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Abstract This paper presents a new class of protocols to solve finite-time
consensus for multi-agent systems. The protocols are induced from the clas-
sical finite-time consensus algorithm by using the so-called protocol function.
Sufficient conditions are established for networked agents to experience finite-
time consensus under time-varying undirected and fixed directed topologies.
Numerical simulations show that the proposed protocols can provide more
flexibility to improve convergence rate.
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1. Introduction

Recent years have witnessed an increasing number of studies concerned with the
consensus problem of multi-agent systems due to its vast potential in applications,
including physics [11, 21, 22], biology [1, 20, 25] and management science [3, 5, 16].
In these applications, every system consists of multiple agents whose motions are
governed by a first, second or even more higher-order dynamics and aims to reach
consensus that states of all agents agree upon a common assessment or certain
quantity of interest. To achieve consensus, every individual evolves by compar-
ing its current state with the information coming from its neighbors. Hence, the
main challenge in solving the consensus problem lies in how to design the interaction
rule, which is called the consensus protocol or algorithm. In the past decades, many
systems have been modeled to explore appropriate consensus protocols. In 2004,
Olfati-Saber and Murray [19] pioneered a systematic framework of the consensus
problem for networked agents, which led to subsequent interesting results. Xiao
and Wang [23] studied consensus for discrete-time systems with changing com-
munication topologies and bounded time-varying communication delay. Atay [2]
studied consensus problems on networks in the presence of distributed time de-
lays. Yu etc [24] discussed the design of distributed control gains for consensus in
multi-agent systems with second-order nonlinear dynamics. Cheng etc [6] studied
the mean square consensus of linear multi-agent systems with communication nois-

†the corresponding author. Email address:baoshinau@outlook.com(B. Shi)
1School of Basic Sciences for Aviation, Naval Aviation University, 264001 Yan-
tai, China

2College of Liberal Arts and Sciences, National University of Defense Technol-
ogy, 410073 Changsha, China

http://jaac.ijournal.cn
http://dx.doi.org/10.11948/20190008


1928 Y. Cheng, B. Shi, W. Zhao & L. Ding

es. Zhang etc [26] developed a distributed leader-follower consensus protocol for
a class of homogeneous time-varying nonlinear multi-agent systems. Geng etc [10]
performed an in-depth study about the consensus problem of heterogeneous multi-
agent systems with linear and nonlinear dynamics by the aid of the adaptive method
and Lyapunov stability theory, to name just a few.

It should be noted that convergence rate is an important performance indicator
in the analysis of consensus. It was shown that the second smallest eigenvalue of the
Laplacian matrix of interaction graph, called algebraic connectivity, determines the
consensus speed of multi-agent systems. This outcome motivated some researchers
to find proper interaction topologies with larger algebraic connectivity. Kim and
Mesbahi [15] considered the problem of finding the best vertex positional configura-
tion in the presence of an additional proximity constraint to maximize the algebraic
connectivity. Ogiwara etc [18] tackled the problem of finding graphs that maximize
or locally maximize the algebraic connectivity in the space of graphs with a fixed
number of vertices and edges. Furthermore, based on non-smooth stability analysis,
people introduced various protocols to make multi-agent systems reach consensus
within finite time. Cortés [8] proposed the normalized and signed gradient dynam-
ical systems associated with a differentiable function to solve finite-time consensus.
Zuo and Tie [27] constructed a new class of global continuous time-invariant con-
sensus protocols for each single-integrator agent dynamics with the aid of Lyapunov
functions. Hua etc [12] investigated the finite-time consensus of second-order multi-
agent systems with unknown velocities and disturbances. All of the above results
showed that, compared with asymptotic consensus, finite-time consensus can better
meet complex practical cases and has stronger robustness against uncertainties.

This work presents a new class of finite-time consensus protocols forN networked
agents written as

ẋi(t) =

N∑
j=1

aij(t)sign(h(xj(t))− h(xi(t)), α), i, j ∈ IN = {1, 2, ..., N}, (1.1)

where xi(t) ∈ R denotes the state (opinion, voltage, or incremental cost) of agent
i at time t, aij measures the mutual influence of agent j on agent i, 0 < α < 1,
sign(r, α) = sign(r)|r|α for simplicity and the so-called protocol function h(x) : R→
R is continuously differentiable as well as strictly increasing. The main contribution
of this paper is twofold. First, we investigate finite-time consensus of multiple agents
governed by the dynamics (1.1) under detail-balanced networks. Then we find out
some concrete protocol functions to improve consensus rate. For this to happen, it
is necessary to give the definition of finite-time consensus mathematically at first.

Definition 1.1. Finite-time consensus in (1.1) is said to be reached if for arbitrary
initial conditions x0 = [x1(0), x2(0), ..., xN (0)]T and all i, j ∈ IN , there exists a
settling time T (x0) ∈ [0,+∞) such that

lim
t→T (x0)

|xi(t)− xj(t)| = 0,

xi(t) = xj(t), t ≥ T (x0).

The rest of this paper is organized as follows. Section 2 reviews some prelim-
inaries necessary throughout the paper. Section 3 states sufficient conditions for
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finite-time consensus and technical proofs follow. Numerical simulations are car-
ried out to illustrate consensus performance in Section 4. Conclusions and future
research directions end the paper in Section 5.

2. Preliminaries

2.1. Graph theory

A directed graph G(A) = (V, ε,A) consists of a node set V (G) = {v1, v2, ..., vN},
an edge set ε ⊆ V × V and an adjacent matrix A = [aij ] ∈ RN×N . For a directed
graph, an edge (vi, vj) denotes the state of node vi is available to node vj , but not
necessarily vice versa. In contrast, for an undirected graph, (vi, vj) ∈ ε implies
(vj , vi) ∈ ε. If (vi, vj) ∈ ε, then node vi is called a neighbor of node vj or vi and
vj are adjacent. For an undirected graph, its adjacent matrix A = [aij ] satisfies
aij = aji > 0. Moreover, aij > 0 means (vj , vi) ∈ ε, aij = 0 implies (vj , vi) /∈ ε, and
aii ≡ 0. For a directed graph, properties of the adjacent matrix are similar except
for aij = aji. A path on G from vi to vj is a sequence of distinct vertices vi, ...,
vj if consecutive vertices are adjacent. An undirected graph is called connected if
there exists a path for any two distinct nodes. A directed graph is called strongly
connected if and only if for any two distinct nodes, there exists a directed path.
Furthermore, a directed graph G(A) is said to satisfy the detail-balanced condition
if there exist some scalars ωi > 0 such that ωiaij = ωjaji for all i, j ∈ IN [7].

Lemma 2.1 (Remark 4, [19]). Let LA = [lij ] ∈ RN×N denote the Laplacian matrix
of graph G(A) with elements

lij =


N∑

k=1,k 6=i
aik, i = j,

−aij , i 6= j.

Then LA has the following properties:

(i) 0 is an eigenvalue of LA and 1N = [1, 1, ..., 1]T ∈ RN is the associated eigen-
vector;

(ii) If G(A) is undirected, then xTLAx = 1
2

N∑
i=1

N∑
j=1

aij(xj − xi)
2 for any x =

[x1, x2, ..., xN ]T , and LA is positive semi-definite, which implies that all eigen-
values of LA are nonnegative real numbers;

(iii) For an undirected G(A), the algebraic connectivity of G(A) is given by

λ2(LA) = min
x6=0,1TNx=0

xTLAx

xTx
,

where λ2(LA) also equals the second smallest eigenvalue of LA. In addition,
G(A) is connected if and only if λ2(LA) > 0.
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2.2. Mathematical lemmas

Lemma 2.2. Suppose that ξ = [ξ1, ξ2, ..., ξN ]T ∈ RN and Q = [qij ] ∈ RN×N is
symmetric. If f : R→ R is an odd function, then we have

N∑
i=1

N∑
j=1

qijξif(xj − xi) = −1

2

N∑
i=1

N∑
j=1

qij(ξj − ξi)f(xj − xi).

Proof.

N∑
i=1

N∑
j=1

qijξif(xj − xi) =

N∑
i=1

N∑
j=1

qjiξjf(xi − xj)

=−
N∑
i=1

N∑
j=1

qijξjf(xj − xi),

it follows that

N∑
i=1

N∑
j=1

qijξif(xj − xi) =
1

2

 N∑
i=1

N∑
j=1

qijξif(xj − xi)−
N∑
i=1

N∑
j=1

qijξjf(xj − xi)


=− 1

2

N∑
i=1

N∑
j=1

qij(ξj − ξi)f(xj − xi).

Lemma 2.3 (Theorem 19, [13]). If ξ1, ξ2, ...,ξN ≥ 0 and 0 < p ≤ 1, then(
N∑
i=1

ξi

)p
≤

N∑
i=1

ξpi .

Lemma 2.4 (Theorem 4.2, [4]). Assume that a continuous, positive-definite func-
tion V (t) satisfies

V̇ (t) ≤ −kV ρ(t),
where k > 0, 0 < ρ < 1 are two constants. Then, for any given t0, V will tend to
zero within finite time estimated by

t1 = t0 +
V 1−ρ(t0)

k(1− ρ)
,

and V (t) ≡ 0 for t ≥ t1.

Definition 2.1. Assume that A ∈ CN×N is an Hermitian matrix, then for x 6= 0,

R(A;x) =
xHAx

xHx

is called the Rayleigh quotient of A.

All eigenvalues of A are real numbers and one can order them as

λ1 ≤ λ2 ≤ · · · ≤ λN .

Then we have
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Lemma 2.5 (Theorem 4.2.2, [14]).

min
x6=0

R(A;x) = λ1, max
x 6=0

R(A;x) = λN .

Definition 2.2. Suppose that A,B ∈ CN×N are Hermitian matrices, then for
x 6= 0,

R(A,B;x) =
xHAx

xHBx

is called the generalized Rayleigh quotient of A and B.

It is easy to check that all roots of det(µB −A) are real numbers and one can
order them as

µ1 ≤ µ2 ≤ · · · ≤ µN .

With this, we have

Lemma 2.6. If the Hermitian matrix B is positive-definite, then

min
x 6=0

R(A,B;x) = µ1, max
x 6=0

R(A,B;x) = µN .

Proof. Denote y = B
1
2x. Noting thatB

1
2 (B−

1
2AB−

1
2 )B−

1
2 = AB−1, according

to Lemma 2.5, we have

max
x 6=0

xHAx

xHBx
= max
x6=0

yHB−
1
2AB−

1
2y

yHy
= λN (AB−1) = µN .

The same reasoning applies to the other case.

3. Consensus results

This section presents two kinds of networks for a group of N agents to ensure
finite-time consensus.

3.1. Network with time-varying undirected topology

In many practical situations, the information exchange may not be available all the
time due to special physical devices, limited sensing range or existence of obstacles.
Therefore, it is reasonable to assume that the interaction topology is dynamically
changing. For this case, we have the following result.

Theorem 3.1. Suppose that the time-varying network G(A(t)) is always undirected
and connected. Moreover, we assume that the algebraic connectivity of G(B(t)) has
a lower bound, that is, there exists λ∗2 > 0 such that

inf
t≥0

λ2(LB(t)) ≥ λ∗2, (3.1)

where we define B(t) = [bij(t)] =

[
a

2
1+α

ij (t)

]
∈ RN×N . Then finite-time consensus

can be reached in system (1.1).
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Proof. Note that G(A(t)) is undirected in the sense that aij(t) = aji(t), namely,
two agents have the same influence on the alignment of each other. The symmetry
implies the total momentum in the model

x̄(t) =
1

N

N∑
i=1

xi(t)

is conserved, that is, x̄(t) ≡ x̄(0). In fact, we can get

˙̄x(t) =
1

N

N∑
i=1

N∑
j=1

aij(t)sign(h(xj)− h(xi), α) = 0

immediately from Lemma 2.2 with ξ = 1N in it. Let δ(t) = [δ1(t), δ2(t), ..., δN (t)]T

be the group disagreement vector with δi(t) = xi(t) − x̄, then δ̇i(t) = ẋi(t) and
N∑
i=1

δi(t) = 0.

Consider the following Lyapunov function candidate

V (δ) =
1

2

N∑
i=1

δ2
i (t).

Differentiating V along the protocol versus time yields

V̇ =

N∑
i=1

δiδ̇i

=

N∑
i=1

N∑
j=1

aijδisign(h(xj)− h(xi), α)

=− 1

2

N∑
i=1

N∑
j=1

aij(δj − δi)sign(h(xj)− h(xi), α)

=− 1

2

N∑
i=1

N∑
j=1

aij |δj − δi||h(xj)− h(xi)|α,

where the last equality is derived from h(x) being strictly increasing. From V̇ ≤ 0
and V ≥ 0 we know that V (t) is bounded for all t ≥ 0. Then it follows that xi(t)
remains bounded for all t ≥ 0 and i ∈ IN , that is, there exists M > 0 such that
|xi(t)| ≤ M . Since h(x) is continuously differentiable, according to the Lagrange
mean value theorem, there exists c̄ = max

|x|≤M
h′(x) such that |δj − δi| = |xj − xi| ≥

1
c̄ |h(xj)− h(xi)|. Invoking Lemma 2.3, we have

V̇ ≤− 1

2c̄

N∑
i=1

N∑
j=1

aij |h(xj)− h(xi)|α+1

=− 1

2c̄

N∑
i=1

N∑
j=1

(
a

2
1+α

ij (h(xj)− h(xi))
2

)α+1
2
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≤− 1

2c̄

 N∑
i=1

N∑
j=1

a
2

1+α

ij (h(xj)− h(xi))
2


α+1
2

=− 1

2c̄


N∑
i=1

N∑
j=1

a
2

1+α

ij (h(xj)− h(xi))
2

N∑
i=1

N∑
j=1

a
2

1+α

ij (δj − δi)2

·

N∑
i=1

N∑
j=1

a
2

1+α

ij (δj − δi)2

V
· V


α+1
2

. (3.2)

Let c = min
|x|≤M

h′(x), which leads to |h(xj)− h(xi)| ≥ c|xj − xi| and

N∑
i=1

N∑
j=1

a
2

1+α

ij (h(xj)− h(xi))
2

N∑
i=1

N∑
j=1

a
2

1+α

ij (δj − δi)2

≥

N∑
i=1

N∑
j=1

a
2

1+α

ij c2(δj − δi)2

N∑
i=1

N∑
j=1

a
2

1+α

ij (δj − δi)2

= c2. (3.3)

Then, from Lemma 2.1 and (3.1), we have

N∑
i=1

N∑
j=1

a
2

1+α

ij (t)(δj − δi)2

V
=

2δTLB(t)δ
1
2δ

T δ

∣∣∣∣∣
δ 6=0,1TNδ=0

≥ 4λ2(LB(t)) ≥ 4λ∗2. (3.4)

Substituting (3.3) and (3.4) into (3.2), one has

V̇ ≤ − 1

2c̄
(4c2λ∗2)

α+1
2 V

α+1
2 . (3.5)

From the above discussion and Lemma 2.4, system (1.1) can achieve consensus
at finite time

t1 ≤
4c̄V

1−α
2 (0)

(1− α)(4c2λ∗2)
α+1
2

,

where V (0) = 1
2

N∑
i=1

δ2
i (0). This completes the proof.

We have thus obtained a sufficient condition for system (1.1) to experience finite-
time consensus when the network topology is time-varying undirected. The follow-
ing result focuses on the fixed topology case where we prove consensus under more
flexible conditions.

3.2. Network with time-invariant directed topology

We are now in a position to discuss the network with time-invariant directed topol-
ogy. The main result of this part is the following theorem.

Theorem 3.2. Suppose that the fixed topology G(A) is strongly connected, detail-
balanced and satisfies aij > 0 for i 6= j. Then finite-time consensus can be reached
in system (1.1).
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Proof. In this case, there exists a positive vector ω = [ω1, ω2, ..., ωN ]T satisfying
ωiaij = ωjaji for i, j ∈ IN . Let D = diag(ω1, ω2, ..., ωN ), then DA is symmetric
and G(DA) is connected. It is easy to check that the weighted center

x̄(t) =

N∑
i=1

ωixi(t)

N∑
i=1

ωi

remains time-invariant. In fact, we can get

˙̄x(t) =
1

N∑
i=1

ωi

N∑
i=1

N∑
j=1

ωiaijsign(h(xj)− h(xi), α) = 0

from Lemma 2.2 with Q = DA and ξ = 1N in it. Let δ(t) = [δ1(t), δ2(t), ..., δN (t)]T

be the group disagreement vector with δi(t) = xi(t) − x̄, then δ̇i(t) = ẋi(t) and
N∑
i=1

ωiδi = 0.

Consider the following Lyapunov function candidate

V (δ) =
1

2

N∑
i=1

ωiδ
2
i (t).

The time derivative of V is as follows

V̇ =

N∑
i=1

ωiδiδ̇i

=

N∑
i=1

N∑
j=1

ωiaijδisign(h(xj)− h(xi), α)

=− 1

2

N∑
i=1

N∑
j=1

ωiaij(δj − δi)sign(h(xj)− h(xi), α)

=− 1

2

N∑
i=1

N∑
j=1

ωiaij |δj − δi||h(xj)− h(xi)|α.

Choose c̄ and c as the same meanings in the proof of Theorem 3.1, then

V̇ ≤− 1

2c̄

N∑
i=1

N∑
j=1

ωiaij |h(xj)− h(xi)|α+1

=− 1

2c̄

N∑
i=1

N∑
j=1

(
(ωiaij)

2
1+α (h(xj)− h(xi))

2
)α+1

2

≤− 1

2c̄

 N∑
i=1

N∑
j=1

(ωiaij)
2

1+α (h(xj)− h(xi))
2


α+1
2
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=− 1

2c̄


N∑
i=1

N∑
j=1

(ωiaij)
2

1+α (h(xj)−h(xi))
2

N∑
i=1

N∑
j=1

(ωiaij)
2

1+α (δj−δi)2

·

N∑
i=1

N∑
j=1

(ωiaij)
2

1+α (δj−δi)2

V
· V


α+1
2

.

Set C = [cij ] =
[
(ωiaij)

2
1+α

]
∈ RN×N , then

N∑
i=1

N∑
j=1

(ωiaij)
2

1+α (h(xj)− h(xi))
2

N∑
i=1

N∑
j=1

(ωiaij)
2

1+α (δj − δi)2

≥ c2

and
N∑
i=1

N∑
j=1

(ωiaij)
2

1+α (δj − δi)2

V
=

2δTLCδ
1
2δ

TDδ
.

Recalling Lemma 2.6, one has

δTLCδ

δTDδ

∣∣∣∣∣
δ 6=0,δ⊥ω

≥ min
δ 6=0

R(LC ,D; δ) = µ∗1 > 0,

where µ1 is the smallest root of det(µD − LC) = 0. Summarizing what we have
obtained leads to

V̇ ≤ − 1

2c̄
(4c2µ∗1)

α+1
2 V

α+1
2 .

From Lemma 2.4, it follows that system (1.1) can evolve into zero at finite time

t1 ≤
4c̄V

1−α
2 (0)

(1− α)(4c2µ∗1)
α+1
2

,

where V (0) = 1
2

N∑
i=1

ωiδ
2
i (0). This completes the proof.

Remark 3.1. In fact, an undirected network itself can be regarded as a special
case of a directed network with detail-balanced coefficients ωi = 1 for all i ∈ IN .

4. Numerical simulations

In what follows, we will provide some concrete protocol functions to illustrate theo-
retical results. For computational convenience and demonstration purpose, we take
N = 6, α = 0.5 and initial data are randomly chosen from (−5, 5). Three differ-

ent protocol functions h(x) = x + x
1+0.1x2 , h(x) = 2x + xe−x

2

and h(x) = x
1−e−2x

are selected to make comparisons with the existing h(x) = x to demonstrate that
the presented protocols can improve convergence rate without increasing control
input [17].

To begin with, we take the Cucker-Smale potential

aij = I(|xj(t)− xi(t)|) (4.1)
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with I(r) = 1
1+r2 whose symmetry makes the network topology undirected all the

time. Consensus behaviors under four protocol functions are shown in Figure 1
respectively. It is clear that all the protocols enable the states of six agents to
reach an agreement. Meanwhile, we compute the convergence time out numerically
and the results are 6.618 for h(x) = x, 5.348 for h(x) = x + x

1+0.1x2 , 4.601 for

h(x) = 2x + xe−x
2

and 2.975 for h(x) = x
1−e−2x . Obviously, the three proposed

protocols do achieve faster consensus than that with h(x) = x.

Remark 4.1. It is reasonable to assume that the mutual influence is a function
of the distance between agents. We can refer to [9] where the authors introduced
a symmetric pairwise influence function as (4.1), which reflects that the closer two
agents are, the more they tend to align with each other, to describe the emergence
of flocking behavior.
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(c) h(x) = 2x+ xe−x
2
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(d) h(x) = x

1−e−2x

Figure 1. Consensus of (1.1) with different protocol functions under time-varying undirected topology.

Next we assume that system (1.1) has a fixed directed topology modeled by the
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detail-balanced adjacent matrix



0 0.3 0.2 0.4 0.5 0.1

0.1 0 0.1 0.2 0.5 0.25

0.4 0.6 0 0.5 1 0.15

0.8 1.2 0.5 0 0.6 0.7

0.1 0.3 0.1 0.06 0 0.1

0.2 1.5 0.15 0.7 1 0


with balanced coefficients ω1 = 1, ω2 = 3, ω3 = ω4 = ω6 = 0.5 and ω5 = 5. Initial
configurations are also chosen in (−5, 5) but different from those in Figure 1. All
the protocols can achieve finite-time consensus, as shown in Figure 2. Under this
topology, the three proposed protocols also achieve faster consensus than that with
h(x) = x. Specifically, the convergence time for h(x) = x is 3.419, for h(x) =

x+ x
1+0.1x2 is 2.585, for h(x) = 2x+ xe−x

2

is 2.386 and for h(x) = x
1−e−2x is 1.985.
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Figure 2. Consensus of (1.1) with different protocol functions under fixed directed topology.
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5. Conclusions

In this paper, a general form of finite-time consensus protocols is proposed to further
improve the classical protocol in terms of the convergence rate. We first proved
that the presented protocol can admit finite-time consensus for networks with time-
varying undirected and time-invariant directed topologies. It is also shown that the
convergence time is determined by network parameters and the protocol function
h(x). Then by choosing some concrete protocol functions, we numerically illustrate
the presented protocol can really provide more flexibility to improve convergence
rate. However, much remains to be done and our future work will focus on the case
with time-delay and nonlinear dynamics.
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