0,∞), R+

)
, P ∈ C

(
[t0,∞)× [a, b], R

)
,h ∈ C

(
[t0,∞),Rn

)
, x ∈ Rn, Qi is

continuous n× n matrix on [t0,∞), i = 1, 2.

Fractional differential equations have attracted extensive attention because of
their wide application covering multiple fields of chemical physics, control theory
of dynamical systems, rheology, fluid flows,electrical networks and economics. As
lately reported, various achievements on the partial differential equations as well as
fractional-order ordinary have been attained [3,8, 9, 12–14].

As the significance of oscillation theory in achieving favorable information on the
qualitative properties of solutions of differential equations, during the past decades,
oscillation theory has been widely investigated for classical functional differential
equations [1, 4–7].
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In 2013, Candan [2] studied the existence of nonoscillatory solutions for system
of higher order nonliear neutral differential equations

[x(t) + P (t)x(t− θ)](n) + (−1)n+1[Q1(t)x(t− σ1)−Q2(t)x(t− σ2)] = 0, (1.2)

However, the discussed condition for coefficient P (t) was (−∞,−2), (− 1
2 , 0), [0, 12 ),

(2,+∞). Recently, We noticed that the nonoscillatory theory for fractional differen-
tial equations [10,11]. Nevertheless, as far as we are acquainted, the nonoscillatory
theory for system of fractional differential equations with positive and negative
coefficients has not been reported yet.

Hence, in this paper, we considered the system of fractional differential equa-
tions, skillfully introduced coefficient r(t) and constructed the new operator, where
the scope of the coefficient P (t) of neutral section in literature was expanded to
(−∞,−1), (−1, 0], [0, 1), (1,+∞), and the sufficient condition for the existence of
nonoscillatory solutions of fractional differential equation was obtained.Thus, this
paper may present its theoretical value as well as practical application value.

2. Preliminaries

In this section,we will introduce the preliminary details which are used throughout
this paper.

Definition 2.1. As usual, a continuous function x(t) defined on [t0,∞) is said to
be oscillatory if it has arbitrarily large zeros. Otherwise the solution is said to be
nonoscillatory.

Definition 2.2. The vector solution x(t) = {x1(t), x2(t), · · · , xn(t)}> of equation
(1.1) is said to be oscillatory in [t0,∞) if at least one of its nontrivial components
is oscillatory based on Definition 1. Otherwise, the vector solution x(t) is said to
be nonoscillatory.

Definition 2.3. A solution of system of equation (1.1) is a continuous vector func-
tion x(t) defined on ([t1−µ,∞),Rn), for some t1 > t0, such that Dα

t [r(t)x(t)+
P (t)x(t−θ)]′ exist on [t0,∞) and system of equation (1.1) holds for all t1 > t0.
Here, µ = max{θ, τ, σ}.

Definition 2.4 ( [8]). The Liouville fractional derivative on the half-axis is defined
by

D−αt f(t) =
1

Γ(α)

∫ ∞
t

(s− t)α−1f(s)ds,

where t ∈ R and α ∈ [0,∞).

Definition 2.5 ( [8]). The Liouville fractional derivative on the half-axis is defined
by

Dα
t f(t) =

dn

dtn
(D
−(n−α)
t f(t)) =

1

Γ(n− α)

dn

dtn

∫ ∞
t

(s− t)n−α−1f(s)ds,

where n = [α] + 1, α ∈ [0,∞), [α] denotes the integer part of α and t ∈ R. In
particular, if α = n ∈ N , thenDn

t f(t) = f (n)(t), where f (n)(t) is the usual derivative
of f(t) of order n.
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Property 2.1. ( [8]) For α > 0,

Dα
t (D−αt f)(t) = f(t).

3. Main results

Theorem 3.1. Assume that 0 ≤ P (t) ≤ p1 < 1 and∫ ∞
t0

sα‖Qi(s)‖ds <∞, i = 1, 2,

∫ ∞
t0

sα‖h(s)‖ds <∞. (3.1)

Then equation (1.1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded vector functions on [t0,∞)
with the sup norm. Let x(t) = {x1(t), x2(t), · · · , xn(t)}>. SetA = {x ∈ Λ, xi(t) > 0
or xi(t) < 0,M1 ≤ ‖x(t)‖ ≤ M2, t ≥ t0, i = 1, 2, · · · , n}, where M1,M2 are two

positive constants and c is a constant vector, such that p1M2 +
M1

p1
< ‖c‖ <

M2, 1 ≤ r(t) ≤
1

p1
. From (3.1), one can choose a t1 ≥ t0 +µ, sufficiently large t ≥ t1

such that ∫ ∞
t

(s− t)α

Γ(α+ 1)
[M2‖Q1(s)‖+ ‖h(s)‖]ds ≤M2 − ‖c‖, (3.2)∫ ∞

t

(s− t)α

Γ(α+ 1)
[M2‖Q2(s)‖+ ‖h(s)‖]ds ≤ ‖c‖ − p1M2 +

M1

p1
, (3.3)∫ ∞

t

(s− t)α

Γ(α+ 1)
[‖Q1(s)‖+ ‖Q2(s)‖]ds < 1− p1, (3.4)

and define an operator T on A as follows

(Tx)(t) =


1

r(t)
{c− P (t)x(t− θ) +

∫ ∞
t

(s− t)α

Γ(α+ 1)
[Q1(s)x(s− τ)

−Q2(s)x(s− σ) + h(s)]ds}, t ≥ t1,

(Tx)(t1), t0 ≤ t ≤ t1.

It is easy to see that Tx is continuous, for t ≥ t1,x ∈ A, by using (3.2), we have

‖(Tx)(t)‖ ≤ 1

r(t)

{
‖c‖+

∥∥∥∥∫ ∞
t

(s− t)α

Γ(α+ 1)
[Q1(s)x(s− τ) + h(s)]ds

∥∥∥∥}
≤ ‖c‖+

∫ ∞
t

(s− t)α

Γ(α+ 1)
[M2‖Q1(s)‖+ ‖h(s)‖]ds

≤M2,

and taking (3.3) into account, we have

‖(Tx)(t)‖ ≥ 1

r(t)

{
‖c‖−P (t)‖x(t−θ)‖−

∥∥∥∥∫ ∞
t

(s−t)α

Γ(α+1)
[Q2(s)x(s−σ)+h(s)]ds

∥∥∥∥}



Existence of nonoscillatory solutions. . . 1943

≥ p1
{
‖c‖ − p1M2 −

∫ ∞
t

(s− t)α

Γ(α+ 1)
(M2‖Q2(s)‖+ ‖h(s)‖)ds

}
≥M1,

these show that TA ⊂ A. Since A is bounded, close, convex subset of Λ, in order
to apply the contraction principle we have to show that T is a contraction mapping
on A. For ∀x1,x2 ∈ A, and t ≥ t1,

‖(Tx1)(t)− (Tx2)(t)‖

≤ 1

r(t)
{P (t)‖x1(t− θ)− x2(t− θ)‖

+

∥∥∥∥∫ ∞
t

(s− t)α

Γ(α+ 1)
[Q1(s)x1(s− τ)−Q2(s)x1(s− σ) + h(s)]ds

∥∥∥∥
−
∥∥∥∥∫ ∞

t

(s− t)α

Γ(α+ 1)
[Q1(s)x2(s− τ)−Q2(s)x2(s− σ) + h(s)]ds

∥∥∥∥}
≤ 1

r(t)
{p1‖x1 − x2‖+

∫ ∞
t

(s− t)α

Γ(α+ 1)
[‖Q1(s)‖‖x1(s− τ)− x2(s− τ)‖

+ ‖Q2(s)‖‖x1(s− σ)− x2(s− σ)‖]ds},

using (3.4),

‖(Tx1)(t)− (Tx2)(t)‖ ≤ ‖x1 − x2‖(p1 +

∫ ∞
t

(s− t)α

Γ(α+ 1)
[‖Q1(s)‖+ ‖Q2(s)‖]ds)

< ‖x1 − x2‖,

which shows that T is a contraction mapping on A and therefore there exists a
unique solution, obviously a bounded positive solution of (1.1) x̃ ∈ A, such that
T x̃ = x̃, that is

x̃(t)=
1

r(t)

{
c−P (t)x̃(t−θ)+

∫ ∞
t

(s−t)α

Γ(α+1)
[Q1(s)x̃(s−τ)−Q2(s)x̃(s−σ)+h(s)]ds

}
,

which implies that

r(t)x̃(t)−c+P (t)x̃(t−θ)=
1

Γ(α)

∫ ∞
t

ds

∫ s

t

(s−u)α−1[Q1(s)x̃(s−τ)−Q2(s)x̃(s−σ)+h(s)]du,

hence

[r(t)x̃(t)+P (t)x̃(t−θ)]′ =
1

Γ(α)

∫ ∞
t

(s−t)α−1[Q1(s)x̃(s−τ)−Q2(s)x̃(s−σ)+h(s)]ds.

By Property 1, it is easy to see that x̃(t) is a nonoscillatory solution of the equation
(1.1). The proof is complete.

Theorem 3.2. Assume that 1 < p3 ≤ P (t) ≤ p2 < +∞, and that (3.1) holds.Then
equation (1.1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded vector functions on [t0,∞)
with the sup norm. Let x(t) = {x1(t), x2(t), · · · , xn(t)}>. Set A = {x ∈ Λ, xi(t) > 0
or xi(t) < 0,M3 ≤ x(t) ≤ M4, t ≥ t0, i = 1, 2, · · · , n}, where M3,M4 is a positive
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constants such that p2M3 +M4 < ‖c‖ < p3M4, r(t) ≤ 1. From (3.1), one can choose
a t1 ≥ t0 + µ, sufficiently large t ≥ t1 such that∫ ∞

t

(s− t)α

Γ(α+ 1)
[M4‖Q1(s)‖+ ‖h(s)‖]ds ≤ p3M4 − ‖c‖, (3.5)∫ ∞

t

(s− t)α

Γ(α+ 1)
[M4‖Q2(s)‖+ ‖h(s)‖]ds ≤ ‖c‖ −M4 − p2M3, (3.6)∫ ∞

t

(s− t)α

Γ(α+ 1)
[‖Q1(s)‖+ ‖Q2(s)‖]ds < p3 − 1, (3.7)

and define an operator T on A as follows:

(Tx)(t) =


1

P (t+ θ)
{c− r(t+ θ)x(t+ θ) +

∫ ∞
t+θ

(s− t− θ)α

Γ(α+ 1)
[Q1(s)x(s− τ)

−Q2(s)x(s− σ) + h(s)]ds}, t ≥ t1,

(Tx)(t1), t0 ≤ t ≤ t1.

It is easy to see that T is continuous, for t ≥ t1,x ∈ A, By using (3.5), we have

‖(Tx)(t)‖ ≤ 1

p3

{
‖c‖+

∥∥∥∥∫ ∞
t+θ

(s− t− θ)α

Γ(α+ 1)
[Q1(s)x(s− τ) + h(s)]ds]

∥∥∥∥}
≤ 1

p3

{
‖c‖+

∫ ∞
t

(s− t)α

Γ(α+ 1)
[M4‖Q1(s)‖+ ‖h(s)‖]ds

}
≤M4,

and taking (3.6) into account, we have

‖(Tx)(t)‖≥ 1

p2

{
‖c‖ − r(t+θ)‖x(t+θ)‖+

∥∥∥∥∫ ∞
t+θ

(s−t−θ)α

Γ(α+1)
[Q2(s)x(s−σ)+h(s)]ds

∥∥∥∥}
≥ 1

p2

{
‖c‖ −M4 −

∫ ∞
t

(s− t)α

Γ(α+ 1)
(M4‖Q2(s)‖+ ‖h(s)‖)ds

}
≥M3.

These show that TA ⊂ A. Since A is bounded, close, convex subset of Λ, in order
to apply the contraction principle, we have to show that T is a contraction mapping
on A. For ∀x1,x2 ∈ A, and t ≥ t1,

‖(Tx1)(t)− (Tx2)(t)‖

≤ 1

P (t+ θ)
{r(t+ θ)‖x1(t+ θ)− x2(t+ θ)‖

+

∥∥∥∥∫ ∞
t+θ

(s− t− θ)α

Γ(α+ 1)
[Q1(s)x1(s− τ)−Q2(s)x1(s− σ) + h(s)]ds

∥∥∥∥
−
∥∥∥∥∫ ∞

t+θ

(s− t− θ)α

Γ(α+ 1)
[Q1(s)x2(s− τ)−Q2(s)x2(s− σ) + h(s)]ds

∥∥∥∥}
≤ 1

p3
{‖x1 − x2‖+

∫ ∞
t+θ

(s− t− θ)α

Γ(α+ 1)
[‖Q1(s)‖‖x1(s− τ)− x2(s− τ)‖

+ ‖Q2(s)‖‖x1(s− σ)− x2(s− σ)‖]ds},
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using (3.7),

‖(Tx1)(t)−(Tx2)(t)‖ ≤ 1

p3
‖x1−x2‖

{
1+

∫ ∞
t+θ

(s−t−θ)α

Γ(α+1)
[‖Q1(s)‖+ ‖Q2(s)‖]ds

}
< ‖x1−x2‖,

which shows that T is a contraction mapping on A and therefore there exists a
unique solution, obviously a bounded positive solution of (1.1) x ∈ A, such that
Tx = x. The proof is complete.

Theorem 3.3. Assume that −1 < p4 ≤ P (t) ≤ 0 and that (3.1) holds. Then
equation (1.1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded vector functions on [t0,∞)
with the sup norm. Let x(t) = {x1(t), x2(t), · · · , xn(t)}>. Set A = {x ∈ Λ, xi(t) > 0
or xi(t) < 0,M5 ≤ ‖x(t)‖ ≤ M6, t ≥ t0, i = 1, 2, · · · , n}, where M5,M6 is two

positive constants such that
M5

−p4
< ‖c‖ < (1 + p4)M6, 1 ≤ r(t) ≤

1

−p4
. From (3.1),

one can choose a t1 ≥ t0 + µ, sufficiently large t ≥ t1 such that∫ ∞
t

(s− t)α

Γ(α+ 1)
[M6‖Q1(s)‖+ ‖h(s)‖]ds ≤ (1 + p4)M6 − ‖c‖, (3.8)∫ ∞

t

(s− t)α

Γ(α+ 1)
[M6‖Q2(s)‖+ ‖h(s)‖]ds ≤ ‖c‖+

M5

p4
, (3.9)∫ ∞

t

(s− t)α

Γ(α+ 1)
[‖Q1(s)‖+ ‖Q2(s)‖]ds < 1 + p4,

and define an operator T on A as follows

(Tx)(t) =


1

r(t)
{c− P (t)x(t− θ) +

∫ ∞
t

(s− t)α

Γ(α+ 1)
[Q1(s)x(s− τ)

−Q2(s)x(s− σ) + h(s)]ds}, t ≥ t1,

(Tx)(t1), t0 ≤ t ≤ t1.

It is easy to see that T is continuous, for t ≥ t1,x ∈ A, by using (3.8), we have

‖(Tx)(t)‖ ≤ 1

r(t)

{
‖c‖−P (t)‖x(t−θ)‖+

∥∥∥∥∫ ∞
t

(s−t)α

Γ(α+1)
[Q1(s)x(s−τ)+h(s)]ds

∥∥∥∥}
≤ ‖c‖ − p4M6 +

∫ ∞
t

(s− t)α

Γ(α+ 1)
[M6‖Q1(s)‖+ ‖h(s)‖]ds

≤M6,

and taking (3.9) into account, we have

‖(Tx)(t)‖ ≥ 1

r(t)

{
‖c‖ −

∥∥∥∥∫ ∞
t

(s− t)α

Γ(α+ 1)
[Q2(s)x(s− σ) + h(s)]ds

∥∥∥∥}
≥ −p4

{
‖c‖ −

∫ ∞
t

(s− t)α

Γ(α+ 1)
[M6‖Q2(s)‖+ ‖h(s)‖]ds

}
≥M5.

The remaining part of the proof is similar to that of Theorem 3.1; therefore it is
omitted. The proof is complete.
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Theorem 3.4. Assume that −∞ < p6 ≤ P (t) ≤ p5 < −1 and that (3.1) holds.
Then equation (1.1) has a bounded nonoscillatory solution.

Proof. Let Λ be the set of all continuous and bounded vector functions on [t0,∞)
with the sup norm. Let x(t) = {x1(t), x2(t), · · · , xn(t)}>. Set A = {x ∈ Λ, xi(t) > 0
or xi(t) < 0,M7 ≤ x(t) ≤ M8, t ≥ t0, i = 1, 2, · · · , n}, where M7,M8 is a positive
constants such that −p6M7 < ‖c‖ < (−p5 − 1)M8, r(t) ≤ 1, From (3.1), one can
choose a t1 ≥ t0 + µ, sufficiently large t ≥ t1 such that∫ ∞

t

(s− t)α

Γ(α+ 1)
[M8‖Q1(s)‖+ ‖h(s)‖]ds ≤ ‖c‖+ p6M7, (3.10)∫ ∞

t

(s− t)α

Γ(α+ 1)
[M8‖Q2(s)‖+ ‖h(s)‖]ds ≤ (−p5 − 1)M8 − ‖c‖, (3.11)∫ ∞

t

(s− t)α

Γ(α+ 1)
[‖Q1(s)‖+ ‖Q2(s)‖]ds < −p5 − 1,

and define an operator T on A as follows

(Tx)(t) =


1

P (t+ θ)
{−c− r(t+ θ)x(t+ θ) +

∫ ∞
t+θ

(s− t− θ)α

Γ(α+ 1)
[Q1(s)x(s− τ)

−Q2(s)x(s− σ) + h(s)]ds}, t ≥ t1,

(Tx)(t1), t0 ≤ t ≤ t1.

It is easy to see that T is continuous, for t ≥ t1,x ∈ A, by using (3.10), we have

‖(Tx)(t)‖ ≥ 1

p6

{
−‖c‖−r(t+θ)x(t+θ)+

∥∥∥∥∫ ∞
t+θ

(s−t−θ)α

Γ(α+1)
[Q1(s)x(s−τ)+h(s)]ds]

∥∥∥∥}
≥ 1

p3

{
−‖c‖+

∫ ∞
t+θ

(s− t− θ)α

Γ(α+ 1)
[M8‖Q1(s)‖+ ‖h(s)‖]ds

}
≥M7,

and taking (3.11) into account, we have

‖(Tx)(t)‖ ≤ 1

p5

{
−‖c‖−r(t+θ)x(t+θ)−

∥∥∥∥∫ ∞
t+θ

(s−t−θ)α

Γ(α+1)
[Q2(s)x(s−σ)+h(s)]ds

∥∥∥∥}
≤ 1

p5

{
−‖c‖ −M8 −

∫ ∞
t

(s− t)α

Γ(α+ 1)
[M8‖Q2(s)‖+ ‖h(s)‖]ds

}
≤M8.

The remaining part of the proof is similar to that of Theorem 3.2; therefore it is
omitted. The proof is complete.

4. Remark

When α = n ∈ N, r(t) ≡ 1,h(t) ≡ 0, equation (1.1) become equation (1.2), thus
this paper improve results of Candan[2].
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