
Journal of Applied Analysis and Computation Website:http://jaac.ijournal.cn

Volume 10, Number 1, February 2020, 118–130 DOI:10.11948/20190011

THE BREATHER WAVE SOLUTIONS,
M-LUMP SOLUTIONS AND SEMI-RATIONAL

SOLUTIONS TO A (2+1)-DIMENSIONAL
GENERALIZED KORTEWEG-DE VRIES

EQUATION

Hui Wang, Shou-Fu Tian†, Tian-Tian Zhang†

Yi Chen†

Abstract Under investigation in this work is a (2+1)-dimensional generalized
Korteweg-de Vries equation, which can be used to describe many nonlinear
phenomena in plasma physics. By using the properties of Bell’s polynomial,
we obtain the bilinear formalism of this equation. The expression of N -soliton
solution is established in terms of the Hirota’s bilinear method. Based on the
resulting N -soliton solutions, we succinctly show its breather wave solutions.
Furthermore, with the aid of the corresponding soliton solutions, the M -lump
solutions are well presented by taking a long wave limit. Two types of hybrid
solutions are also represented in detail. Finally, some graphic analysis are
provided in order to better understand the propagation characteristics of the
obtained solutions.

Keywords A (2+1)-dimensional generalized Korteweg-de Vries equation, bi-
linear form, breather wave solutions, lump solutions, hybrid solutions.

MSC(2010) 35Q51, 35Q53, 35C99.

1. Introduction

It is widely acknowledged that the research of studying integrable properties and
constructing exact solutions for the nonlinear evolution equations (NLEEs) is one
of the most meaningful and interesting works in the field of mathematical physic-
s. Additionally, finding exact solutions of NLEEs is also a hot topic for research
workers all the time. More recently, the breather wave solutions and lump solu-
tions have gradually occupied the eyes of researchers. The breather wave solutions
possess periodicity in one direction which could be transformed into rogue wave
solutions in view of certain circumstances. The lump solutions, as special local-
ized waves, are a kind of rational solutions in all space directions. It was first
discovered in 1977 by Manakov et al. in [21]. In the past few years, it has been
reported in many nonlinear fields, such as optic media, the plasma, and shallow
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water wave [34, 35, 45, 46]. Meanwhile, various skills, such as taking a long wave
limit of the corresponding N -soliton solutions [2, 33], the inverse scattering trans-
formation [1], Darboux transformation method [9, 22], Lie symmetry method [3],
Bäcklund transformation [14], and the Hirota’s bilinear method [12, 13], etc, have
been used to solve exact lump solutions of NLEEs. By utilizing the Hirota’s bilinear
method and symbolic computation [5, 11, 15, 28, 32, 36–38, 43, 44, 47–49, 51, 54, 56],
lots of works about breather wave solutions and lump solutions have been done in
the past time [6–8, 10, 16, 18, 23–26, 29, 50, 58–61]. More importantly, taking a long
wave limit for the corresponding N -soliton solutions has great significance in the
research of lump solutions for NLEEs. Hence, we will mainly focus on this topic.

In this work, we would like to consider a (2+1)-dimensional generalized Korteweg-
de Vries (gKdV) equation of the following form{

ut + ux + α(6uux + uxxx) + βvy = 0,

uy = vx,
(1.1)

where u = u(x, y, t), v = v(x, y, t), and α, β are both arbitrary constants. It-
s Bäcklund transformation, infinite conservation laws, soliton solutions and peri-
odic wave solutions have been detailedly reported in [55]. Although some works
have been represented for the gKdV equation (1.1), high-order breather solutions,
M -lump solutions and relevant hybrid solutions have not been investigated before.
Moreover, Eq.(1.1) has widespread application in terms of shallow water waves with
weakly nonlinear restoring forces, thus we will focus on its above properties that
have not been studied before.

The outline of present paper is given as follows. In section 2, we first obtain
N -soliton solutions of Eq.(1.1), then we further derive the nth-order breather wave
solutions by taking suitable parameters. Subsequently, we choose the first-order
breather wave solution as an example, and carry out the detailed analysis. In section
3, by virtue of the corresponding N -soliton solutions, we systematically construct
M -lump solutions of the gKdV equation (1.1) by taking a long wave limit. In section
4, we consider the behavior characteristics of hybrid solutions, which are hybrid of
lump solution and soliton solution, and hybrid of lump solution and breather wave
solution. Finally, some conclusions and discussions of this work are revealed in the
last section.

2. The breather wave solutions

By employing the results provided in [30,39–42,52,53,57], we first know that Eq.(1.1)
can be mapped into

(DxDt +D2
x + αD4

x + βD2
y)f · f = 0, (2.1)

with a variable transformation

u = 2(ln f)xx, (2.2)

where f = f(x, y, t) is a real function, and the derivatives DxDt, D
2
x, D

4
x, D

2
y are all

the bilinear derivative operators defined by

Dm
x D

n
yD

l
t(f · g) =
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∂

∂x
− ∂

∂x′

)m(
∂

∂y
− ∂

∂y′

)n(
∂

∂t
− ∂

∂t′

)l
f(x, y, t) · g(x′, y′, t′)|x=x′,y=y′,z=z′ .

(2.3)

Then, we further get the N -soliton solution of the gKdV equation (1.1)

f = fN =
∑
σ=0,1

exp

 N∑
1≤i<j≤N

σiσjAij +

N∑
i=1

σiξi

 , (2.4)

with

ξi = ki(x+ piy − (αk2
i + βp2

i + 1)t) + ξ
(0)
i ,

eAij =
3α(ki − kj)2 − β(pi − pj)2

3α(ki + kj)2 − β(pi − pj)2
, (2.5)

where ki, pi, ξ
(0)
i are all arbitrary parameters, and the notation

∑
σ=0,1 is a summa-

tion that takes over all possible combinations σi = 0, 1(i = 1, 2, · · · , N).

On the basis of previous works [4,27,31], one can obtain the nth-order breather
wave solutions of the (2+1)-dimensional gKdV equation (1.1) by taking those pa-
rameters in above expression (2.4)

N = 2n, k∗j = kj+1, p∗j = pj+1, ξ∗j = ξj+1. (2.6)

Without the loss of generality, we focus on the first-order breather wave solution
of Eq.(1.1). Therefore, we have

N = 2, k∗1 = k2, p∗1 = p2, ξ∗1 = ξ2. (2.7)

If we take parameters

k1 = k∗2 = i, p1 = p∗2 = 2 + i, ξ
(0)
1 = ξ

(0)
2 = 0, α = 1, β = −1, (2.8)

it is not difficult to find that the expression f in (2.4) can be rewritten as

f = 1 + 2 cos(x+ 2y + 3t) sinh(−y − 4t) + 2 cos(x+ 2y + 3t) cosh(−y − 4t)

+ 4 sinh(−2y − 8t) + 4 cosh(−2y − 8t). (2.9)

Next, by inserting Eq.(2.9) into Eq.(2.2), the obtained result is called the first-order
breather wave solution of Eq.(1.1). In order to understand propagation characteris-
tics of the first-order breather wave solution (2.2) with (2.9) intuitively, we plot the
following Figure 1. It is necessary to point out that these three pictures are plotted
at t = 0. Moreover, it is worth noting that the first-order breather wave solution is
periodic in x axis and localized in y axis, as described in Figure 1(a).
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(a) (b) (c)

Figure 1. (Color online) The first-order breather wave solution of Eq.(1.1) with the corresponding
parameters selection in (2.8). (a) Three dimensional plot. (b) Density plot. (c) The wave propagation
pattern along x axis.

3. M-lump solutions

In this part, our main goal is to construct lump solutions of Eq.(1.1) in detail
by taking a long wave limit for the corresponding N -soliton solutions. From the
expression (2.4), we easily find that the first three soliton solutions as follows

f1 = 1 + exp ξ1,

f2 = 1 + exp ξ1 + exp ξ2 + exp(ξ1 + ξ2 +A12),

f3 = 1 + exp ξ1 + exp ξ2 + exp ξ3 + exp(ξ1 + ξ2 +A12) + exp(ξ1 + ξ3 +A13)

+ exp(ξ2 + ξ3 +A23) + exp(ξ1 + ξ2 + ξ3 +A12 +A13 +A23). (3.1)

Subsequently, we want to get M -lump solutions of Eq.(1.1), so we take

exp(ξ
(0)
i ) = −1, 1 ≤ i ≤ N, (3.2)

and let a limit ki −→ 0 in (2.4). Then, the following theorem can be presented.

Theorem 3.1. Eq.(1.1) has the M -lump solutions in the following form

u = 2(ln fN )xx, (3.3)

with

fN =

N∏
i=1

ηi +
1

2

N∑
i,j

Bij

N∏
l 6=i,j

ηl +
1

2!22

N∑
i,j,s,r

BijBsr

N∏
l 6=i,j,s,r

ηl + · · ·

+
1

M !2M

N∑
i,j,··· ,m,n

M︷ ︸︸ ︷
BijBvl · · ·Bmn

N∏
p 6=i,j,v,l,··· ,m,n

ηp + · · · , (3.4)

and

ηi = x+ piy − (βp2
i + 1)t,

Bij =
12α

β(pi − pj)2
, (3.5)
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where
∑
i,j,··· ,m,n stands for the summation roundly feasible combinations of i, j,

· · · ,m, n, which are chosen from 1, 2, · · · , N and they are all distinct. A class of
nonsingular lump solutions which were confirmed by Satsuma and Ablowitz (see
Ref. [33]) can be derived, if we choose the parameters pn+i = p∗i (i = 1, 2, · · · , n)
with N = 2n.

3.1. 1-lump solution

In this subsection, 1-lump solution of Eq.(1.1) can be obtained from 2-soliton solu-
tion when we take n = 1, N = 2. Meanwhile, Eq.(3.4) can be represented as

f2 = η1η2 +B12, (3.6)

with

ηi = x+ piy − (βp2
i + 1)t, i = 1, 2,

B12 =
12α

β(p1 − p2)2
. (3.7)

By taking p2 = p∗1, we have a nonsingular solution

f2 = η1η
∗
1 +

12α

β(p1 − p∗1)2
. (3.8)

Inserting Eq.(3.8) into u = 2(ln f2)xx and setting p1 = a + bi, 1-lump solution
of Eq.(1.1) is obtained by

u = 2
∂2

∂x2
ln[(x′ + ay′)2 + (by′)2 − 3α

βb2
]

= 4
−(x′ + ay′)2 + (by′)2 − 3α

βb2

[(x′ + ay′)2 + (by′)2 − 3α
βb2 ]2

, (3.9)

with
x′ = x+ (a2β + b2β − 1)t, y′ = y − 2aβt. (3.10)

It is necessary to point out that the rational solution (3.9) is a permanent 1-lump
solution, this solution decaying as O(1/x2, 1/y2) for |x|, |y| → ∞ and moving with
the velocity vx = 1− a2β − b2β and vy = 2aβ. As shown in Figure 2, the evolution
of the solution (3.9) is plotted with an appropriate choice of the parameters a, b, α
and β. Moreover, it is easily find that f2 is a positive quadratic function, which is
consistent with the results in [17,19,20].

3.2. Multiple-lump solutions

Here, we will derive multiple-lump solutions of Eq.(1.1). We first take n = 2, N = 4,
then Eq.(3.4) can be expressed as f4, given by

f4 = η1η2η3η4 +B12η3η4 +B13η2η4 +B14η2η3 +B23η1η4 +B24η1η3 +B34η1η2

+B12B34 +B13B24 +B14B23, (3.11)

with

ηi = x+ piy − (βp2
i + 1)t, i = 1, 2, 3, 4,
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(a) (b) (c)

Figure 2. (Color online) Evolution plots of 1-lump solution for Eq.(1.1) by choosing suitable parameters
a = 1, b = 1, α = 1, β = 1. (a) t = −10. (b) t = 0. (c) t = 10.

Bij =
12α

β(pi − pj)2
, i < j, j = 2, 3, 4. (3.12)

Putting p1 = pR + pI i, p2 = λR + λI i, we have p3 = p∗1 = pR − pI i, p4 =
p∗2 = λR − λI i. It is necessary to illustrate that the parameters pR, pI , λR, λI are
all arbitrary real constants. Noted that the expression f4 is a positive function
consisted of quartic and quadratic perfect square functions. Next, substituting
Eq.(3.11) into u = 2(ln f4)xx, the obtained result is 2-lump solution of Eq.(1.1).

Similarly, Eq.(3.4) can be transformed into f6 by choosing n = 3, N = 6. It
is not difficult to find that the expression f6 has 76 terms according to Eq.(3.4).
Substituting f6 into the transformation u = 2(ln f6)xx, and putting p4 = p∗1 =
pR − pI i, p5 = p∗2 = hR − hI i, p6 = p∗3 = qR − qI i, we get a nonsingular rational
solution which is called 3-lump solution of Eq.(1.1).

In what follows, the evolution plots of 2-lump solution and 3-lump solution of
Eq.(1.1) are drawn by taking suitable parameters in appropriate time, respectively.
Figure 3 displays the propagation feature of 2-lump solution at time t = −10, t =
0, t = 10. Additionally, we can see the propagation characteristic of 3-lump solution
from Figure 4.

(a) (b) (c)

Figure 3. (Color online) Evolution plots of 2-lump solution for Eq.(1.1) by choosing suitable parameters
pR = 1, pI = 1, λR = 1.4, λI = 0.5, α = −1, β = 1. (a) t = −10. (b) t = 0. (c) t = 10.
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(a) (b) (c)

Figure 4. (Color online) Evolution plots of 3-lump solution for Eq.(1.1) by choosing suitable parameters
pR = 1, pI = 1, hR = 1.4, hI = 1.5, qR = 1.5, qI = 1.6, α = −1, β = 1. (a) t = −2. (b) t = 0. (c) t = 2.

4. Semi-rational solutions

Now, we are in a position to investigate the semi-rational solutions of Eq.(1.1).
By taking a long wave limit for the partial exponential functions in Eq.(2.4), a
combination of polynomial and exponential functions can be derived, which also
be called as semi-rational solutions or hybrid solutions. In order to illustrate the
solution systematically, we will consider the following two types of hybrid solutions.

4.1. Hybrid of lump solution and soliton solution

In this subsection, we first consider the situation of N = 3. Let

N = 3, ξ
(0)
1 = ξ

(0)
2 = iπ, (4.1)

and take k1, k2 → 0 in Eq.(2.4). One can find that

f = (η1η2 +B12) + (η1η2 +B12 +B13η2 +B23η1 +B12B23)eξ3 , (4.2)

with

Bs3 = − 12αk3

3αk2
3 − β(ps − p3)2

, s = 1, 2, (4.3)

where η1, η2, B12 are given by Eq.(3.5), and ξ3 is defined as Eq.(2.5). Then, we let
p2 = p∗1 = a − bi, where a, b, k3, p3, α and β are all arbitrary real constants. The
corresponding hybrid solution u defined by Eq.(2.2) with Eq.(4.2) is derived.

In order to better analysis dynamical behavior of hybrid of 1-lump solution and
1-soliton solution, we give its three dimensional plots in different time. As shown
in Figure 5, it is easily to see that the lump moves and passes the soliton and in
the interaction domain of the two waveforms the amplitude increases considerably.
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(a) (b) (c)

Figure 5. (Color online)Evolution plots of hybrid solution composed of 1-lump and 1-soliton for

Eq.(1.1) by choosing suitable parameters a = 1, b = 1, k3 = −1, p3 = 0.5, ξ
(0)
3 = 0, α = 1, β = −1. (a)

t = −8. (b) t = 0. (c) t = 8.

4.2. Hybrid of lump solution and breather wave solution

Higher-order semi-rational solutions consisting of lump solution and breather wave
solution can also be generated in a similar way. For instance, we set

N = 4, p2 = p∗1, p4 = p∗3, k4 = k∗3 , ξ
(0)
1 = ξ

(0)
2 = iπ, (4.4)

and take k1, k2 → 0 in Eq.(2.4), one can derive

f = eA34(B13B23+B13B24+B13η2+B14B23+B14B24+B14η2+B23η1+B24η1+η1η2

+B12)eξ3+ξ4 +(B13B23+B13η2+B23η1+η1η2+B12)eξ3 +(B14B24+B14η2+B24η1

+ η1η2 +B12)eξ4 + η1η2 +B12, (4.5)

with

Bsj = − 12αkj
3αk2

j − β(ps + pj)2
, s = 1, 2, j = 3, 4, (4.6)

where η1, η2, B12 are given by Eq.(3.5), and ξ3, ξ4, e
A34 are defined as Eq.(2.5).

By the substitution of Eq.(4.5) into Eq.(2.2), the corresponding hybrid solution u
between lump solution and breather wave solution is deduced.

In order to better illustrate the hybrid of lump solution and breather wave
solution, we give a special example with the free parameters selection being taken
as follows

α = −1, β = 1, p1 = 0.5 + i, p2 = 0.5− i, p3 = 1 + 0.5i,

p4 = 1− 0.5i, k3 = 1.5i, k4 = −1.5i, ξ
(0)
3 = ξ

(0)
4 = 4π. (4.7)

To observe the dynamic characteristics of the hybrid between lump solution and
breather wave solution more intuitively, the corresponding figure is revealed in Fig-
ure 6. It is obvious to see that the hybrid solution (2.2) with (4.5) is a mixture of
a lump solution and a breather wave solution.
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(a) (b)

Figure 6. (Color online) Hybrid of lump solution and breather wave solution for Eq.(1.1) with the
corresponding parameters selection in (4.7). (a) Three dimensional plot (t = 0). (b) Density plot (t = 0).

5. Conclusions and discussions

In this paper, we have researched a (2+1)-dimensional generalized Korteweg-de
Vries equation. Its N -soliton solutions have been constructed by employing the
Hirota’s bilinear method. We further derived the breather wave solutions of the
equation based on the obtained N -soliton solutions. Moreover, M -lump solutions
and semi-rational solutions have also been established in detail by taking a long
wave limit. Most importantly, the figures of breather wave solution, 1-lump solu-
tion, 2-lump solution, 3-lump solution and two types of hybrid solutions have been
presented in Figures 1-6 in order to better understand their dynamical behavior
characteristics.

The paper shows an effect and powerful method to seek exact solutions of N-
LEEs, which is worthy of further exploration to other models in mathematical
physics and engineering. Finally, we hope that our results provided in this work are
helpful to understand the breather wave solutions, the lump solutions and hybrid
solutions for more models.
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[16] X. Lü and W. X. Ma, Study of lump dynamics based on a dimensionally reduced
Hirota bilinear equation, Nonlinear Dyn., 2016, 85(2), 1217–1222.

[17] W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett.
A, 2015, 379(36), 1975–1978.

[18] W. X. Ma, Y. Zhou and R. Dougherty, Lump-type solutions to nonlinear dif-
ferential equations derived from generalized bilinear equations, Int. J. Modern
Phys. B, 2016, 30(28n29), 1640018.
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