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DYNAMIC BEHAVIOR OF A DELAY
CHOLERA MODEL WITH CONSTANT

INFECTIOUS PERIOD∗

Xue-yong Zhou1,†, Xiang-yun Shi1 and Jing-an Cui2

Abstract In this paper, a delay cholera model with constant infectious pe-
riod is investigated. By analyzing the characteristic equations, the local sta-
bility of a disease-free equilibrium and an endemic equilibrium of the model
is established. It is proved that if the basic reproductive number R0 > 1,
the system is permanent. If R0 < 1, by means of an iteration technique,
sufficient conditions are obtained for the global asymptotic stability of the
disease-free equilibrium. If R0 > 1, also by means of an iteration technique,
sufficient conditions are obtained for the global asymptotic stability of the
endemic equilibrium. Numerical simulations are carried out to illustrate the
main theoretical results.
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1. Introduction
Cholera is an acute bacterial illness caused by infection of the intestinal tract
with the bacterium Vibrio cholerae. Cholera may produce severe gastrointestinal
symptoms, including profuse, watery diarrhea, as well as vomiting and dehydra-
tion [13, 17, 22, 29]. It has long been, and continues to be, a world health issue.
Cholera usually occurs in areas where there’s poor sanitation, over-crowding, war
or famine [30].

Mathematical models can describe the dynamic character of infectious diseases
to show the likely outcome of an epidemic. And they have played an important role
in the disease control in epidemiological aspect and help inform public health inter-
ventions. Waterborne diseases such as cholera, diarrheal disease, dysentery, giardia,
are caused by pathogenic microorganisms that most commonly are transmitted in
contaminated fresh water. Few researchers have contributed towards the mathe-
matical study of the eradication of waterborne diseases, for example, distributed
delay model [27], spatially explicit model [9, 10], time-varying model [2, 25], case
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studies model [24]. Recently, there have been several efforts in the mathematical
modelling of cholera dynamics. The first mathematical model of cholera was de-
veloped by Capasso and Paveri-Fontana [5]. In [5], they proposed a mathematical
model to describe the 1973 cholera epidemic in Bari (a city in Italy). In their ver-
sion, two equations describe the dynamics of infected people in the community and
the dynamics of the aquatic population of pathogenic bacteria. In 2001, Codeço [6]
extended the model in reference [5]. She added an equation for the dynamics of the
susceptible population. She studied the role of the aquatic reservoir in the endemic-
epidemic dynamics of cholera. In [23], Pascual et al. generalized Codeço’s model
by including a fourth equation for the volume of water in which the formative live
following Codeço’s [6]. In [32], Zhou X.Y. et al. considered a cholera model with
vaccination on the base of the model of Codeço [6]. They added an equation for
the dynamics of the vaccinated populations. They analyzed the locally and globally
asymptotical stability of the disease-free and endemic equilibria of their system.
In [28], Jianjun Paul Tian et al. presented several nonlinear ordinary differential
systems of cholera, which incorporated both human population and pathogen Vib-
rio cholerae concentration. They employed three different techniques, including the
monotone dynamical systems, the geometric approach, and Lyapunov functions,
to investigate the endemic global stability for several biologically important cases.
We may find other mathematical studies on modeling cholera dynamics in refer-
ences [18–20, 33]. To the best of our knowledge, these studies do not explicitly
confider a delay cholera model with constant infectious period.

In the natural world, there are many diseases which the infected population
recover and become susceptible or removed population by itself after they are in-
fected by some certain time. The phenomenon was studied by Hethcote et. al. [14].
For cholera, the incubation period ranges from a few hours to 5 days, usually 2-3
days [15]. Hence, in this paper, we will present a delay cholera model with constant
infectious period. We consider the total human population sizes denoted by N(t),
which including susceptible individuals S(t), infected individuals I(t) and recov-
ered individuals R(t). The pathogen population at time t, is given by B(t). The
susceptible human population is increased by births and/or immigration at a con-
stant rate A (> 0). Natural death occurs in the human classes at a rate µ1 (> 0).
Infected individuals may die due to cholera at a rate δ (> 0). Infected people con-
tribute to the concentration of vibrios at a rate η (> 0). The pathogen population
is generated at a rate µ̂ (> 0) and the cholera pathogen has a natural death rate µ̌
(> 0) in the aquatic environment, which in this case, is the set of untreated water
consumed by the population. According to Islam [16], we know that Vibrio cholerae
population decay does not necessarily imply death but also the transition towards
a non-culturable state. Hence, we assume µ̌ > µ̂, and vibrios have a net death rate
µ2 = µ̌− µ̂.

We assume that susceptible people becomes infected at a rate βλ(B), where β is
the rate of contact with untreated water and λ(B) is the probability of such person
to catch cholera. And λ(B) depends on the concentration of Vibrio cholerae, B,
which is given by the dose-response function B

K+B , where K is the concentration of
V. cholera in water that yields 50% chance of catching cholera [6]. We also assume
that when a susceptible individual is infected, there is a time τ (> 0) during which
the infectious individual develops, and only after that time the infected individual
becomes the removed one [8,31]. The time τ is called infection time. The probability
that an individual remains in the infectious period at least t time units before
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developing Cholera is given by a step function with value 1 for 0 ≤ t ≤ τ and value
zero for t > τ . The probability that an individual in the infectious period time t
units has survived to develop cholera is e−(µ1+δ)τ .

The model is given in the following:

dS(t)
dt = A− βS(t)B(t)

K+B(t) − µ1S(t),

dI(t)
dt = βS(t)B(t)

K+B(t) − βe−(µ1+δ)τS(t−τ)B(t−τ)
K+B(t−τ) − (µ1 + δ)I,

dR(t)
dt = βe−(µ1+δ)τS(t−τ)B(t−τ)

K+B(t−τ) − µ1R(t),

dB(t)
dt = ηI(t)− µ2B(t).

(1.1)

The second equation of system (1.1) can be rewritten by formally integrating
the delay differential equations for I(t) as follows:

I(t) =

∫ τ

0

βS(t− θ)B(t− θ)

K +B(t− θ)
e−(µ1+δ)θdθ. (1.2)

Furthermore, from the last two equations of system (1.1), we can obtain

R(t) = R(0)e−(µ1+δ)t + e−(µ1+δ)τ

∫ t

0

βS(t− θ)B(t− θ)

K +B(t− θ)
e−(µ1+δ)(t−θ)dθ (1.3)

and
B(t) = B(0)e−µ2t + ηe−µ2t

∫ t

0

I(ς)e−µ2ςdς. (1.4)

The initial conditions for system (1.1) take the form

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ), B(θ) = φ4(θ),

φi(θ) ≥ 0, θ ∈ [−τ, 0], φi(0) > 0, i = 1, 2, 3, 4,
(1.5)

where (φ1(θ), φ2(θ), φ3θ), φ4(θ)) ∈ C([−τ, 0],R4
+0), the Banach space of continuous

functions mapping the interval [−τ, 0] into R4
+0, where R4

+0 = {(x1, x2, x3, x4) :
xi ≥ 0, i = 1, 2, 3, 4}.

In this paper, we will discuss the dynamical behavior of system (1.1). The
remainder of this paper is originated as follows. In the next section, we present
some basic results, for example, the positive invariance of system (1.1), the existence
of equilibria, the boundedness of solutions. In Section 3, we derive the local and
global stability of the disease-free equilibrium. A set of conditions which assure the
permanence of the system (1.1) are obtained in Section 4. In Section 5, we derive
the local and global stability of the endemic equilibrium. Numerical simulations are
carried out to illustrate the main theoretical results in Section 6. A brief discussion
is given in Section 7 to conclude this work.

2. Some basic results
In this section, we present some basic results, such as the positive invariance of
system (1.1), the existence of equilibria, the boundedness of solutions. It is im-
portant to show positivity and boundedness for the system (1.1) as they represent
populations. Positivity implies that populations survives and boundedness may be
interpreted as a natural restriction to growth as a consequence of limited resources.
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2.1. Positivity
Since all the state variables (i.e. S, I,R,B) in system (1.1); susceptibles, infectious,
recovered and the v. cholerae population are number densities, then they are re-
quired to be non-negative. Hence, we need to show the positivity of solutions of the
system (1.1).

Theorem 2.1. The solutions S(t), I(t), R(t), B(t) of system (1.1) are positive for
all t ≥ 0 with initial conditions (1.5).

Proof. Let T = sup{t ≥ 0 : S > 0, I > 0, R > 0, B > 0 in [0, t]}. Clearly, T > 0,
and if T < ∞ then one of S(t), I(t), R(t), B(t) must be zero. We have from system
(1.1) that

d

dt
[S(t) exp{

∫ t

0

βB(u)

K +B(u)
du+ µ1t}] = A exp{

∫ t

0

βB(u)

K +B(u)
du+ µ1t}.

Thus,

S(T ) exp{
∫ t

0

βB(u)

K +B(u)
du+µ1T}−S(0)=

∫ T

0

A exp

∫ x

0

{ βB(v)

K+B(v)
dv+µ1x}dx,

so that

S(T ) = S(0) exp{
∫ t

0

− βB(u)

K +B(u)
du−µ1T}+exp{

∫ t

0

− βB(u)

K +B(u)
du−µ1T}

×
∫ T

0

A exp

∫ x

0

{ βB(v)

K +B(v)
dv + µ1x}dx > 0.

From the second equation of system (1.1), we have

I(t) =

∫ t

t−τ

βS(u)B(u)

K +B(u)
e−(µ1+δ)(t−u)du > 0,

which is strictly positive in [0, ϵ] for small ϵ > 0.
From (1.3) and (1.4), we can conclude that R(t) > 0 and B(t) > 0. Thus we

can conclude that solutions of system (1.1) remain positive for all t > 0.

2.2. Boundedness
Theorem 2.2. All solutions of system (1.1) satisfying conditions (1.5) are bounded
for all t ≥ 0 at which the solution exists.

Proof. From the first equations of system (1.1), we can obtain

0 <
d(S(t) + I(t) +R(t))

dt
≤ A− µ1(S(t) + I(t) +R(t))

for t ≥ 0 with initial condition S(0) + I(0) +R(0) > 0. Thus, we can get

0 < S(t) + I(t) +R(t) ≤ (S(0) + I(0) +R(0)− A

µ1
)e−(µ1+δ)τ +

A

µ1

for t ≥ 0.
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From the last equation of system (1.1), we can get

dB(t)

dt
≤ η

A

µ1
− µ2B(t)

for t ≥ 0.
Hence,

0 < B(t) ≤ (B(0)− ηA

µ1µ2
)e−µ2t +

ηA

µ1µ2

for t ≥ 0.
We can obtain that

Ω = {(S, I,R,B) ∈ R4
+ | 0 < S + I +R ≤ A

µ1
, 0 < B ≤ ηA

µ1µ2
}.

We complete the proof of the theorem.

2.3. Equilibria
It is easy to see that the system (1.1) always exists a disease-free equilibrium
E0(S0, 0, 0, 0) (where S0 = A

µ1
), which exists for all values of the parameters.

In order to consider the existence of the endemic equilibrium E∗, we need de-
fine the basic reproduction number R0 according to the definition in [7], extended
to a delay epidemic model. Let R0 = Aβη(1−e−(µ1+δ)τ )

Kµ1µ2(µ1+δ) . R0 is called the basic
reproduction number.

System (1.1) has an endemic equilibrium E∗(S∗, I∗, R∗, B∗) when R0 > 1, where
S∗ = K(µ1+δ)µ2+Aη(1−e−(µ1+δ)τ )

η(β+µ1)(1−e−(µ1+δ)τ )
, I∗ = Aβη(1−e−(µ1+δ)τ )−Kµ1µ2(µ1+δ)

η(βδ+µ2
1+µ1δ+µ1β)

, B∗ = η
µ2
I∗,

R∗ = 1
µ1

βe−(µ1+δ)τS∗B∗

K+B∗ .
As R0 = 1, E∗ becomes coincident with E0. Hence, E∗ exists iff R0 >

1. In this case, the infectious period τ must be larger than the threshold τ∗ =
1

µ1+δ ln(
Aβη

Aβη−Kµ1µ2(µ1+δ) ).

2.4. Characteristic equation
Let Ē(S̄, Ī, R̄, B̄) be arbitrarily equilibrium of system (1.1). To study the locally
asymptotic stability of the steady states Ē, let us define x1(t) = S(t)− S̄, x2(t) =
I(t) − Ī, x3(t) = R(t) − R̄ and x4(t) = B(t) − B̄. Then the linearized system of
(1.1) at Ē is given by

dx1(t)
dt = −(µ1 +

βB̄
K+B̄

)x1(t)− βKS̄
(K+B̄)2

x4(t),

dx2(t)
dt = βB̄

K+B̄
x1(t)− (µ1 + δ)x2(t) +

βKS̄
(K+B̄)2

x4(t)− βB̄e−(µ1+δ)τ

K+B̄
x1(t− τ)

−βKS̄e−(µ1+δ)τ

(K+B̄)2
x4(t− τ),

dx3(t)
dt = βB̄e−(µ1+δ)τ

K+B̄
x1(t− τ)− µ1x3(t) +

βKS̄e−(µ1+δ)τ

(K+B̄)2
x4(t− τ),

dx4(t)
dt = ηx2(t)− µ2x4(t).

(2.1)
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We then express system (2.1) in matrix form as follows:

d

dt


x1(t)

x2(t)

x3(t)

x4(t)

 = A1


x1(t)

x2(t)

x3(t)

x4(t)

+A2


x1(t− τ)

x2(t− τ)

x3(t− τ)

x4(t− τ)

 ,

where A1 and A2 are 4× 4 matrices given by

A1 =


−(µ1 +

βB̄
K+B̄

) 0 0 − βKS̄
(K+B̄)2

βB̄
K+B̄

−(µ1 + δ) 0 βKS̄
(K+B̄)2

0 0 −µ1 0

0 η 0 −µ2

 ,

A2 =


0 0 0 0

−βB̄e−(µ1+δ)τ

K+B̄
0 0 −βKS̄e−(µ1+δ)τ

(K+B̄)2

βB̄e−(µ1+δ)τ

K+B̄
0 0 βKS̄e−(µ1+δ)τ

(K+B̄)2

0 0 0 0

 .

The characteristic equation of system (1.1) is given by

∆(λ) = |λI − A1 − e−λτA2| = 0, (2.2)

where I is the 4× 4 identity matrix.

3. Stability of disease-free equilibrium E0

In this section, we will discuss the local and global stability of the disease-free
equilibrium E0 of system (1.1), respectively.

For the disease-free equilibrium E0, (2.2) becomes∣∣∣∣∣∣∣∣∣∣∣∣

−µ1 − λ 0 0 −βS0

K

0 −(µ1 + δ)− λ 0 βS0

K − βS0

K e−(µ1+δ)τe−λτ

0 0 −µ1 − λ βS0

K e−(µ1+δ)τe−λτ

0 η 0 −µ2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

i.e.,
(λ+ µ1)

2f1(λ, τ) = 0, (3.1)

where

f1(λ, τ) = λ2 + (µ1 + δ + µ2)λ+ (µ1 + δ)µ2 −
ηβS0

K
+

ηβS0

K
e−(µ1+δ)τe−λτ . (3.2)
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Clearly, (3.1) always has two negative roots λ1 = λ2 = −µ1. Other roots of (3.1)
are determined by the equation f1(λ, τ) = 0.

From
f1(λ, 0) = λ2 + (µ1 + δ + µ2)λ+ (µ1 + δ)µ2 = 0, (3.3)

it is apparent that (3.3) has two negative roots −µ2 and −µ1 − δ if R0 < 1.
Now, when R0 < 1, we need to show that all the eigenvalues in f1(λ, 0) = 0

have negative real parts. First, note that any eigenvalue in f1(λ, 0) = 0 satisfies

(λ+ µ1 + δ)(λ+ µ2) =
ηβS0

K
− ηβS0

K
e−(µ1+δ)τe−λτ ,

which is equivalent to

(
λ

µ1 + δ
+ 1)(

λ

µ2
+ 1) = R0

1− e−(µ1+δ)τe−λτ

1− e−(µ1+δ)τ
.

Assume that there exists a zero in f1(λ, τ) = 0 with Re(λ) ≥ 0, then | λ
µ+δ +1| ≥ 1,

| λ
µ2

+ 1| ≥ 1. We can get, | 1−e−(µ1+δ)τe−λτ

1−e−(µ1+δ)τ | ≥ 1, which leads to a contradiction.
Hence, all the eigenvalues in (3.1) have negative real parts, implying E0 is locally
asymptotically stable.

Then we have the following theorem.

Theorem 3.1. If R0 < 1, the disease-free equilibrium E0 is locally asymptotically
stable for all τ ≥ 0.

In the following, we will consider the attraction of the disease-free equilibrium
for system (1.1). In order to consider the attraction of the equilibria and the per-
manence of the solutions of system (1.1), we need the following important lemmas.

Lemma 3.1. (Fatou Lemma) [11] Let {fn}n∈N0
be a measurable sequence of non-

negative function defied on a measurable set Ω. Then∫
Ω

lim inf
n→+∞

fndx ≤ lim inf
n→+∞

∫
Ω

fndx.

Lemma 3.2. (Inverse Fatou Lemma) [11] Let {fn}n∈N0
be a measurable sequence

of non-negative function defied on a measurable set Ω. If there exists a non-negative
integrable function g defined on Ω and such that fn ≤ g on Ω for all n, then∫

Ω

lim sup
n→+∞

fndx ≥ lim sup
n→+∞

∫
Ω

fndx.

Lemma 3.3. (1) lim sup
t→+∞

B(t) ≤ η

µ2
lim sup
t→+∞

I(t);

(2) lim inf
t→+∞

B(t) ≥ η

µ2
lim inf
t→+∞

I(t).

Proof. From the last equation of system (1.1), we can obtain

B(t) = e−µ2t(B(0) +

∫ t

0

ηI(s)eµ2sds).
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From Lemma 3.1, we can get

lim sup
t→+∞

B(t) = lim sup
t→+∞

e−µ2tB(0) + lim sup
t→+∞

e−µ2t

∫ t

0

ηI(s)eµ2sds.

≤ η lim sup
t→+∞

e−µ2t

∫ t

0

lim sup
s→+∞

I(s)eµ2sds.

Hence, lim sup
t→+∞

B(t) ≤ η

µ2
lim sup
t→+∞

I(t).

Similarly, we can get lim inf
t→+∞

B(t) ≥ η

µ2
lim inf
t→+∞

I(t).

Theorem 3.2. If R0 < 1, the disease-free equilibrium E0 is globally attractive.

Proof. Let (S(t), I(t), R(t), B(t)) be any positive solution of system (1.1) with
initial conditions (1.5). It follows from the first equations of system (1.1) that

dS

dt
≤ A− µ1S.

A standard comparison argument shows that

lim sup
t→+∞

S(t) ≤ A

µ1
.

Hence, for ε > 0 sufficiently small, there is a T1 > 0 such that if t > T1, S(t) ≤ A
µ1

+ε.

It follows from the second equation of system (1.1) that

I(t) =

∫ t

t−τ

βS(u)B(u)

K +B(u)
e−(µ1+δ)(t−u)du =

∫ τ

0

βS(t− ς)B(t− ς)

K +B(t− ς)
e−(µ1+δ)ςdς.

(3.4)
From (3.4), we can obtain

lim sup
t→+∞

I(t) = lim sup
t→+∞

∫ τ

0

βS(t− ς)B(t− ς)

K +B(t− ς)
e−(µ1+δ)ςdς.

By Lemmas 3.2 and 3.3, we can obtain
µ2

η
lim sup
t→+∞

B(t) ≤ lim sup
t→+∞

I(t)

≤
∫ τ

0

β lim sup
t→+∞

B(t)

K + lim sup
t→+∞

B(t)
lim sup
t→+∞

S(t)e−(µ1+δ)ςdς

≤ A

µ1

β lim sup
t→+∞

B(t)

K + lim sup
t→+∞

B(t)

∫ τ

0

e−(µ1+δ)ςdς

= βA
µ1(µ1+δ) (1− e−(µ1+δ)τ )

β lim sup
t→+∞

B(t)

K + lim sup
t→+∞

B(t)
.

(3.5)

From (3.5), we can get

β lim sup
t→+∞

B(t)

K + lim sup
t→+∞

B(t)
(R0 − 1− lim sup

t→+∞
B(t)) ≥ 0. (3.6)
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Noting that R0 < 1, it follows from (3.6) that

lim sup
t→+∞

B(t) = 0.

Therefore, for ε > 0 sufficiently small, there is a T2 > T1 such that if t > T2,
B(t) ≤ ε.

For ε > 0 sufficiently small, we obtain from the third equation of system (1.1)
that, for t > T2 + τ ,

dR(t)

dt
≤

βe−(µ1+δ)τ ( A
µ1

+ ε)ε

K + ε
− µ1R(t).

Hence,

lim sup
t→+∞

R(t) ≤
βe−(µ1+δ)τ ( A

µ1
+ ε)ε

µ1(K + ε)
.

Letting ε → 0, it follows that lim
t→+∞

R(t) = 0.

From the first equation of system (1.1), for t > T2, we can obtain

dS(t)

dt
≥ A− µ1S(t)−

βε

K + ε
S(t).

By comparison it follows that

lim inf
t→+∞

S(t) ≥ A

µ1 +
βε

K+ε

.

Letting ε → 0, we get
lim inf
t→+∞

S(t) ≥ A

µ1
.

Therefore,
lim

t→+∞
S(t) =

A

µ1
.

From (3.5) and lim sup
t→+∞

S(t) ≤ A

µ1
, for t ≥ T2 + τ , we can obtain

lim
t→+∞

I(t) ≤ βA

µ1(µ1 + δ)
(1− e−(µ1+δ)τ )

β lim sup
t→+∞

B(t)

K + lim sup
t→+∞

B(t)

≤ βA
µ1(µ1+δ) (1− e−(µ1+δ)τ )

βε

K + ε
.

Letting ε → 0, we get
lim sup
t→+∞

I(t) = 0.

This completes the proof.
From Theorems 3.1 and 3.2, we can obtain the following result.

Theorem 3.3. If R0 < 1, the disease-free equilibrium E0 is globally asymptotically
stable for all τ ≥ 0.

Theorem 3.4. If R0 > 1, the disease-free equilibrium E0 is unstable.
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Proof. Let

f1(λ) = λ2 + (µ1 + δ + µ2)λ+ (µ1 + δ)µ2 −
ηβS0

K
+

ηβS0

K
e−(µ1+δ)τe−λτ .

If R0 > 1, then it is easy to show that, for λ real,

f1(0) = (µ1 + δ)µ2 − ηβS0

K + ηβS0

K e−(µ1+δ)τ

= (µ1 + δ)µ2(1−R0)

< 0

and
lim

λ→+∞
f1(λ) = +∞.

Hence, (3.2) has a positive root at least. Accordingly, the disease-free equilibrium
E0 is unstable if R0 > 1.

4. Permanence
In this section, we will investigate the permanence of system (1.1).

Definition 4.1. System (1.1) is said to be permanence if there exists a compact
region Ω0 ⊂ intR4

+ such that every solution (S(t), I(t), R(t), B(t)) of system (1.1)
with initial conditions (1.5) will eventually enter and remain in the region Ω0.

Theorem 4.1. If R0 > 1, system (1.1) is permanent.

Proof. Let (S(t), I(t), R(t), B(t)) be any positive solution of system (1.1) with
initial conditions (1.5). Recalling N(t) = S(t)+ I(t)+R(t), it follows from the first
three equations of system (1.1) that

dN(t)

dt
= A− µ1N(t)− δI(t) ≤ A− µ1N(t).

A standard comparison argument shows that

lim sup
t→+∞

N(t) ≤ A

µ1
, (4.1)

which yields
lim sup
t→+∞

I(t) ≤ A

µ1
.

Hence, for ε > 0 sufficiently small, there is a T1 > 0 such that if t > T1,
I(t) ≤ A

µ1
+ ε. It follows from the last equation of system (1.1) that, for t > T1,

dB(t)

dt
≤ η(

A

µ1
+ ε)− µ2B(t),

which yields
lim sup
t→+∞

B(t) ≤ η

µ2
(
A

µ1
+ ε).
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Since the above inequality holds for arbitrary ε > 0 sufficiently small, it follows that

lim sup
t→+∞

B(t) ≤ η

µ1

A

µ2
.

Hence, for ε > 0 sufficiently small there is a T2 > 0 such that if t > T2, B(t) ≤
η

µ1

A

µ2
+ ε.

It follows from the first equation of system (1.1) that, for t > T2,

dS(t)

dt
≥ A− (µ1 +

β( η
µ1

A
µ2

+ ε)

K + η
µ1

A
µ2

+ ε
)S(t),

which yields

lim inf
t→+∞

S(t) ≥ A/(µ1 +
β( η

µ1

A
µ2

+ ε)

K + η
µ1

A
µ2

+ ε
).

Since this inequality holds for arbitrary ε > 0 sufficiently small, it follows that

lim inf
t→+∞

S(t) ≥ A/(µ1 +
β η

µ1

A
µ2

K + η
µ1

A
µ2

) ≜ v1. (4.2)

Hence, for ε>0 sufficiently small there is a T3>T2 such that if t>T3, S(t)≥v1−ε.
Choose positive constants B0 large enough and d small enough such that

1 <
Aβη(1− e−(µ1+δ)τ )[1− e

−(µ1+
βB0

K+B0 )d
]

(µ1 + δ)µ2[Kµ1 +B0(µ1 + β)]
≜ q. (4.3)

We now claim that if R0 > 1, there does not exist any t̄1 > 0 such that B(t) ≤ B0

for all t > t̄1. Otherwise, there exists a t0 such that

B(t) ≤ B0, t ≥ t0. (4.4)

It follows from the first equation of system (1.1) and (4.4) that, for t > t0,

dS(t)

dt
≥ A− (µ1 +

βB0

K +B0
)S(t).

Thus, for t ≥ t0 + d, we have

S(t) ≥ S(t0)e
−(µ1+

βB0

K+B0 )(t−t0) +A

∫ t

t0

e
−(µ1+

βB0

K+B0 )(t−ς)
dς

≥ A(K +B0)

βB0 + µ1(K +B0)
[1− e

−(µ1+
βB0

K+B0 )d
]

≜ S∆.

(4.5)

For t > 0, define a differentiable function

V (t) =
µ1 + δ

η
B(t) + I(t)− βe−(µ1+δ)τ

∫ t

t−τ

S(ς)B(ς)

K +B(ς)
dς. (4.6)
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Calculating the derivative of V (t) along solutions of system (1.1) we derive that

dV (t)

dt
=

µ2(µ1 + δ)

η
[
ηβ(1− e−(µ1+δ)τ )

(µ1 + δ)µ2

S(t)

K +B(t)
− 1]B(t). (4.7)

It follows from (4.4), (4.5) and (4.7) that

dV (t)

dt
≥ µ2(µ1 + δ)

η
[
ηβ(1− e−(µ1+δ)τ )

(µ1 + δ)µ2

S∆

K +B0
− 1]B(t)

= µ2(µ1+δ)
η (q − 1)B(t), t ≥ t0 + d.

(4.8)

Set
B0

l = min
ς∈[−τ,0]

I(t0 + d+ τ + ς) > 0.

The second equation of (1.1) can be rewritten as

I(t) = β

∫ t

t−τ

S(u)B(u)

K +B(u)
e−(µ1+δ)(t−u)du, t ≥ τ. (4.9)

It follows from (4.9) that

I(t) ≥ β

∫ t∗

t∗−τ

S∆B0
l

K +B0
l

e−(µ1+δ)(t−u)du =
βS∆B0

l

K +B0
l

1

µ1 + δ
(1− e−(µ1+δ)). (4.10)

From the last equation of system (1.1) we can get

dB(t)

dt
≥ η

βS∆B0
l

K +B0
l

1

µ1 + δ
(1− e−(µ1+δ))− µ2B(t).

Hence,

B(t) ≥ η

µ2

βS∆B0
l

K +B0
l

1

µ1 + δ
(1− e−(µ1+δ)).

Since B0
l ≤ B0, we derive from (4.2) that

ηβ(1− e−(µ1+δ)τ )

(µ1 + δ)µ2

S∆

K +B0
l

≥ ηβ(1− e−(µ1+δ)τ )

(µ1 + δ)µ2

S∆

K +B0
= q > 1. (4.11)

We deduce from (4.10) and (4.11) that B(t∗) > B0
l , which is a contradiction.

This proves the claim.
Therefore, we obtain from (4.3) and (4.8) that

dV (t)

dt
>

µ2(µ1 + δ)

η
(q − 1)B0

l > 0,

which implies that V (t) → ∞ as t → ∞. On the other hand, it follow from (4.1)
and (4.6) that

lim sup
t→+∞

V (t) ≤ A(µ1 + δ)

µ1µ2
+

A

µ1
+

ηA2e−(µ1+δ)ττ

µ1(Kµ1µ2 + ηA)
.

A contradiction occurs. Hence, the claim is proved.
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By the claim, we are left to consider two possibilities. First, B(t) ≥ B0 for all t
sufficiently large. Second, B(t) oscillates about B0 for all t sufficiently large.

For the second case, we assume that

B(t1) = B(t1 + γ) = B0 and B(t) < B0 for t1 < t < t1 + γ,

where t1 sufficiently large such that S(t) ≥ v1 − ε for ε > 0 being sufficiently small.
Since B(t) is uniformly continuous, there is a 0 < T < τ (independent of the choice
of t1) such that B(t) > B0

2 for t1 < t <1 +T. If γ ≤ T , there is nothing to prove.
Let us consider the case that T < γ <≤ τ . For t1 + T < t ≤ t1 + γ, we have

I(t) ≥ β(v1 − ε)
∫ t

t−τ
B(u)

K+B(u)e
−(µ1+δ)(t−u)du

≥ β(v1 − ε)
∫ t1+T

t1

B(u)
K+B(u)e

−(µ1+δ)(t−u)du

≥ β(v1 − ε) B0T
2K+B0 e

−(µ1+δ)τ .

(4.12)

From the last equation of system (1.1), we have

dB(t)

dt
≥ ηβ(v1 − ε)

B0T

2K +B0
e−(µ1+δ)τ − µ2B(t).

Hence,

B(t) ≥ 1

µ2
ηβ(v1 − ε)

B0T

2K +B0
e−(µ1+δ)τ := B0.

Define
B1 = min{B

0

2
, B0}. (4.13)

We get I(t) ≥ I1 for t ∈ [t1, t1 + γ]. For t ∈ (t1 + τ, t1 +
3τ
2 ], from (4.12), we have

I(t) ≥ β(v1 − ε)
∫ t1+τ

t1+
τ
2

B1

K+B1
e−(µ1+δ)(t−u)du

≥ β(v1 − ε) B1τ
2(K+B1)

e−(µ1+δ)τ .
(4.14)

From the last equation of system (1.1) and (4.14), we have

dB(t)

dt
≥ ηβ(v1 − ε)

B1τ

2(K +B1)
e−(µ1+δ)τ − µ2B(t).

Hence,
B(t) ≥ 1

µ2
ηβ(v1 − ε)

B1τ

2(K +B1)
e−(µ1+δ)τ ≜ B2. (4.15)

For t ∈ (t1 + τ, t1 +
3τ
2 ], from (4.15), we have

I(t) ≥ β(v1 − ε)
∫ t1+τ

t1+
τ
2

B2

K+B2
e−(µ1+δ)(t−u)du

≥ β(v1 − ε) B2τ
2(K+B2)

e−(µ1+δ)τ .
(4.16)

From the last equation of system (1.1) and (4.16), we have

dB(t)

dt
≥ ηβ(v1 − ε)

B2τ

2(K +B2)
e−(µ1+δ)τ − µ2B(t).
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Hence,
B(t) ≥ 1

µ2
ηβ(v1 − ε)

B2τ

2(K +B2)
e−(µ1+δ)τ ≜ B3. (4.17)

Denote

Bj =
1

µ2
ηβ(v1 − ε)

Bj−1τ

2(K +Bj−1)
e−(µ1+δ)τ , j = 2, 3, · · · , 2k − 1. (4.18)

Continuing the process above, we derive that

B(t) ≥ B2m−2, t ∈ (t1 + (m− 1)τ, t1 + (m− 1

2
)τ ];

B(t) ≥ B2m−1, t ∈ (t1 + (m− 1

2
)τ, t1 +mτ ],m = 2, 3, · · · , k.

Denote
v2 = min

1≤i≤2k−1
Bi,

where k = [ dτ ] ([x] is the minimum integer being greater than or equal to x), and
Bi (1 ≤ i ≤ 2k − 1) are defined in (4.13), (4.15), (4.17) and (4.18).

Obviously, if γ ≤ d, B(t) ≥ v2 for t ∈ [t1, t1 + γ]. If γ > d, then B(t) ≥ v2 for
t ∈ [t1, t1 + d]. Furthermore, we can show that B(t) ≥ v2 for t ∈ (t1 + d, t1 + γ]. In
fact, if not, there exists a T ∗ such that B(t) ≥ v2 for t1 ≤ t ≤ t1 + d+ T ∗ ≤ t1 + γ
and B(t1 + d+ T ∗) = v2. On the other hand, B(t) ≤ B0 for t1 ≤ t ≤ t1 + γ. Then
(4.5) holds true, i.e., S(t) > S∆ for t ≥ t1 + d. It follows that, for t = t1 + d+ T ∗,

I(t) ≥ βS∆v2
K+v2

∫ t

t−τ
e−(µ1+δ)(t−u)du

= βS∆v2
(K+v2)(µ1+δ) (1− e−(µ1+δ)τ ).

(4.19)

From the last equation of system (1.1) and (4.19), we have

dB(t)

dt
≥ ηβS∆v2

(K + v2)(µ1 + δ)
(1− e−(µ1+δ)τ )− µ2B(t). (4.20)

Hence,

B(t) ≥ 1

µ2

ηβS∆v2
(K + v2)(µ1 + δ)

(1− e−(µ1+δ)τ ).

Noting v2 ≤ B0, we derive from (4.3) that

ηβ(1− e−(µ1+δ)τ )

(µ1 + δ)µ2

S∆

K + v2
≥ ηβ(1− e−(µ1+δ)τ )

(µ1 + δ)µ2

S∆

K +B0
= q > 1. (4.21)

Hence, we can deduce from (4.20) and (4.21) that B(t1 + d + T ∗) > v2, which
is a contradiction. Therefore, we have that B(t) ≥ v2 for t ∈ [t1 + d, t1 + γ]. Since
this kind of interval [t1+d, t1+γ] is chosen in an arbitrary way (we only need t1 to
be large), we conclude that B(t) ≥ v2 for all t sufficiently large in the second case.
Accordingly, lim inf

t→+∞
B(t) ≥ v2.

Hence, for ε > 0 sufficiently small, there is a T4 > T3 such that if t > T4,
B(t) ≥ v2 − ε. For ε > 0 sufficiently small, it follows from the third equation of
system (1.1) that, for t > T4,

dR(t)

dt
≥ βe−(µ1+δ)τ (v1 − ε)(v2 − ε)

K + v2 − ε
− µ1R(t),
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which yields

lim inf
t→+∞

R(t) ≥ βe−(µ1+δ)τ (v1 − ε)(v2 − ε)

µ2(K + v2 − ε)
.

Since the inequality holds true for arbitrary ε > 0 sufficiently small, we conclude
that

lim inf
t→+∞

R(t) ≥ βe−(µ1+δ)τv1v2
µ2(K + v2)

= v3.

From the proof we can see that lim inf
t→+∞

I(t) ≥ v4, where v4 =
µ2

η
v2. This

completes the proof.

5. Stability of endemic equilibrium E∗

In this section, we will discuss the locally and globally asymptotical stability of the
endemic equilibrium E∗ of system (1.1), respectively.

For the endemic equilibrium E∗, (2.2) becomes∣∣∣∣∣∣∣∣∣∣∣∣

−µ1 − βB∗

K+B∗ − λ 0 0 − βKS∗

(K+B∗)2

βB∗

K+B∗ (1− e−(µ1+δ)τ ) −(µ1 + δ)− λ 0 βKS∗

(K+B∗)2 (1− e−(µ1+δ)τ )

βB∗

K+B∗ e
−(µ1+δ)τ 0 −µ1 − λ βKS∗

(K+B∗)2 e
−(µ1+δ)τ

0 η 0 −µ2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

i.e.,

(λ+ µ1)[λ
3 + κ1(τ)λ

2 + κ2(τ)λ+ κ3(τ) + e−λτ (κ4(τ)λ+ κ5(τ))] = 0, (5.1)

where
κ1(τ) = 2µ1 + µ2 + δ +

βB∗

K +B∗ ,

κ2(τ) = 2µ1µ2 + δµ1 + µ2
1 +

βB∗

K +B∗ (µ1 +Aµ2 + δ) + δµ2 − η
βKS∗

(K +B∗)2
,

κ3(τ) = δµ2µ1 + µ2
1µ2 − ηµ1

βKS∗

(K +B∗)2
+

βB∗

K +B∗ (µ1µ2 + δµ2),

κ4(τ) = e−(µ1+δ)τη
βKS∗

(K +B∗)2
,

κ5(τ) = e−(µ1+δ)τηµ1
βKS∗

(K +B∗)2
.

Clearly, (5.1) always has a negative roots λ1 = −µ1. Other roots of (5.1) are
determined by the following equation

λ3 + κ1(τ)λ
2 + κ2(τ)λ+ κ3(τ) + e−λτ (κ4(τ)λ+ κ5(τ)) = 0. (5.2)

When τ = 0, (5.2) becomes

λ3 + κ1(0)λ
2 + (κ2(0) + κ4(0))λ+ κ3(0) + κ5(0) = 0. (5.3)
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It is easy to see that κ1(0) > 0, κ2(0)+κ4(0) > 0, κ3(0)+κ5(0) > 0 and κ1(0)(κ2(0)+
κ4(0)) − (κ3(0) + κ5(0)) > 0 when τ = 0. Hence, the endemic equilibrium E∗ is
locally asymptotically stable when R0 > 1 and τ = 0. In the following, we will
consider the local stability of E∗ when R0 > 1 and τ > 0.

If iω (ω > 0) is a solution of (5.2) if and only if

−iω3 − κ1ω
2 + iκ2ω + κ3 + (cosωτ − sinωτ)(iκ4ω + κ5) = 0.

Separating real and imaginary parts, we have−ω3 + κ2ω + κ4ω cosωτ − κ5 sinωτ = 0,

−κ1ω
2 + κ3 + κ5ω cosωτ + κ4 sinωτ = 0.

(5.4)

It follows from (5.4) that

ω6 + ϑ1ω
4 + ϑ2ω

2 + ϑ3 = 0, (5.5)

where
ϑ1 = κ2

1 − 2κ2,

ϑ2 = κ2
2 − κ4 − 2κ1κ3,

ϑ3 = κ2
3 − κ2

5.

(5.6)

Let z = ω2. Then (5.5) becomes

z3 + ϑ1z
2 + ϑ2z + ϑ3 = 0. (5.7)

In order to consider the existence of positive zeros of the above third degree
polynomials, we need the following lemma.

Denote ∆ = ϑ2
1 − 3ϑ2 and z1 = −ϑ1+

√
∆

3 .

Lemma 5.1 ( [26]). Let g(z) = z3 + ϑ1z
2 + ϑ2z + ϑ3.

(1) If ϑ3 < 0, then equation (5.7) has at least one positive root.
(2) If ϑ3 ≥ 0 and ∆ < 0, then equation (5.7) has no positive root.
(3) If ϑ3 ≥ 0, then equation (5.7) has positive roots if and only if z1 > 0 and

g(z1) ≤ 0.

From Lemma 5.1, we can conclude that if ϑ3 ≥ 0 and ∆ < 0, the positive
equilibrium E∗ of system (1.1) is locally stable. If (i) ϑ3 < 0, or (ii) ϑ3 ≥ 0 and
g(z1) ≤ 0 where z1 = −ϑ1+

√
∆

3 > 0, then stability switches may occur. In order to
find the τ values of stability switches, for each positive root ω(τ) of equation (5.5),
we define the angle θ(τ) ∈ (π, 2π) as a solution of

sin θ(τ) = −κ3κ4ω − κ2κ5ω + κ5ω
3

(κ4ω)2 + κ2
5

,

cos θ(τ) = −κ3κ5 + κ2κ4ω
2 − κ4ω

4

(κ4ω)2 + κ2
5

.

For each ω(τ) satisfying (5.5), we define

Sn(τ) = τ − θ(τ) + 2nπ

ω(τ)
, n = 0,±1,±2, · · · . (5.8)
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According to the well known work on characteristic equation of delay differential
equations with delay-dependent parameters developed by Beretta and Kuang [?],
we have the following results.
Theorem 5.1. Suppose R0 > 1 and ϑ1, ϑ2, ϑ3 are defined in (5.6). For system
(1.1), we have

(1) If ϑ3 ≥ 0 and ∆ < 0, the endemic equilibrium E∗ is locally asymptotically
stable for all τ ≥ 0.

(2) Let ϑ3 < 0, or ϑ3 ≥ 0 and g(z1) ≤ 0 where z1 = −ϑ1+
√
∆

3 > 0. Assume that
there is a τ∗1 > 0 satisfying Sn(τ

∗
1 ) = 0 for some n ∈ N0 and that (5.5) has a pair

of simple and conjugate pure imaginary roots λ = ±iω(τ1) with ω(τ∗1 ) > 0. Then
a pair of simple conjugate pure imaginary roots λ = ±iω exists at τ = τ∗1 which
crosses the imaginary axis from left to right if δ(τ∗1 ) > 0 and crosses the imaginary
axis from right to left if δ(τ∗1 ) < 0, where

δ(τ∗1 ) = sign{d(Reλ)

dτ
|λ=iω(τ∗

1 )
} = sign{dSn(τ)

dτ
|τ=τ∗

1
}.

Theorem 5.2. If R0 > 1 and µ1 > β hold true, then the endemic equilibrium E∗

is globally attractive.
Proof. Let (S(t), I(t), R(t), B(t)) be any positive solution of system (1.1) with
initial conditions (1.5). Let

S = lim sup
t→+∞

S(t), I = lim sup
t→+∞

I(t), R = lim sup
t→+∞

R(t), B = lim sup
t→+∞

B(t),

S = lim inf
t→+∞

S(t), I = lim inf
t→+∞

I(t), R = lim inf
t→+∞

R(t), B = lim inf
t→+∞

B(t).

In the following we claim that S = S = S∗, I = I = I∗, R = R = R∗, B = B = B∗.
It follows from the first equation of system (1.1) that

dS

dt
≤ A− µ1S,

which yields

lim sup
t→+∞

S(t) ≤ A

µ1
≜ MS

1 .

Hence, for ε > 0 sufficiently small there is a T1 > 0 such that if t > T1, S(t) ≤
MS

1 + ε.

It follows from the second equation of system (1.1) that

I(t) =

∫ t

t−τ

βS(u)B(u)

K +B(u)
e−(µ1+δ)(t−u)du =

∫ τ

0

βS(t− ς)B(t− ς)

K +B(t− ς)
e−(µ1+δ)ςdς.

(5.9)
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We derive from (5.9) that

lim sup
t→+∞

I(t) = lim sup
t→+∞

∫ τ

0

βS(t− ς)B(t− ς)

K +B(t− ς)
e−(µ1+δ)ςdς

≤
∫ τ

0

β lim sup
t→+∞

B(t− ς)

K + lim sup
t→+∞

B(t− ς)
lim sup
t→+∞

S(t− ς)e−(µ1+δ)ςdς

≤
∫ τ

0

β lim sup
t→+∞

B(t)

K + lim sup
t→+∞

B(t)
lim sup
t→+∞

S(t)e−(µ1+δ)ςdς

≤
β lim sup

t→+∞
B(t)

K + lim sup
t→+∞

B(t)
MS

1

∫ τ

0

e−(µ1+δ)ςdς

=
βMS

1

µ1 + δ
(1− e−(µ1+δ)τ )

lim sup
t→+∞

B(t)

K + lim sup
t→+∞

B(t)

≤ βMS
1

µ1 + δ
(1− e−(µ1+δ)τ )

η

µ2
lim sup
t→+∞

I(t)

K +
η

µ2
lim sup
t→+∞

I(t)
.

(5.10)

From (5.10), we can obtain

lim sup
t→+∞

I(t) ≤ βMS
1 (1− e−(µ1+δ)τ )

µ1 + δ
− Kµ2

η
≜ M I

1 .

Hence, for ε > 0 sufficiently small there is a T2 > T1 > 0 such that if t > T2,
I(t) ≤ M I

1 + ε.
From the last equation of (1.1), we can get

lim sup
t→+∞

B(t) ≤ µ2

η
lim sup
t→+∞

I(t) ≤ µ2

η
M I

1 ≜ MB
1 .

Hence, for ε > 0 sufficiently small there is a T3 > T2 > 0 such that if t > T3,
B(t) ≤ MB

1 + ε.
It follows from the third equation of system (1.1) that, for t > T2 + τ,

dR

dt
≤ βe−(µ1+δ)τ (MS

1 + ε)(MB
1 + ε)

K +MB
1 + ε

− µ1R(t).

Hence,

lim sup
t→+∞

R(t) ≤ 1

µ1

βe−(µ1+δ)τ (MS
1 + ε)(MB

1 + ε)

K +MB
1 + ε

.

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude
that

lim sup
t→+∞

R(t) ≤ 1

µ1

βe−(µ1+δ)τMS
1 M

B
1

K +MB
1

≜ MR
1 .

Therefore, for ε > 0 sufficiently small there is a T4 > T3+ τ > 0 such that if t > T4,
R(t) ≤ MR

1 + ε.
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It follows from the first equation of system (1.1) that, for t > T4

dS(t)

dt
≥ A− β(MS

1 + ε)(MB
1 + ε)

K +MB
1 + ε

− µ1S(t).

By comparison we derive that

lim inf
t→+∞

S(t) ≥ 1

µ1
[A− β(MS

1 + ε)(MB
1 + ε)

K +MB
1 + ε

].

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude
that lim inf

t→+∞
S(t) ≥ NS

1 , where

NS
1 =

1

µ1
[A− βMS

1 M
B
1

K +MB
1

].

Hence, for ε > 0 sufficiently small there is a T5 > T4 such that if t > T5, S(t) ≥
NS

1 − ε. It follows from the second equation of system (1.1) that for t > T4

lim inf
t→+∞

I(t) = lim inf
t→+∞

∫ τ

0

βS(t− ς)B(t− ς)

K +B(t− ς)
e−(µ1+δ)ςdς

≥
∫ τ

0

β lim inf
t→+∞

B(t− ς)

K + lim inf
t→+∞

B(t− ς)
lim inf
t→+∞

S(t− ς)e−(µ1+δ)ςdς

≥
∫ τ

0

β lim inf
t→+∞

B(t)

K + lim inf
t→+∞

B(t)
lim inf
t→+∞

S(t)e−(µ1+δ)ςdς

≥
β lim inf

t→+∞
B(t)

K + lim inf
t→+∞

B(t)
NS

1

∫ τ

0

e−(µ1+δ)ςdς

=
βNS

1

µ1 + δ
(1− e−(µ1+δ)τ )

lim inf
t→+∞

B(t)

K + lim inf
t→+∞

B(t)

≥ βNS
1

µ1 + δ
(1− e−(µ1+δ)τ )

η

µ2
lim inf
t→+∞

I(t)

K +
η

µ2
lim inf
t→+∞

I(t)
.

(5.11)

By Theorem 4.1, we see that if R0 > 1, lim inf
t→+∞

I(t) > 0. Therefore, we derive from
(5.11) that

lim inf
t→+∞

I(t) ≥ βNS
1 (1− e−(µ1+δ)τ )

µ1 + δ
− Kµ2

η
≜ N I

1 .

Hence, for ε > 0 sufficiently small there is a T6 > T5 such that if t > T6, I(t) ≥
N I

1 − ε.
From the last equation of (1.1), we can get

lim inf
t→+∞

B(t) ≥ µ2

η
lim inf
t→+∞

I(t) ≥ µ2

η
N I

1 ≜ NB
1 .

Hence, for ε > 0 sufficiently small there is a T7 > T6 > 0 such that if t > T7,
B(t) ≤ NB

1 − ε.
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It follows from the third equation of system (1.1) that, for t > T7 + τ,

dR

dt
≥ βe−(µ1+δ)τ (NS

1 − ε)(NB
1 − ε)

K +NB
1 − ε

− µ1R(t).

Hence,

lim inf
t→+∞

R(t) ≥ 1

µ1

βe−(µ1+δ)τ (NS
1 − ε)(NB

1 − ε)

K +NB
1 − ε

.

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude
that

lim inf
t→+∞

R(t) ≥ 1

µ1

βe−(µ1+δ)τNS
1 N

B
1

K +NB
1

≜ NR
1 .

Therefore, for ε > 0 sufficiently small there is a T8 > T7+ τ > 0 such that if t > T8,
R(t) ≥ NR

1 − ε.
Again, it follows from the first equation of system (1.1) that, for t > T8

dS(t)

dt
≤ A− β(NS

1 − ε)(NB
1 − ε)

K +NB
1 − ε

− µ1S(t).

By comparison we derive that

lim inf
t→+∞

S(t) ≤ 1

µ1
[A− β(NS

1 − ε)(NB
1 − ε)

K +NB
1 − ε

].

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude
that lim inf

t→+∞
S(t) ≤ MS

2 , where

MS
2 =

1

µ1
[A− βNS

1 N
B
1

K +NB
1

].

Hence, for ε > 0 sufficiently small there is a T9 > T8 such that if t > T9, S(t) ≤
MS

2 + ε.
Repeating the above arguments, we obtain eight sequences MS

n , M I
n, MR

n , MB
n ,

NS
n , N I

n, NR
n , NB

n (n = 1, 2, 3, · · · ) such that, for n ≥ 2,

MS
n =

1

µ1
[A−

βNS
n−1N

B
n−1

K +NB
n−1

],

NS
n =

1

µ1
[A− βMS

nM
B
n

K +MB
n

],

M I
n =

βMS
n (1− e−(µ1+δ)τ )

µ1 + δ
− Kµ2

η
,

N I
n =

βNS
n (1− e−(µ1+δ)τ )

µ1 + δ
− Kµ2

η
,

MB
n =

η

µ2
M I

n,

NB
n =

η

µ2
N I

n,

MR
n =

1

µ1

βe−(µ1+δ)τMS
nM

B
n

K +MB
n

,

NR
n =

1

µ1

βe−(µ1+δ)τNS
nN

B
n

K +NB
n

.

(5.12)
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Clearly, we have that

NS
n ≤ S ≤ S ≤ MS

n , N
I
n ≤ I ≤ I ≤ M I

n,

NR
n ≤ R ≤ R ≤ MR

n , NB
n ≤ B ≤ B ≤ MB

n .

It follows from (5.12) that

MS
n+1 =

1

µ1
[(1− β

µ1
)A+

(µ1 − β)K(µ1 + δ)µ2

ηµ1(1− e−(µ1+δ)τ )
+

β2

µ1
MS

n ]. (5.13)

Noting that MS
n > S∗ and µ1 > β, it follows from (5.13) that

MS
n+1 −MS

n =
1

µ1
(1− β

µ1
)[A+

(µ1 + δ)

1− e−(µ1+δ)τ

Kµ2

η
− (β + µ1)M

S
n ]

≤ 1

µ1
(1− β

µ1
)[A+

(µ1 + δ)

1− e−(µ1+δ)τ

Kµ2

η
− (β + µ1)S

∗]

= 0.

Therefore, the sequence MS
n is monotonically non-increasing. Hence, lim

n→+∞
MS

n

exists. Taking n → +∞, it follows from (5.13) that

lim
n→+∞

MS
n = S∗.

We obtain from (5.11) and (5.13) that

lim
n→+∞

NS
n = S∗, lim

n→+∞
M I

n = I∗, lim
n→+∞

MR
n = R∗, lim

n→+∞
MB

n = B∗,

lim
n→+∞

N I
n = I∗, lim

n→+∞
NR

n = R∗, lim
n→+∞

NB
n = B∗. (5.14)

It therefore follows from (5.13), (5.14) and (4.15) that

lim
t→+∞

S(t) = S∗, lim
t→+∞

I(t) = I∗, lim
t→+∞

R(t) = R∗, lim
t→+∞

B(t) = B∗.

Hence, the endemic equilibrium E∗ is globally attractive.
From Theorems 5.1 and 5.2, we can get the following result.

Theorem 5.3. If R0 > 1, µ1 > β, ϑ3 ≥ 0 and ∆ < 0 hold true, then the endemic
equilibrium E∗ is globally asymptotically stable.

6. Numerical simulations
In the previous sections, we introduced the analytical tools proposed and used them
for a qualitative analysis of the system obtaining some results about the dynamics of
the system. In this section, we perform a numerical analysis of the model based on
the previous results. In order to illustrate feasibility of the main results of Theorems
5.2 and 5.3, we perform some numerical simulations by using the software Matlab
7.0.

Our model involves 8 parameters, including the delay τ . We choose a set of
parameters which are listed in Table 1. In order to support our results about
instability switches, we computed the numerical solution of system (1.1) for different
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Table 1. Estimation of parameters.
Parameters Meaning Values Reference

A Recruitment rate of susceptible population 4.2/day Assumed
β Exposure rate to contaminated water 0.2143/day [12]
η Contribution of infected individuals to 100 cells/L-per day [6]

the population of V. cholera
µ1 Natural death rate of human 5.48× 10−5/day [21]
µ̌ Rate of loss of V. cholera 1.06 /day [6]
µ̂ Growth rate of V. cholera 0.73/day [6]
δ Disease-induced death rate 0.015/day [12]
K Concentration of V. cholera in water 9.5× 106cells/L [12]
τ Infectious period Varied Assumed

values of τ . Since the zeros of τ0 occur at τ01 = 9.1974 and τ02 = 11.0892, we
considered the values τ = 9 in the stability region, τ = 9.5 in the instability region
and τ = 12 again in the stability region. In the first and third cases (Fig. 1 and
Fig. 3), the solution shows dumped oscillations revealing the asymptotic stability of
equilibrium E∗, whereas in the second case (Fig. 2) the oscillations are sustained,
thus confirming that E∗ is unstable.

Although the conditions of Theorem 5.3 (especially, µ1 > β) are not satisfied,
the endemic equilibrium E∗ will be asymptotically stable by numerical simulations
(Fig. 1 and Fig. 3). Therefore, we can affirm that the conditions of Theorem 5.3
have room for improvement.

7. Discussion
In this paper, we formulate a delay cholera epidemic model with a constant in-
fectious period. The model equations are delay differential equations with delay
dependent parameters. We discuss the global attractivity of the disease-free equi-
librium and the endemic equilibrium of system (1.1) by using iterative schemes
and comparison principles, respectively. We also present the permanence of system
(1.1). By using the geometric stability switch criteria in delay differential systems
with delay dependent parameters, we obtain that there could exist stability switch
about the endemic equilibrium. And we have confirmed it via the numerical simu-
lations. We also find that the endemic equilibrium E∗ will be asymptotically stable
by numerical simulations although the conditions of Theorem 5.2 are not satisfied.
Perhaps, we may prove the globally asymptotical stability of the endemic equilib-
rium E∗ by using the method of constructing the appropriate Lyapunov function.
We leave it in the future.

In order to consider the effects of infectious period, we differentiate R0 and
I∗ with respect to τ . We can obtain ∂R0

∂τ = Aβη(µ1+δ)e−(µ1+δ)τ

Kµ1µ2(µ1+δ) > 0 and ∂I∗

∂τ =

Aβη(µ1+δ)e−(µ1+δ)τ

µ1r+βr+µ1δ+βµ1+µ2
1+βδ

> 0. Therefore, the number of secondary infections will
increase when the infectious period increases. And the number of the infectives
will increase when the infectious period increases. We can conclude that prolonging
infectious period by medical interventions will have negative effect. The infectious
period, plays a significant role in cholera surveillance, prevention, and control [1].
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Figure 1. Time evolution of all the population for the model (1.1) with τ = 9 and initial value
(15920,30,52313,9274).
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Figure 2. Time evolution of all the population for the model (1.1) with τ = 9.5 and initial value
(15920,30,52313,9274).
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Figure 3. Time evolution of all the population for the model (1.1) with τ = 12 and initial value
(15920,30,52313,9274).

The long infectious period for diseases can give individuals a false sense of security.
Cholera with long infectious periods are more likely to spread extensively. Hence,
we should shorten infectious periods to intervene cholera.

In [4], the authors considered an age-of-infection cholera model. Under some
assumptions, the global dynamics of a PDE cholera model was shown to be deter-
mined completely by the basic reproduction number R0. The disease died out if R0

was below or at the threshold value 1 and otherwise the disease persists. The global
stability of the disease-free and endemic equilibria was proved by the construction
of Lyapunov functionals. Our model is different from the one proposed in [4], which
incorporates simultaneously the age-of-infection structure of individuals and the age
structure of pathogen with infectivities given by kernel functions.

Lastly, we can improve the cholera model by several ways. For example, we can
consider a cholera model with both constant latency time and constant infectious
period. In this case, we may add an equation for the dynamics of the latented
populations. We may also consider the vaccination effort of the cholera. And we
can add an equation for the dynamics of the vaccinated populations. All of them
will be left in the future.
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