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LOCAL BIFURCATION OF CRITICAL
PERIODS IN QUADRATIC-LIKE CUBIC
SYSTEMS*

Zhiheng Yu' and Zhaoxia Wang?!

Abstract In this paper, we investigate quadratic-like cubic systems having a
center at O for the local bifurcation of critical periods. We provide an inductive
algorithm to compute polynomials of periodic coefficients, find structures of
solutions for systems of algebraic equations corresponding to weak centers of
finite order, and derive conditions on parameters under which the considered
equilibrium is a weak center of order k, k = 0, 1,2, 3,4. Furthermore, we show
that with appropriate perturbations, at most four critical periods bifurcate
from the weak center of finite order, and we give conditions under which exactly
k critical periods bifurcate from the center O for each integer k = 1,2, 3, 4.
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1. Introduction

It has been an interesting problem to determine the number of critical periods bifur-
cating from a weak center of finite order or an isochronous center since great atten-
tion was paid to discuss monotonicity of the period function of dynamical systems
( [3-5]). In 1989, Chicone and Jacobs [6] introduced the theory of weak centers and
discussed the problem of local bifurcation of critical periods for quadratic Bautin’s
systems and planar Hamiltonian systems of Newton’s type. In 1993, Rousseau and
Toni [15] investigated such a bifurcation for a nondegenerate center with homoge-
neous cubic nonlinearities and proved that at most three local critical periods bifur-
cate from a weak linear center of finite order or from the linear isochronous center,
and at most two local critical periods from the nonlinear isochronous center. Lat-
er, efforts were made to nonhomogeneous ones, e.g., reduced cubic Kukles systems
(Rousseau and Toni [16]), reversible cubic perturbations of quadratic isochronous
centers (Zhang, Hou, and Zeng [21]), reversible cubic systems (Chen and Zhang [2]),
cubic Liénard equations with cubic damping (Zou, Chen, and Zhang [22]), planar
cubic Hamiltonian systems (Yu, Han, and Zhang [20]), generalized Loud systems
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with degree > 3 (Villadelprat [18]), reversible rigidly isochronous centers (Chen,
Romanovski, and Zhang [1], Liu and Han [11], Li and Han [10]), quartic rigidly
isochronous centers under any small quartic homogeneous perturbations (Peng and
Feng [14]), generalized Lotka-Volterra systems of unspecific degree (Wang, Chen,
and Zhang [19]), and several families of complexification cubic systems (Fercec et
al [7]).

The quadratic-like cubic system

t=pr+y+plry)+af(ry), 9=-r+py+q(z,y) +yflz,y), (1.1)

where p,q, and f are quadratic homogeneous polynomials, is another interesting
class of nonhomogeneous cubic differential systems. This system, also called a cubic
system with degenerate infinity, was studied early in 1981 [17] for the significance
that in the Poincaré compactification, the equator of S? (i.e., the circle at infinity)
entirely consists of singular points. Gasull and Prohens [8] exhibited at least three
limit cycles for such a system. Lloyd et al. [12] proved that at most five limit cycles
bifurcate from the weak focus at the origin. Moreover, conditions for the origin to be
a center or an isochronous center have been given [12,13]. In this paper, we consider
the local bifurcation of critical periods for the quadratic-like cubic system (1.1) with
i = 0. The forms of both the linear and cubic terms in (1.1) are unchanged by
rotation of coordinates [12], and they use a rotation transformation to simplify (1.1)
to the form

&=y~ a12® + (a2 + 201)zy + (a3 — a1)y® + zf(z,y), 12)

= —x+bx®+ (by — 2a1)xy — b1y? + yf(x,y),
where a; and b; are real constants and
f(2,y) = asx® + aszy + (a6 — aa)y’.

Theorem 4.3 of [13] indicates that the origin is a center of this system if and only
if A = (a1,as9,as,a4,as,a6,b1,bs) lies in one of the sets:

C1:={\az = ag = 0},
Cy:={Aag = —4b1,a4 = —a1b1,a6 = —a3zb; },
C3:={\ag = —(agby + 4b1bs — Hagas — 20a3zb; — 4azaq)/16,
as = (25a§ — 40aia3 4+ 10bsasz + Sag — 3b§ + 8baay + 8bras)/16,as = asas/4,
b3 + 2bya3 — 8boay — 3a3 — Saza; + a3 + 8agby + 16b7 + 16a] = 0},
Cy:={Aag = —(agby + 4b1bs — 4aya2)/16,
as = —(3b2 — 8bya; — 3a3 — 8agb1)/16, ag = azas/4}.

Theorem 5.3 of [12] indicates that the origin is an isochronous center if and only if
A lies in the cone ZC, which is defined as the union of the sets

IC,:={)\as = ag = 0,as = —4by, by = 4a; },

I1Cy:={\|a1 = a3, by = 3a3,as = —4b1,a4 = ag = —asb1 },

IC3:={\|ay = 4a3/3,by = 10a3/3,ay = —4b1, ay = —4asb,/3,a5 = b?,as = —azbi},
IC,:={\ai = a3, by = 6a3,ay = —4by, a4 = ag = —asby,as = b3}.
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In this paper, we discuss the local bifurcation of critical periods for the quadratic-
like cubic system (1.2) from a weak center of finite order. We prove that the origin
is either a weak center of at most order 4, or an isochronous center. We further
prove that at most four critical periods bifurcate for each integer k = 1,2, 3,4, and
give conditions under which exactly k critical periods bifurcate from the center O.

2. Orders of the Center

Let P(r,\) denote the minimum period of the periodic orbit around the origin
through a point (r,0). By Lemma 2.1 in [6], P(r,A) is analytic locally and can
be represented as its Taylor series, P(r,\) = 27 + > pey pr(A)r*. If there exists
A = (a1,a9,as,a4,as,ag,b1,b2) such that po(A*) = -+ = pogr1(A*) = 0 and
Dak+2(A*) # 0 for any integer k, then (1.2) has a weak center of order k at O.

Lemma 2.1. The origin of system (1.2) is a weak center of order 0 when A\ €

4\ IC.

Proof. When )\ € C7, we use the computer algebra system Maple to calculate
T T
= —(4b 24— (by —4a1)*. 2.1
p2(A) = 5 (4b1 +a2)” + 5 (b2 — day) (2.1)

Then one can check that the variety V(p2) = IC;. Thus this lemma is proved. O

Lemma 2.2. The origin of system (1.2) is a weak center of order at most 3 when
A € O3\ ZC. More concretely, the center is of order k (k= 0,1,2,3) if and only if
A€ Con Ak where
1 1
A(I)I ::{)\| a3(a3 — §b2) > 0} @] {)\| ag(ag — gbg) <0,a1 # 01 and a1 # (52},
11 13 65

Arri={N a1 = Ha?wbz = 03,03 #0,a5 # —@ag +bi}
5 13
U{)\|a1 = —a3, b2 = —as,as 7& 0}
6 3
13 1
U{)\| a1 = 01 (OI‘ (52),0,5 # 03 (OI‘ 54),b2 #* ?a3,a3(a3 — §b2) < O},
11 65 13
A2, ::{)\|a1:€a3,a5:frssa§+b?,bgzgag,ag # 0}
13 10
U{A| a1 = 01,a5 = d3,b2 # 503 §a3,€2a3,€4a3,0 < 3az < b}

1
U{)\l ay = 52,@5 = 54,[)2 ;é §a3,6a3,€1a3,€3a370 < 3az < b2}

13
U{)\|a1 = 51,(15 = 53,b2 ;é §a3,6a3,€1a3,€3a3,bg < 3asz < 0}
13

10
U{)\| a; = 52,0,5 = (54,1)2 7& ?ag,, §a3,€2a3,£4a3,b2 < 3az < 0},

A?] :={A a1 = 01,as5 = d3,b2 = l2a3 or Lsas,a3 > 0}
U{A| a1 = 02, a5 = 4, b2 = £1a3 or L3a3,a3 > 0}
U{Al a1 = 01, a5 = 83,b2 = f1a3 or L3a3,a3 < 0}
U{A| a1 = 02, a5 = 4, b2 = L2as or Lsas, a3 < 0}

and

L 1 \/7 L S1 + S2 —3a3(3a3 — bz)
51,2 = Z(b2 + a3z —3(13(3(13 — bz)), 53,4 = 16(13(13 — 3b2) s
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s1:= 30003 + 49b3as — 236boa3 — 3b5 + 48b1by — 208asb?,
So = 2(60,3 —_ bz)(20a3 — 3b2),
£; := RootsOf (3z* — 151> + 24422% — 13716z + 2473) such that €1 < by < f3 < L4,

Proof. When A € (5, we use the computer algebra system Maple to calculate the
period coefficients up to a nonzero factor:

p2(A) = 16a§ — 8ajasz + b% — baaz — 8baay + 10a§,

pa(X) = ba 4 1540a3 + 2560a] — 217643 by — 64bsay + 6720a3a] + 21a3bs — 2bsas
+700a3bs — 4480a3a1 4 624a7b3 — 2560a3as + 336b1b5 — T68atas (2.2)
—1008a3as + 5376a3b? + 3888a3bs — 48asbs + 576a3asbs + 96a1b3as
—2016a1a3bs + 96asbaas + 384asbaar + T68asasar — 3072a1asb?
—384b3azby — 2688bTayba,

We omit the expressions of pg(A) and pg(A), with 76 and 170 terms, respectively.
From (2.2), we get

1
V(p2) = {\| a1 =061 or 02, az(as — §b2) < 0}. (2.3)

Since the origin is a weak center of order 0 if and only if ps # 0, it follows from
(2.3) that A € V(p2), i.e.,

1 1
a3(a3 — gbg) >0 or a3(a3 — §b2) <0, a1 75 (51,(527

which means that A € A%, N Cs.

When A € V(py), we further identify the center of order k¥ > 1. Consider
D2, P4 as polynomials in a single variable a;, and let lcoeff (-, a1) denote the leading
coefficients. In this case, lcoeff(ps,a;) = 16. Using the method given in [9, pp.
368-369], we see that po = ps = 0 if and only if p; = 0 and prem(py, p2,a;) = 0,
where prem(pyg, p2, a1 ), called the pseudo-remainder of py divided by ps, is defined
by

prem(py, p2, a1) := (lcoeff (p2, a1))*rem(ps, p2, a1), k = deg(ps) — deg(ps) + 1(2.4)

rem(pq, p2,a1) denotes the remainder of py divided by po, and deg(pz), deg(ps)
denote the orders of a; in ps, ps4, respectively. This implies that

P2, prem(p4ap2a al) ) (
mq ’

V (p2,p4) =V (p2, prem(pa, p2, a1)) =V (p2, mi, ma) U V( 2.5)

where prem(py, p2, a1) is a polynomial of A and can be calculated by (2.4), i.e.,

prem(pa, p2, a1) =mias + ma,
ma : = —196608a3(11las — 8a1 — b2), (2.6)
mg : = —12288a3(480a1a3 — 176a1asba + 128a1b7 + 16a,1b3 4 42043
—400a3by — 176asb + 97asbs + 16b3by — 7b3).
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Thus A € V(pa, ps) if and only if one of the following conditions holds:

P2 = 07 D2 = 07
L: mi = 07 IT: prem(p4ap27 al) = Oa
mg = 0. my # 0.

For case I, one can check that
V(pg,ml,mg) :IC'1UIC’2. (27)

For case I, when by # 13a3/3, from py = 0, we get as(as — %bz) >0 and a; = d1 0.
Substituting a; into mq, since m; # 0, we know that b # 3as and ag # 0. Moreover,
we get a5 = —mg/my = 034 from prem(ps,p2,a1) = 0 and my # 0. When by =
13a3/3, we solve p; = 0 to obtain a; = 11la3/6 or a; = 5a3/6. Furthermore, from
ps =0, we get:

11 65
6% %7 T8
It follows that m; = 8az # 0. Thus

2, 32
ay = az + by.

,prem(pa, p2, a 11 65 13
v (ERPen Pty )0 = Moy 0 = — 223 4,00 = Has,an £ 0)

13 1
U{)\l a1 = 01,a5 = 53,[)2;&?@3,@3(0,3 — §b2) < 0}) (28)

13 1
U{)\|a1 =02,a5 = 54,1)2#?&37&3(&3 — §b2) < 0})

Thus, from (2.5) we obtain that

11 65 13
V(p27p4)2101 UICQ U {A‘ ap = F(Ig,a{) = 7?88(1% + b%,bQ = ?ag,ag 7é 0}
13 1
U{M a; = 61,(15 = 53,b27$§a3,a3(a3 — gbz) < O} (29)
13 1
U{)\| a1 = 52,&5 = 64,bg#§a3,a3(a3 — ng) < 0}

It follows from (2.3) and (2.9) that the origin is a weak center of order 1 if and only if
A € V(p2)/V(p2,pa), i.e., one of the following condition holds:
(i) a1 = 11a3/6, b = 13a3/3, as # 0, as # —65a3 /288 + b3,
(ll) al = 5(13/6, b2 = 13&3/3, as 75 O,
(111) a1 = 01 (01" 62), as 7& 03 (Ol" 54), bo 7& 130,3/3, a3(a3 — b2/3) <0,
implying that A € Aj; N Ca.
From (2.5) and (2.7), we further compute

p2,prem(p4,p2,a1))mv(

V(p2,p1,p6)=(V (p2, m1,m2) N V(ps)) U (V( o

D6))

=IC, UIC,U V(p27prem(p‘hana1)7prem(p67p27a1)).

- (2.10)

Notice that lcoeff (prem(pa, p2,a1),as) = mi. It follows from (2.10) that

V(p27p4,p6) :Icl U ICQ U V(p27prem(p:/;p2aa1)7m3)
1



1906 Z. Yu & Z. Wang

= 10, U IC, U v (P2Prem(pe. P2, “2’ prem(ms. p2,a1)) (g 1)
1

where
m3 = prem(prem(p67 b2, a1)7 prem(p47 P2, 0,1)7 0‘,5)7 (212)

and prem(ms, p2, a1) can be calculated by

prem(ms, p2, a1 ) = 147083960950218502963200(3az — ba)a3(maay + ms),
my :=6192a3 — 3336a3bs + 504azb3 — 16b3,
ms 1= —3816a3 + 1536a3by — 48a2b2 — 27asb3 + ba.

From (2.8), we know by # 3as and asg # 0 when A € V((p2, prem(p4, p2,a1))/m1).
It follows from (2.11) that

(P2 prem(pa, p2, ai), ma, ms
mi

V(p27 prem(p47p27 a1)7 prem(m3ap27 al))

mi,mMa ’

V(p27p47p6):lcl UICQ uv

=U

One can check that A € V((p2, prem(py, p2,a1), ma, ms)/mq) if and only if a; =
az = a5 = by = 0, which contradicts ag # 0. When my # 0, we can solve
ay = —my/ms from prem(ms,ps,a1) = 0. Substituting it in po, we get

P2 = (3@3 — b2>(10a3 — 3()2)(60,3 — bg)QmeZ2,
where
me = 3by — 151b3az + 2442a3b3 — 13716a3by + 2473243, (2.13)

Notice that by # 3az when A € V((pe, prem(py,p2,a1 ), prem(ms,pa,a1))/(my, my)).
When by = 10a3/3, from a1 = —my4/ms and prem(py, p2, a1) = 0, we get a; = 4az/3
and as = b?, which implies A € IC3. When by = 6as, from a; = —my/ms and
prem(py, p2,ai) = 0, we get a; = a3/3 and as = b?, which implies A € ICy.
Consider the case mg = 0. One can check that there are four real roots ¢;, i =
1,2, 3,4, for the equation 3z* — 15123 + 244222 — 137162 + 2473 = 0. Assume that
by < ly < b3 < ly. Then t; € [4,4.5], ly € [4.5,5], {3 € [19,20], and ¢4 € [22,23].
Thus one can solve by = f;a3, i = 1,2,3,4, from mg = 0. Moreover, when az > 0
(or < 0) and by = l;a3, i = 1,3, from a1 = —my/ms, we get az(ag — b2/3) < 0 and
ap = 62 (or 61). Solving as from prem(py, p2,a1) = 0 in this case, we get a5 = dy4
(or d3). When ag > 0 (or < 0), and be = f;as, i = 2,4, from a1 = —my/ms5, we get
as(as —b2/3) < 0 and a; = §; (or d2). Solving as from prem(ps,p2,as) = 0 in this
case, we get a5 = 03 (or d4). Hence we get

V(p2,pa,p6) =1C1 UIC2 UIC3 UICy
U{A| b2 = l;a3,a1 = d2,a5 = 64,4 = 1,3, a3 > 0}
U{A| b2 = l;as,a1 = 61,a5 = 03,4 = 2,4, a3 > 0}
U{A| b2 = lias,a1 = d1,a5 = 03,7 = 1,3, az < 0} (2.14)
U{A| b2 = lsaz, a1 = 01, a5 = 03,7 = 2,4, a3 < 0}.

It follows from (2.9) and (2.14) that the origin is a weak center of order 2 if and
only if A € V(p2,p4)/V (p2,pa,ps), i-€., one of the following conditions holds:

(i) a; = 11&3/6,(15 = —65@%/288 + b%,bg = 13&3/3,
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(ii) a1 = 61,a5 = 03,be # 13a3/3,10a3/3, l2as3,lsa3,0 < 3az < ba,
(iii) a1 = b2, a5 = d4,ba # 13a3/3, 6as, £1a3, l3a3,0 < 3az < ba,
(iv) ay = 61,a5 = 63,bs # 13a3/3, 6as, {1a3, lza3,bs < 3az < 0,
(V) a1 = 02,a5 = 04,b2 # 13a3/3,10a3/3, l2as, lsas, ba < 3asz < 0,

implying that A € AZ, N Co.
Similarly, from (2.11), we have

):Icl UICsyU (V(anprem(p4ap27a1)7prem(m37p27a‘1)) n V(
mi1
2101 U ICQ U V(pz,pl“em(p4,p2,a1)7premSZ&pmal),prem(ps,pQ,al))_

V(p27p47p6,p8 pB))

Notice that lcoeff (prem(p4, p2,a1),as) = m1. Then

V(p27p47p67p8) =IC,UICy U V(p27prem(p47p27 al)aprem(m37p27 a1),m7)

mi
_ [Cl U 102 U V(p27 prem(p47p27 al): prem(mlfnp?: a1)7 prem(m77 P2, a‘l) ),
miy
where
m7 = prem(prem(ps, p2, a1), prem(p, p2, a1), as), (2.15)

and prem(my, pa,ay) can be calculated by

prem(my, pa, a1) = 4264115413819474491396905867673600a3 (3az — b2)? (663264a,1a]
—121344aya3bs + 5515776a1a3b7 — 75912a1a3bs — 313420841 a3b3 by
+18472a1 a3b5+492800a1 asbibs —720a1 asbs — 1612841 b7b3 — 14803924
+1067964a5bs —822528a3b? —331302a3b3 — 204288a3b3bs + 61217a3bs
+321664a3b7b3 — 6136a3bs — 60704a3bibs + 189asb3 + 2016b7b3).

Solving ps = prem(pg,p2,a1) = prem(ms,p2,a1) = prem(mz,pa,a;) = 0 with
my # 0, we get a1 = 4ag/3, as = b2, and by = 10a3/3, which implies A\ € IC3, or
a1 = az/3, a5 = b3, and by = 6az, which implies A € IC4. Thus we obtain that

V(p2,p4,p6,p8) = IC1 UIC, UIC3 UICY, (2.16)

implying that the origin is a weak center of order at most 3 when A € C2\ ZC. Tt
follows from (2.14) and (2.16) that the origin is a weak center of order 3 if and only
if A € V(pa,pa,06)/V (D2, P4, Ps, Ps), 1-€., one of the following conditions holds:

(l) a; = 51,0,5 = 53, b2 = €2a3 or €4CL3, as > 0,
(ii) a] = (52,@5 = (54,1)2 = {ia3 or €3a3,a3 > 0,
(iii) a; = (51, as = 63, bg = €1a3 or [3(13,043 < 07

(lV) a] = (52, as = (54, by = las3 or (40,3, az < 0,

implying that A € A?; N Cy. Thus this lemma is proved. O
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Lemma 2.3. The origin of system (1.2) is a weak center of order at most 1 when
A € C3\ IC, and the center is of order k (k = 0,1) if and only if X € C3 N A¥,,,
where

13 13
A?II ::{M bo ;ﬁ Eag,aa 7& 0} U {A| b = gag,ag, 7& 0,40,3 — (CLQ +4b1)2 < 0}

1 4 4a3 — 4b1)?
=U{\| by = g’ag,al # gaa %3 (ZQ b #0,4a3 — (a2 + 4b1) > 0},
4 4a2 — 4b1)? 1
A}I[ Z:{M ay; = §a3i 3 (Z2+ 1) ,b2:gag,a3¢0,4a§—(ag+4b1)220}.

Proof. When A € (3, we use the computer algebra system Maple to calculate the
period coefficients up to a nonzero factor:

p2(N) :bg + 16b% + 10a§ + a% + 16a% — 8aias — baas + 8azb1 — 8b2aq,

pa(N) =—5120b3 a5 + 14b3as + 16b3a; — 672b3a; + 2560baal — 39203 a3
—800aia; — 3600a3a; — 3328b3as — 32asbs + 760asa1 — 220a3bs
+183b3a3 — 545a3a5 — 448a3b1 — 1824a3b; + 640aias — 320763 (2.17)
+80a3asbs + 280a3asa; + 2560b3baa; — 2440b1a3a2 — 648b3asay
—64b1asbs + 480a3asbs + 1680a3brar + 1664b1baaras + 448b1baasas
+704a1a3b1as + 8b3 — 256007 — 2560a] — 40a3 + 3a; — 3328b1atas
+800b2asbs + 400a1a3bs + 640b3asa;.

Let po denote the left side of the last equality in C3, i.e.,
po = b3 + 2bsas — 8baay — 3a3 — 8azay + a3 + Saghy + 16b7 + 1643
Since po = 0, we obtain from (2.17) that p2(X) = 0 if and only if:
p2 — po = az(13az — 3by) = 0.

When a3 = 0, we get ay = 4b; and by = 4a; from py = 0, which implies that
A € IC and the origin is an isochronous center. When by = 13a3/3 , we get

p2 = 220a3/9 + 16b7 + a3 + 16a7 — 128a1a3/3 + Sasb;.
Consider ps = 0 as a quadratic equation that regards a; as variable. Its discriminant

is A = 256a3 — 4(az + 4b1)%. Then we get a; = 4az/3 + \/4a3 — (az + 4b1)2/4 if
A > 0. Thus

4a2 — 4b1)2
- (Z2+ s ,b2=1373a3,4a§—(a2+4b1>220}-(2-18)

4
V(pz)zlcl U {>\| alzgag +

Since the origin is a weak center of order 0 if and only if ps # 0, it follows from
(2.18) that A &€ V(p2), i.e., one of the following conditions holds:

(1) b2 7é 13(13/3, as 7’5 0,
(ii) b2 = 13a3/3, a3 # 0, 4a3 — (a2 + 4b1)? < 0,
(lii) bQ = 13(13/3, as # 0, 40%7((124’4[)1)2 Z 0, al # 40,3/3ﬂ: \/40% - (a2 + 4b1)2/4,

which means A € AY;; N Cs.
When A € V(p3), we further identify the center of order 1. Under the condition
by = 13a3/3, one can calculate that lcoeff(pg,a1) = 16 and prem(py,po,a1) =
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573440a3. Moreover, ag = 0 implies that A\ € IC; and the origin is an isochronous
center. Thus

V(p2,pa) = 1C1. (2.19)

It follows from (2.18) and (2.19) that the origin is a weak center of order 1 if and
only if A € V(p2)/V (p2,pa), i.e.,

a; = 40,3/3 + \/4&% — (ag +4b1)2/4, b2 = 13@3/3,@3 7& 0, b2 = 13@3/3,
4a3 — (az + 4b1)* > 0,

implying that A € A};; N Cs. Therefore, this lemma is proved. O

Lemma 2.4. The origin of system (1.2) is a weak center of order at most 4 when
A € C4\ IC, and the center is of order k (k = 0,1,2,3,4) if and only if X € C4NAK,,,
where

Ay :={AA >0} U{\ai # o1 and a; # 02, A <0},
A}V = {>\|a1 = 01 Or O’g,bQ = 40,3,@2 = O, as 7& 0, A S 0}
a3 + 2a?

U{/\|a1:a1 or 02,b2:4a3,a25£0,a35£0,b1 7&7 1a
2

, A<0}
U{A|a1 = 01 or o2,a3 # 0,b2 # 4as, A <0,I" > 0}

U{Ala1 = 01,a3 # 0,bs # 4as, A <0,I'<0,E; >0}

U{Ala1 = o1,b1 # <1,a3 # 0,b2 # 4das, A <0,I' <0,FE;, <0}

U{A|a1 = 02,a3 # 0,b2 # 4a3, A <0,I'<0,FE> <0}

U{ a1 = 02,b1 # 2,a3 # 0,b2 # 4as, A <0,T <0,E> > 0},

5 V/3a3 — 4a? 2 4 2d3 V2
A?V = {>\|a1 = ( a2 + 92 a3)a3,b1 = —7(12 + as,bg = 4(1,3,(12 7é O, 73 6(137
40,2 40,2 13
5 3 2 —4 2 2 2 2
303 — 42 > 0,03 > 0}U Aoy = P2t V3G —das)as | an s
4as 4as
V4 5as — v/3a2 — 4a?
az # 0,73 26a3,3a§ —4a3 > 0,a3 < 0}U{\as = (baz 42 a3)a37
13 4dao
2 9,2 /26
b = _GaT 20 + as,bg = 4asz, a2 75 0,—3 6a373ag - 4a§ > 0,a3 > O}
4(12 13
5az — +/3a3 — 4a3 5+ 2a3 V2
U{Aa1 = (5a2 422 a3)a3’b1 = _az; a37b2 = 4das,az # 0, 3136%7
2 2

3a3 —4a3 > 0,a3 < 0} U{\ a1 = 03,a2 = 0,a3 # 0,b1 = ¢1,ba # 0s,i = 1,2,3,4,
I <0}U{Aa1 =o04,a2 =0,b1 =2,a3 #0,b2 # 0;,5=1,2,3,4, T <0}

U{Ala1 = 03,b1 =<1,a2 # 0,a3 # 0,b2 # 0,1 =1,2,3,4,' <0,Q > 0}

U{A|a1 = 04,b1 = c2,a2 # 0,a3 # 0,b2 # 0,1 =1,2,3,4,1' <0,Q > 0}

U{A|a1 = 03,b1 =<1,a2 # 0,71,a3 # 0,ba # 0;,1=1,2,3,4,1 < 0,2 <0,E3 >0}
U{Aa1 = 04,b1 = ¢2,a2 # 0,a3 # 0,b2 # 0;,1=1,2,3,4,1 <0,Q2<0,E3 <0}
U{A|a1 = 04,b1 = <2,a2 # 0,72,a3 # 0,b2 # 05,1 =1,2,3,4,T <0,Q2 <0, E3 > 0}
U{A|la1 = 03,b1 =<c1,a2 # 0,a3 # 0,b2 # 0;,1=1,2,3,4,1'<0,Q <0, E3 < 0},

3\/26a by — 114/26
13 3,01 =F 78

4
A?VZ: {>\| a1:§a3,a2 =4+ a3,b2:4a3,a37é0}
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U{/\|a1 = ZCLQ},(IQIO7 b1 = :E%ag,,bz = 6as, a3 75 0}

2 2462 2
U{Mal:M%@:O’bl:im%m _ BV s £ 0}
12 48 4
26 — +/ 2 62v/ 23—/
U{Ma1 = uds,az =0,b1 = 4 V502~ 62vO7 97&3752 = BV 97a3,a3 # 0}
12 48 4
2 1 2 2
U{Aay = 0008 =10y #205  _ y =miaas £ 0,bs # iy i =1,2,3,4,
24@3
K2a3, K343, Q< 0}.
60a3 — 15a3bs + 2b3
Aty ={Aa1 = 3 A 2 as = T3,4,b1 = 65,6, b2 = K2as3, a3 # 0}
24(13
60a3 — 15a3bs + 203
U{Aa, = 3 372 2, a2 = 134,01 = 5.6, b2 = Kzas,as # 0}
24@3
and

az +by £vV-A
pEmTTTT
a3as + a3by — 56a3 + 62a3bz — 20a3bs + 2b3 + azy/—T

734 4(aZ + 16aZ + b2 — 8azbs) ’
L ag(—ag + 2(1% — a3b2) + (4(13 — bz)\/ I
Rk 4(a% 4 16a2 + b2 — 8asbz) ’
- 5184a3 — 3528a3bs + 867a3b3 — 96azb3 + 4b3
S 24azv/— ’
(409x7 — 4416k, + 10368)|as]
S5,6 = , 1=2,3,
24,/—113k2 + 1224k; — 2880
(54a3 — 23a3bs + 2b3)(6az — bo)
Ti2:==% ,
V=0
T34 — (36 — 5/%)(24 — 7m)|a3| i = 2’ 37

3v/—113k2 + 1224k, — 2880
A:=3a3(3a3 — ba) + (4b1 + a2)?,
I:=(3a3 — b2)(156a3 — 96a3b2 + 3aza3 + 18azbs — b3),
Q:=3240a3 — 2376a3bs + 657a3bs — 84azb3 + 4b3,
E: :=(6as — b2)(4as — b2)(3az — b2) + agx/jl",
Es:=(6as — b2)(4az — b2)(3az — b2) — azv/—T,
=

Es:=(3a3 — b2)(252a3 — 162a3b2 + 33a3bs — 2b3),
23 £ 97
o1:=3as, o2 :=4as, p3 :=6az, g4 := fayﬂ

#i :=RootsOf (z° — 90z” + 270) such that k1 < ko < K3.

Proof. When A € C4, we use the computer algebra system Maple to calculate the
period coefficients up to a nonzero factor:

P2 = bg + 16b§ + 16a? + 10a§ + a% + 8asb1 — 8asza1 — 8b2a1 — baas,

pa=1940aza2b1 — 25a3baas — 1260a2bsar + 5bs + 128067 + 20a3 + 1280a;
+770a3 — 832b1baaras — 832biarasas — 104biasbzas — 200a3asay
+1664b1atas + 104bib3az — 1280b3 a1as — 200a3b2a1 + 480bzaias (2.20)
—1280b3boa; — 160bTasbs — 10b3as + 480b3al + 385a3a3 — 80b3a1 + 912b3a3
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+400a3a; — 1280baa’ + 3040a3b; + 160b3b5 — 1280a5as + 25bsas + 105a3b3
+1664b5as + 224b1as + 3360a3ai — 2240a1a3 + 350a3bs + 256063 a2,

We omit the expressions of pg(\) and pg(A), which have more than 107 terms. From
(2.20), we get

V(p2) = {A a1 = 01 or 02, A <0} (2.21)

Since the origin is a weak center of order 0 if and only if ps # 0, it follows from
(2.21) that A € V(p2), i.e.,

a1 #o1,00 or A >0,

from which we know that \ € A?V N Cy.
When A € V(p2), we further identify the center of order k > 1. Consider po, ps
as polynomials in a single variable a;. Note that lcoeff(p2, a;) = 16, and we have

P2, prem(p4up23 al)) (

2.22)
w1

V(p2,pa) =V (p2, prem(py, p2,a1)) =V (p2, wi,wz) UV (
where

prem(ps, p2, a1) =wia + wa,
wy 1= —737280a3(4az — by), (2.23)
wy 1 = 18432003 (a3 + 4agb; — 14a3 + 12bgaz — 2b3).

Thus A € V(pa, ps) if and only if one of the following conditions holds:

p2 =0, p2 =0,
I:qw =0, IT: § prem(ps,p2,a1) = 0.
Wy = 0. w1 75 0.
For case I, we get a3 = 0 or by = 4az from w; = 0. When a3 = 0, we get

ag = asgaz/4 =0 from A € Cy. Substituting a3 = 0 into ps, we get
P2 = (4&1 — b2)2 =+ (ag + 4b1)2.

Then, from ps = 0, it follows that by = 4a; and as = —4by, which implies A € IC.
When a3 # 0, by = 4ag, and ag = 0, we get wy = 368640a3. Then it comes in conflict
with az = 0. When ag # 0, by = 4ag, and ap # 0, we get by = —(2a3 + a3)/(4az)
from wy = 0. Then py = 16a? —40aza; + 22a3 + 4a3/a3. Solving for a; from py = 0,
we know

(5ag & /3a3 — 4a3)as

40,2

a) = if 3a3 —4a3 > 0.

Thus

5a9 + +/3a2 —4a2 2a2 2
V(p2, w1, ws) =101 U{)| al:( a2 452 “3)“3, by—_2a3taz
2

=4
40,2 as,
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as # 0,a3 # 0,3a3 —4a3 > 0}. (2.24)
For case II, since wy # 0, we get a1 = —wy/wy from prem(py, p2,a;) = 0. Substi-

tuting a; into po, we get po = (daz — by) " 2w3, where

w3 = (16a3 + 256a3 + 16b3 — 128bsas3)bi + (8aj + 8baazas — 16aza3 )by — 21b3as3
—20a3a3 + 150a3b3 — 444a3by — b3a3 + 468a3 + b 4+ 10a3bsas + aj.

Notice that loceff(ws,b;) = 16(4az — ba)? + 16a3 > 0, since w; # 0, and the
discriminant for wsz = 0 is

A* = —64(4az — by)*(3as — by)(3aza’ + 156a3 — 96a3by + 18a3ba — b3).

Solving by from w3 = 0, we get by = ¢1,¢2 when A* > 0. Then, from a; = —wy/wy,
we get a; = o3 when by = ¢; or a; = 04 when by = ¢3. Comparing the values of
ay = 01,09 in V(p2), one can check that when substituting by = ¢1, % in a; = 01, 09,
they are coincident with one of the values o3, 04. Moreover, since

_(60,3 - b2)(4a3 7b2)(3a3 7b2)+ a2/ 7F: FE1
4(a3 + 16a2 + b3 — 8asb2) 4(a3 + 16a2 + b3 — 8asb2)’

1
J3_Z(a3+b2):

then a; = o3 is coincident with oy if 7 < 0 and a; = o3 is coincident with o9 if
FE; > 0. Similarly, since
(60,3 — bz)(4a3 — bz)(3a3 — bz)— az\/jr E2

1
_ bo) = — -
04— (as+b) 4(a3 + 16a2 + b2 — 8asbs) 4(a2 + 1642 + b2 — Bazbs)’

then a; = o4 is coincident with oy if Fs < 0, and a; = o4 is coincident with oy if
FEs > 0. Thus

V(p27premf£47p27al)) ={M a1 =03, by =<1, ag #0, ba # 4az, I <0}

U{)\| a1 = 04, b1 =<2, as 7& 0, b2 7& 4as, I' < 0},

From (2.22), we can obtain that

S5as + \/3a2—4a2)as:
=I1C1 U{} 3a2—4a3 > 0,as # 0,as # O,alz( az a5 —4az)as

1%
(p2,pa) 0.

I

2 2
2
,‘h;FT“s,bQ:z;ag}u{M [<0,by#4as,a3#0,a1=03,bi=a} (2.25)
2

U{)\| < 0,1)2 7& 4das, a3 # 0,a1 = 0'4,b1 = §2}-

b=

It follows from (2.21) and (2.25) that the origin is a weak center of order 1 if and
only if A € V(p2)/V (p2,ps), i.e., one of the following condition holds:

(i) A<0,a; =01 (or 03), by =4asz, az =0, az # 0,

(ii) A <0, a1 =01 (or 02), by = 4az, az #0, a3 # 0, by # —(a3 + 2a3)/(4a2),
(iii) A<0,T >0, a; =01 (or 03), az # 0, by # 4as,

(iv) A<0,I'<0, E1 >0, a1 =01, ag # 0, ba # 4as,

(v) A<0,T<0, By <0, a1 =01, b1 #¢1, a3 # 0, by # 4as,

(vi) A<0,I' <0, F3 <0, a1 =09, ag # 0, ba # 4as,

(vil) A<0,T'<0, Ey >0, a1 =09, by # <2, ag # 0, bz # 4as,
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which implies that A € A}V NCy.
When A € V(pa,ps), we compute

p2,Prem(p47p27a1)7p6)

" (2.26)

V(p2,p4,p6) =V (P2, w1, w2, ps) UV (

Since lcoeff (pa, a1) = 16, we get

V(p2, w1, wa, ps) = V(p2, w1, ws, prem(ps, p2, a1)).

From (2.24), when \ € V (p2, w1, w2)/IC1, we get by = —(2a3 +a3)/(4as), by = 4as
and ag # 0. Then

prem(pg, p2, a1) = —6341787648a3(3a; — 4az)

in this case. Since ag # 0, solving prem(pg, p2, a1) = 0, we get a1 = 4az/3. Com-
bining this with ps = 0, we get as = £3v/26a3/13. It follows that

326, 11V
13 @ =T g

Furthermore, we consider the second part of the right side in equation (2.26). Since
lcoeff (p2, a1) = 16, we get

4
V(pz,w1,w2,p6) =[C1U{)\|a1 = gag, as ==+ as, ba =4as,as 750}(227)

V(p%prem(m,pmal),pﬁ) _ V(pg,prem(m,pg,al),prem(p6,p2,a1))
wq wi

Since prem(ps, p2,a1) = 0 and w; # 0, we get a1 = —wz/w;. Then
prem(ps, p2, a1) = wabi + ws,

w 19025362944a5(3as — b2)as
4 = )

4a3 — b2
o — 79272345643 (3as — b2)(6a3as — 324a3 + 192a3bs — 35a3b3 + 2b3)
5 40,3 — b2 ’
Thus
P2, prem(py, p2, a1 ), Pe
V( ( ) ) =Vi1UVig, (2.28)
w1
where
D2, Prem{p4, p2,ai ), W4, Ws
Vir :=V( ( ) )s
w1y
, prem a rem ,a
Vig i =V (E2:P (P4, P2, a1), prem(pg, p2, a1) )
W1, Wy

Moreover, A € V((p2, prem(py, p2, a1 ), prem(pg, p2, a1))/w1) if and only if one of the
following conditions holds:

p2 =0, p2 =0,

prem(pg, p2,a1) =0, prem(py, p2,a1) = 0,
L:qwy =0, IL+ § prem(ps, p2,a1) = 0,

ws = 0, wy # 0,

wy #£ 0. wy # 0.
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For case I, from w; # 0, we know that ag # 0. Then wy = 0 implies by = 3as
or ag = 0. When by = 3ag, solving for as from p, = 0, we get ay = —4b;. Then
one can calculate a; = a3z and a4 = ag = —agb; from a1 = —wy/wy and A € Cy.
Thus A € IC5 in this case. When by # 3a3 and as = 0, solving for by from ws = 0,
we get by = 6az or by = (23/4 + /97/4)az. Solving for b; from py = 0 when
by = 6as, we get by = +3a3/4. Moreover, one can calculate a; = 7az/4. Solving for
by from py = 0 when by = (23/4 + v/97/4)as, we get by = +1/562 + 621/97a3/48.
Furthermore, one can calculate a; = (26 + \/97)@3/12. Solving for by from py =0
when by = (23/4 — /97/4)as, we get by = £1/562 — 62v/97a3/48. Moreover, one
can calculate a; = (26 — v/97)az/12. Therefore,

Vii=1C>U {>\| a; = %CL3,CL2=O7 by = i%a&bz = 6as, a3 ;ﬁ 0}

U{)\| alzwaz),’ag :O, blziwa37b2 — Ma37 (229)
12 48 4
az # 0} U{A a1 = Mag,ag =0,b; = iMCB’
12 48
23 — V97
b2 = 40370,3 # 0}
For case I, from prem(pg, p2,a;) = 0 and wy # 0, we get by = —ws/wy. Then

p2 = (—3240a3 +2376a3ba — 657a3b3 + 84asbs — 4bs)a3 — (54a3 — 23azby 4 2b3)* (—ba +6as)>.

Solving for as from py = 0, we get ag = 71 2 if Q < 0. Then from a; = —wy/w; and
by = —ws/wy, one can check that a; = (60a3 — 15a3by + 2b3)/(24a3) and by = c3 4.
Comparing the values of by = <19 in V(p2,ps), one can check that substituting
as = T1,To in by = ¢1, 2, they are coincident with one of the values ¢3, ¢4. Moreover,
since

463 (7 +16a3 —8asba +b3) — 71 (— 77 +2a3—asby)  (3as—b2)(252a3 —162a3b2 +33asb3 —2b3)
4a3—bo o m
Es
V=

then when ag = 71, b1 = ¢3 is coincident with ¢; if E3 > 0 and by = ¢3 is coincident
with ¢y if F3 < 0. Furthermore, when ay = 71, a; = (60a3 — 15a3bs + 2b3)/(24a3)
is coincident with o3 if E3 > 0, and a; = (60a3 — 15a3be + 2b3)/(24a3) is coincident
with o4 if F5 < 0. Similarly, since

4ca(r3 +16a3 —8asby+b) — 1o (~ 73 +2a3 —asby) _ Es

4a3—b2 o vV — ’
then when as = 7, by = ¢4 is coincident with ¢ if E3 > 0, and b; = ¢4 is coincident
with ¢; if F3 < 0. When as = 72, a1 = (60a3 — 15a3by + 2b3)/(24a3) is coincident
with o4 if E3 > 0, and a; = (60a% — 15a3by + 2b3)/(24a3) is coincident with o3 if
FE3 < 0. Therefore,

60&% — 15asbs + 2[)3 b
24a; o

23 £V97
b2 75 3a3, 4&3, 60,3, ?ad}

Vlzz{)\‘ Q<O,a1 =

=G34,02 = T1,2,a3 # 0,
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From (2.27), (2.29), and (2.30),
3v/26 11v/26

b=
13 asz, by ==+ 78

a37£0} U {)\l al= £a37a2=0,bl = i2a37b2 = 6as, a3 ;é O}

4
V(p27p4,p6)=IC1 UICzU{)\| alzgag,ag =+

a37b2:4a37

26+ 2462V
U{A| ay = 6+ 970,3,(12:071)1 :ﬂ:MCL3,
12 48
2 vV 26 — 4/
by = #ag,ag #* 0} @] {)\| a; = %ag, (230)
562 — 6297 23 — V97
a2 =0,bp =+—————a3,bp = —————as,a3 # 0}
48 4
60a3 — 15a3bs + 2b3
U{A| 2<0,a1 = 4 asb2 + 2,b1 = G34,a2 = T1,2,
24&3
23+ v
as 74— O,bz 75 3(13,4(13,6(13, #CB}

It follows from (2.25) and (2.30) that the origin is a weak center of order 2 if and
only if A € V(p2,p4)/V (p2, P4, ps), i.e., one of the following conditions holds:

(i) 3a3—4a3 > 0,a3 > 0, a; = (bas++/3a3 — 4a3)as/(4az), by = —(a3 + 2a3)/(4as),
bQ = 4a3, as 7é O, 3\/ 26(13/13,

(ii) 3a3—4a2 >0, a3 <0, a; = (5ag++/3a2 — 4a2)az/(4az), by =—(a3 + 2a3)/(4az),
by = 4ag, ay # 0, —3+/26a3/13,
(iii) 3a3—4a3 >0, a3 > 0, a1 =(5a2—+/3a3 — 4a3)as/(4as), by =—(a3 + 243)/(4a2),
by = 4ag, as # 0, —3v/26a3/13,
(iv) 3a3—4a% >0, a3 < 0, a1 =(5as—+/3a3 — 4a2)as/(4az2), by =—(a3 + 2a3)/(4az),
b2 = 4(13, a2 7é O, 3\/%043/13,
(v) T' <0, a1 =03, a3 =0, by =<1, a3 # 0, by # 3as, 4a, 6as, (23 £ v97)az /4,
(Vi) r S 0, a1 = 04, Ay = O7 bl = G2, a3 7é 0, b2 7é 3a3,4a3,6a3, (23 + \/97)(13/47
(Vii) FSO,QEO, a; = o3, blzgl,ag#(), ag#(),
by # 3as,4as, 6as, (23 = v/97)as /4,
(Viii) P§079207 ayp = 04, b1:§27a27é07 a3#07
by # 3as, 4as, 6as, (23 + v/97)as /4,
(iX) FSO, Q<0, FE5 ZO, a1 = o3, by =§1,a27é0,7'1,a37é0,
by # 3as,4as, 6as, (23 = v/97)as /4,
(x) I'<0,2<0, E3<0, a1 =04, by =c2, a2 #0, az # 0,
bg 75 3a374a3, 6@3, (23 + \/ﬁ)a‘g/ﬁl7
(Xi) FSOaQ<Oa ESZOa a1 = 0y, bl:§2>a27é077-27 a37é07
by # 3as,4as, 6as, (23 = v/97)as /4,
(Xii) FSO,Q<O, FE3 <0, a; = o3, b1:§1,a27é0, CL37£0,
by # 3as, daz, 6as, (23 & v/97)az /4,
which implies that A € A%, N Cy.
When A € V(p2, pa, ps), from (2.26) and (2.28), we get

V(p2;pa;p6,ps) = Va1 U Voz U Vo, (2.31)



1916 Z. Yu & Z. Wang

where

Vo1 1=V (p2, w1, w2, ps, ps) NV (ps) = V(p2, w1, ws, ps, ps),
(p27prem(p47p2aa1)7w4aw57p8)

Voo :=ViuNV(ps) =V

)

wq
e e
Vas 1 =Via NV (ps) = V(P27Pr m(py, P2, 1), pr m(P67P27a1)7p8).
w1, W4
From (2.27), it is easy to check that
Va1 =V (p2, w1, w2, prem(pe, p2, a1 ), prem(ps, p2,a1)) = 1C1, (2.32)
) e b b ) b ? e b )
‘/22:‘/(102 pr m(p4 D2 a1) Wy, W5, PI Hl(ps P2 al)) — IC,. (2.33)
wq
To compute Va3, we must substitute a; = —wso/w; and by = —ws/wy in py and

prem(ps, p2,a1). Then
Py = w6a2_2a§2/36, and prem(ps, p2,a1) = —597939978240wra; 2a3,
where

we - =3240a2a3 — 2376a2a3bs + 657a3a3b3 — 84a3azbi + 4a2bs + 10497645
—124416a3bs + 59544a3b3 — 147364363 4 1993a3bs — 140a3b5 + 405,

wy :=11340a3a3 — 11664a3a3bs + 4824a3a3b3 — 999a3a3bs + 102a3a3by
—4a3by + 419904af — 602640a5bs + 362592a3b3 — 118488a3b3
+22708a3b3 — 2553a2b5 + 156a3bS — 4bs.

Notice that lcoeff (wg, b)) = 4 and azas # 0 when A € Vaz. Then

(p2, prem(py, p2, a), prem(pe, p2, a1), prem(wsz, we, b)) )
w1, Wy

Voz =V

)

where
prem(wr, wg, ba) = —32a3a3(3az — by)(270a3 — 90a3bs + b3).

Since by # 3az and agaz # 0 when \ € Vag, we must consider 270a3 — 90a3by +
b3 = 0. One can check that there are three real roots x;, i = 1,2,3, for the
equation x3 — 9022 + 270 = 0. Assume k1 < ko < k3. Then x; € [—11,—10.731],
Uy € [3.455,3,461], ¢35 € [7.2,7.3]. Thus one can solve by = k;az, i = 1,2,3,
from 270a3 — 90a2by + b3 = 0. We can solve a; = (60a3 — 15a3by + 2b3)/(24a3),
as = 11,2, and by = ¢34 from pe = 0, a3 = —wy/w1, and by = —ws/wy. Moreover,
when 270a3 — 90a3bs + b3 = 0, one can check that 734 and g5 ¢ are coincident with
71,2 and ¢34 when az > 0, and 734 and g5 ¢ are coincident with 7 ; and ¢4 3 when
as < 0. Furthermore, for the polynomial under the square root sign in 734 and
S5,6, it is easy to check that —2880a§ + 1224a3by — 113b% < 0 when by = k1a3, and
—2880a3 + 1224a3by — 113b3 > 0 when by = k;as3, i = 1,2. Therefore,

60a2 — 15asbs + 2b3
24@3

Vas={\ a1 = ,a2 = T3,4,b1 = G5.6, b2 = Kaas,as # 0}

60a2 — 15a3bs + 2b3
U{Al a1 = . 24;; 2 2 az = T3.4,b1 = G5.6,b2 = K2a3,a3 # 0}.  (2.34)
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From (2.32), (2.33), and (2.34),

60a% — 15a3by + 2b3

24&3

60a5 15a3by + 2b2
24&3 ’

V(p2,pa,pe,ps) =IC1 UIC2 U{\| a1 =

,a2 = T3,4,b1 = G5.6,

bg = K2a3,a3 7& 0} @] {)\‘

(2.35)
a2 = T3,4,b1 = 5.6, b2 = Kaas, a3 # 0}.

It follows from (2.30) and (2.35) that the origin is a weak center of order 3 if and

only if A € V(pa,p4,ps)/V (p2, pa, De, Ps), i-€., one of the following conditions holds:

(1) a]; = 4@3/3, a9 = i?)\/ 26Cl3/137 b1 = ?11\/ 26&3/78, bg = 4&3, as 7’5 0,

(ii) a; = 7(13/47 as = O7 b1 = :|:3CL3/4, bz = 6CL3, as 7é O,

26 +v/97)a3/12, az = 0, by = £1/562 + 62v/97a3/48,
23 4+ V97)az /4, az # 0,

(

= (

(iv) a1 (26 — V97)az/12, az = 0, by = +£(1/562 — 621/97)a3 /48,
( \/W)Clg/ﬁl as 75 0

(V) N<0,a1 = (60(13 — 15a3by + 2b2)/(24a3), by = G3,4, A2 = T12, A3 7& 0,
by # 3a, 4a3,6a3, (23 £ V97)az /4, koas, Kkzas,

(iii) a1

which implies that A € A?V N Cy.
When A € V(po, pa, ps, ps), from (2.31), (2.32), and (2.33), we get

V(p2, P4, D6, P8, P10) = IC1 UIC2 U (Vaz NV (p1o)).

We know that a3 = —wq /w1, by = —ws/wy, and 270a3 — 90a3be + b3 = 0 when
A € Vo3, Thus
oy _ 008~ 15ashy £ 203, Ga3 — 86403 + 32ashy — 3503 ) 0
24(13 24@2

Under (2.36), we calculate pio, which is a polynomial of ag, as, b2, and the number
of terms is 170. Denote 270a§ — 90a§b2 + b% = 0 by wg. Substituting az = 734
in prem(p1o,ws, bz), we get prem(pio, ws, ba) = we(2880a3 — 1224azby + 113b3)~8
Since resultant(ws, wg, b)) # 0, we get

V(p23p47p67p87p10) :Icl UICZ (237)
It follows from (2.35) and (2.37) that the origin is a weak center of order 4 if and
only if A € V(pa, pa,pe,ps)/V (D2, P4, D6, Ps, P10), i-€., one of the following condition
holds:

(l) a; = (60&3 — 15(13[)2 —+ 2b2)/(2403), g = 7'374, b1 = §5,67 bg = Ra2a3, a3 # 0,
(li) a1 = (60&3 — 15@3[)2 + 2[)3)/(24@3), a9 = T374, b1 = §5,67 b2 = KaG3, a3 75 0,

which implies that A € A%, N Cy. This completes the proof. O



1918 Z. Yu & Z. Wang

3. Local Bifurcation of Critical Periods

In this section, we investigate how many local critical periods can be produced from
a perturbed weak center O. For a weak center of finite order, by Lemma 2.2 in [6],
if the weak center corresponding to a parameter value A* has order k, no more than
k local critical periods bifurcate from this weak center at the parameter value \*.
It suggests identifying whether exactly n critical periods bifurcate from this weak
center at the parameter value A\* for any n < k. The independence of the period
coefficients pa, py, ... por with respect to popy2 at A* gives a sufficient condition
for that. As defined in [6], polynomials f; : RV — R, 4 = 1,...,1, are said to be
independent with respect to the polynomial f : RN — R, at \* € V(f1, f2,---, f1)
if the following three conditions are satisfied:

(i) Every neighborhood of A* in R contains a point A\° € V(f1, fa,..., fi_1) such
that f1(A\°) - f(A\°) < 0.

(i) If A\ € V(f1, fo,..., f;) and fi4a(A*) # 0, 2 < j <1 —1, then every neigh-
borhood W of A contains a point A\° € V(fi, fa,..., fj—1) such that f;(\°) -
fi+1 (A7) <O.

(iii) If A* € V(f1) and fo(A*) # 0, then every neighborhood of A* contains a point
A° such that f1(A\°) - f2(A*) < 0.

It is easy to see that if fi,..., f; are independent with respect to fi11 at A\, €
V(f1,..., f1), then for each k = 2,...,1, f1,..., fr—1 are independent with respect
to fr at every A € V(f1,..., fr—1) such that fi(\) # 0.

We will now discuss how many local critical periods can be produced from a
perturbed system of (1.2) near O. For the first case, a direct result is the following
theorem.

Theorem 3.1. In the case that C1\ ZC, no local critical periods occur in a perturbed
system of (1.2).

Furthermore, combining the above independent conditions with the results ob-
tained in the last section, we have the following theorem.

Theorem 3.2. In the case that Co\ ZC, for each k = 1,2,3, at most k local critical
periods occur in a perturbed system of (1.2) for \ € A’}I. Furthermore, there are
perturbations of (1.2) where A € A’}I, with exactly k critical periods.

Proof. We obtain the first assertion directly by Lemma 2.2 in [6]. To prove
the second part, by Theorem 2.1 in [6], we must prove that ps, ps, and pg are
independent with respect to ps.

For any \* = (a},a},a%,b},b3) € A3;, we have pa(A*) = pa(A*) = pg(A*) =0
and pg(A*) # 0. From the proof of Lemma 2, we know that

_m2(a{7a§7 T?bg)

af = and mj(aj,as, by, b3) # 0,

ml(afvag’ b>1k’ b;)

where m; and my are defined in (2.6) and are considered to be functions of ay, as, by, ba.
Then every neighborhood of A* contains a point A\° = (a9, a3, ag, b$,b3), where

af =}~ 1 (303 — b3)san(ps (A" )5 (\)) et § (40 —a5—85) (/T T san(ps (A7) (Ve — 1),

o * o m ao’ao7 o7bo o * o * * * * *
asz = ag, a5 = —W;E(I%,7Q—M7 by = b7, b3 =by — (3az — b3)sgn(ps(A7)s1(A"))e,
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s1(\) = 147083960950218502963200a3 (b2 — 3as)(72a1b3 — 1908a1b3as + 11364a,baa;
— 19296a1 a5 — 3bs + 43b3as + 759b3a3 — 7053boal + 13842a3),

and € > 0 is sufficiently small. We can check that

p2(A°) =p2(\")(1 +¢) =0,
pa(A°) = prem(pa, p2, a1)(\°) = agmi(ay, a3, by, b3) + ma(at, ag, b7,b3) = 0,
p6(A°) = prem(ms, pa, a1)(A°

(A%)
=prem(ms, p2,a1)(A") — s1(A")sgn(ps (A ")s1(A"))e + O(€)
=—s1(A")sgn(ps(\")s1(A))e + O(e?),

1
ps(A°) =prem(mz,ps, a1)(A?) = prem(mz7, p2, a1)(A") 4+ O(€) = ps(A”) + O(e),
where m3 and my are defined in (2.12) and (2.15). Then A\° € V(pa, ps) and

P6(A)ps(X°) = —ps(X*)s1(X")sgn(ps(X*)s1(X*))e + O(€?). (3.1)

Moreover, we claim that s;(A*) # 0. In fact, with p2(A*) = 0 and mg(a},b3) = 0,
which is obtained from the proof of Lemma 2 and defined in (2.13), s1(A\*) = 0
implies a}] = a§ = b3 = 0 and \* ¢ A?,. It follows from (3.1) that pg(A°)ps(A\°) < 0.

For any \* = (a},a},a%,bi,b3) € A2;, the discussion is divided into two parts.
If \* is in the first set of A2, i.e.,

a/l = ga?” b2 = ?0;3, as =

65

~ 983 ai? + b5 and al #0,

then every neighborhood of A* contains a point \° = (a},al,af + €,b3,b3), where
€ > 0 is sufficiently small. We can verify that pa(A°) =0,
109375
pa(A°) = 384a3%e and pg(\*) = — 1 at’.
Thus ps(A°)pe(A*) = —10500000a3e < 0. If A\* is in the remainder sets of A%;, then
from the proof of Lemma 2, we know:

ot — m2(a*1<7a§ﬂbﬂl<7b§)
r=—

m and ml(aik, a§7 b’{, b;) 7é 0,
1,23 Y1, V2

where m; and mg are defined in (2.6) and are considered to be functions of a1, as, by, ba.
Thus every neighborhood of A\* contains a point \° = (a$, a$, a2, b9, b3), where

o ma a*7a* b*7b* * * * * *
al =al, al=a3 af= _ﬂhga%,a—z:b%,bz% —sgn(a3(8a; — 1laz + b3)ps(A™))e,

bi = b1, b3 = b3,
and € > 0 is sufficiently small. We can check that

p2(A%) =p2(X") =0,
pa(A?) = prem(pa, p2, a1)(A?) =—196608az(8a] —11az+b3)sgn(az(8a] —11laz+b3)ps(A™))e.
Moreover, we claim that 8a} — 11a} + b5 # 0. In fact, if 8a} — 11a3 + b5 = 0, then

from po(A*) = 0, we get by = 13a3/3 or by = 3as, which are contradictory with the
last four sets of A%;. Otherwise, aj # 0 and pg(\*) # 0, as \* € A?;. Therefore,

Pa(A%)ps(N*) = —196608aj(8ar—11ai+b3)ps(A*)sgn(a;(8a;—11a5+b3)ps(N*))e < 0.
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For any \* = (a}, a3, a%, b}, b)) € A};, the discussion is divided into three parts.
If \* is in the first set of A}, i.e.,
11 13

* * * * *
ay = —az, by = a3z, az#

65 *2 %2 *
5 3 + 07" and a3 # 0,

T

then every neighborhood of A* contains a point A\° = (a} — sgn(aj(65a3% — 288b;% +
288a}))e, al, af, by, bs), where € > 0 is sufficiently small. We can verify that

p2(A°) = —16assgn(a’(65a;> — 288b32 + 288a%))e + O(e?),

pa(A")

4
gcz;;2(65a§2 — 288b%% + 288at).

Notice that aj(65a;> — 288b%> + 288az) # 0 when \* is in the first set of A};. Thus

p2(A%)pa(X*) = —6—;a§3(65a§2 —288b;° +288a3 )sgn(aj (65a5° —288b} > +288a3))e+O(€2)<O0.

If \* is in the second set of A}, i.e.,

ay = %ag, by = ?ag and a3 # 0,
then every neighborhood of A* contains a point A° = (a} + sgn(aj)e, a}, a%, b, b3),
where € > 0 is sufficiently small. We can check that
p2(A°) = —16assgn(al)e + O(€?) and ps(\*) = 140a3".
Notice that a} # 0 when A* is in the second set of A};. Thus
Ppa(A)pa(N*) = —2240a3 sgn(a})e + O(€2) < 0.

If A\* is in the third set of Al;, i.e., pa(A*) = 0, ps(\*) # 0 and b} # 13a}/3, then ev-
ery neighborhood of A* contains a point A\° = (af+sgn((bs+a5—4ai)ps(A*))e, af, ak, by, b3),
where € > 0 is sufficiently small. Hence

Pp2(A) = p2(X") = 8(b; + af — daj)sgn((b3 + a3 — 4a7)pa(A))e + O(e?)
= —8(b; + a5 — 4aj)sgn((b3 + a3 — da;)pa(X*))e + O(¢?).

Notice that b} + a} — 4a} # 0 when \* € A},. In fact, from b3 + aj — 4a} # 0 and
p2(A*) =0, we get af = a} and b = 3aj, which implies A* € ICy. Therefore,

P2(X")pa(X) = =8(b3 + a3 — 4ai)pa(A")sgn((b3 + a3 — 4a7)pa(X"))e + O(e*) < 0.
This completes the proof. O

Theorem 3.3. In case C3\ ZC, at most one local critical period occurs in a per-
turbed system of (1.2) for X € AL,;. Furthermore, there are perturbations of (1.2),
where A € A}, ;, with exactly one critical period.

Proof. We can obtain the first assertion directly by Lemma 2.2 in [6]. To prove
the second part, by Theorem 2.1 in [6], we must prove that po is independent with
respect to py. For any \* = (af, a},a}, b, b3) € A}, ie.,

*2 * *\2
13 4 da* — (ad + 4b%)
6 £0, b= ai e - (a3 + 4B > 0, ity V1 T—



Local bifurcation of critical periods... 1921

every neighborhood of A\* contains a point \° = (a} + sgn(a})e/4,al, a3, bi, b5 +
sgn(af)e), where € > 0 is sufficiently small. It is easy to check that po(A\°) =
po(A*) = 0, which implies A° € C3. Moreover,

p2(A°) =prem(pe, po, a1)(A°) = —48ajsgn(aj)e,
pa(A?) =prem(p4, po, a1)(A?)
=573440a3" — 819243 (180a%al + 45a3° + 72a5b} — 120a37)sgn(as)e.
Thus
Pa(A)pa(N°) = —27525120a% sgn(a3)e < 0.
This completes the proof. O

Theorem 3.4. In case C4\ IC, for each k = 1,2,3,4, at most k local critical
periods occur in a perturbed system of (1.2) for A € A]}V. Furthermore, there are
perturbations of (1.2) where A € A’}V, with ezxactly k critical periods.

Proof. The first assertion can be obtained directly by Lemma 2.2 in [6]. Regarding
the second part, by Theorem 2.1 in [6], we must prove that ps, ps, ps, and ps are
independent with respect to pig.

For any \* = (a},a3,a},b;,b3) € A}y, we have pa(A*) = pa(X*) = ps(A\*) =
ps(A*) = 0 and p19(A*) # 0. From the proof of Lemma 4, we know

 60a3” — 15a3b; + 2b3°
N 24a3 ’
b =qs6(a3,b3),  270a5° — 90a3°b5 4+ b3° =0, aj #0,

*

ay

as = 73.4(a3,b3),

where 734 and ¢5 ¢ are defined in Lemma 4 and considered to be functions of a3
and bg. Choose A\° = (a{, a3, a3, b, b3), where

0 — 60a3” — 15a5 (b3 + sgn(¢1(A*)p1o(A*))e) + 2(b5 + sgn(d1 (A*)p1o(A*))e)”
te 24a; ’

T1,2(a3, b3 +sgn(p1 (A )p1o(A*))e), a3 >0,

T2,1(a3, b3 +sgn(¢1 (A" )p1o(A*))e), a3 <O,
a3 = as,

g3,a(a3, b3 + sgn(é1(A*)pio(A*))e), a3 >0,

ca,3(a3, b3 + sgn(d1(A*)pio(A7))e), aj <0,
b3 = b5 + sgn(¢1(A")p1o(A7))e,

#1(\) = (6az — b2)(90az? — 15a3by — 4b22), and € > 0 is sufficiently small. Since
under the condition 270a3 — 90a2by + b3 = 0, 73,4 and ¢5 ¢ are coincident with 7 o
and ¢3 4 when ag > 0, and 73 4 and g5 ¢ are coincident with 7 ; and ¢4 3 when as < 0,
then A° = (a9, a3, a3, b3, b3) lies in any neighborhood of A\*. Moreover, one can check
that pa(A?) = pa(A°) = ps(A?) = 0 and

ps(A%) = —4455a% 1 (A )sgn(d1 (A )p1o(A*))e + O(€2).

One can also check that ¢1(\*) # 0 under 270a%* — 90a;%b5 +b3® = 0. From Lemma
2.11in [6], p1o(A) is an analytic function at A*. Then p19(A°) = p1o(A*)+O(€). Thus

pg()\o)plo()\o) = —4455a§4¢1 ()\*)plo(/\*)sgn((bl ()\*)plo()\*))e + 0(62) < 0.
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For any \* = (af, a}, a3, b}, b5) € A3, the discussion is divided into three parts.
If A\* is in the first set of A%, then

., 4 3v26

CLl:gCL;, a;::l: 13 as, bT:q:

11v26

-3 %3 b5 = 4a3, a3 #0.

Choose A? = (a9, a3, a3, bq,b3), where
o 4 * *
aj = gag + sgn(a3)e,
j:6a§2/\/26a§2 — 24aksgn(al)e — 144€2, a3 > 0,

ad=
$6a§2/\/26a§2 — 24a%sgn(af)e — 144¢2, a3 <0,
a3 =as,
o F(11a3® — 6agsgn(as)e — 3662)/3\/26a§2 — 24a3sgn(al)e — 144€2,  aj > 0,
1 =
+(11a%? — 6ajsgn(a})e — 3662)/3\/26a§2 — 24a3sgn(al)e — 144€2,  aj <0,
9 =4a3,

and € > 0 is sufficiently small. One can check that A\° = (a{,a$,a$,b7,b3) lies in
any neighborhood of A*. Moreover, we calculate pa(A\°) = ps(A°) =0,

pe(A°) = —18144a%’sgn(as)e + O(e?), and pg(A\*) = 115830a3°.

Since aj # 0, then pg(A°)ps(A*) < 0. If A* is in the second, third, or fourth set of
Ajy, then b5 # 4a3, a3 = 0, p2(\*) = pa(X*) = ps(A*) = 0, and ps(\*) # 0. From
the proof of Lemma 4, we know
* w2<0’a§7§1 2<0’a§ab;)7b§) * * * 7
a; = — : , as =0, bl = ¢1,2(0, a3, b3),
P wi0,a5000(0,a5,05),05)" P00

23 +97 23 —VO7
T4 BTy

b; = 6&;, Cl; 7é 0,

where ¢ 5 are considered to be functions of as, as, by, and wq, ws are defined in (2.23)
and are considered to be functions of ag,as, by, b2. Choose \° = (a$,a$,a$, be,b3),
where

w2 (07 a§7 §1,2(07 a§7 b; - Sgn(a§¢2 ()\*)p8 ()‘*))6)7 b; - Sgn(a§¢2<)\*)p8()\*))€>

aO = — b)
Y wi(0, a8, 612(0, af, b — sgn(agda (N )ps(A*))e), by — sgn(aide (A )ps(A*))e)

a3 =0,

ag=as,

1=<12(0,a3,b35 —sgn(azda(A")ps(X7))e),
by = by — sgn(azda(A")ps(A))e,

$2()\) = 876a3 —T792a3by+263a3b3 —38a3b3 +2b3, and € > 0 is sufficiently small. One
can check that \° = (a{, a3, a3, b7,b3) lies in any neighborhood of A*. Moreover, a
short calculation reveals that pa(A°) = ps(A°) = 0, and

| 22684392 (\")

(4as — by)2 sgn(asda(A*)ps(X))e + O(€).

pe(\?) =
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It is easy to verify that ¢o(\*) # 0, as b3 = 6a} or (23/4 + /97/4)a} and a} # 0.
Thus pe(A°)ps(A*) < 0. If X\* is in the last set of A3, then by # 4a3, a3 # 0,
p2(A*) = pa(A*) = pg(A*) = 0, and pg(A*) # 0. From the proof of Lemma 4, we
know that
* 1ok * wQ(Tl 2(a§,b’2‘),a§,§34(a§,b’2‘),b§) * * 1k
Qaz,b3) <0, a] = — : : , as = T12(az,b3),
(05:02) Y G A R AU o R

23 £ v97
%ag’ aj #0,

* * 1k * * * *
bl = <3,4(a3,3), by # 3a3, 4daj, 6as,
where €2, 712, and ¢34 are considered to be functions of as,bs, and w;, wy are

defined in (2.23) and considered to be functions of as,as, by,bs. Choose \° =
(a9, a3, a3, b9,b3), where

R {—(wz(Ql,zya§7<1,2(91,27a§»bi),bﬁ))/(wl(gl,z,a§7<1,2(91,2,a§7b3),b3))7 Es(a3,b3) >0,
a] =

—(w2(01,2,03,52,1(01,2,03,b3),b3)) /(w1 (01,2, a3, 2,1(01,2, a3, b3),b3)), Ez(a3,b3) <0,

o
a2 = 01,2,
o *
a3z =as,
o 1,2(01,2,a3,03), Es(a3,b3) >0,
9=
<2,1(Ql,27a§7b§)1 ES(a§7b;) < 07
bg:b;a

(54a%? — 23a3bs + 2b32)(6a3 — b3) + (4ak — b3)sgn(ps (A )ps(A*))e
V—Q(a3,b3) — 2(6az — b3)(9a3 — 2b3)sgn(¢ds(A*)ps(A*))e — €

¢3(X) = a3(3as — ba2)(daz — ba), and € > 0 is sufficiently small. Since ¢4 are
coincident with ¢3 4 when EF3 > 0, and ¢5 ¢ are coincident with ¢4 3 when E3 < 0,
then \° = (a$, a3, a$, b9,b3) lies in any neighborhood of A*. Moreover, we calculate
p2(A°) = py(A°) = 0. Since under p; = py = 0 and lcoeff (prem(pg, peai ), a1) =
—737280a3(4az — by) # 0, we get

01,2 =

)

Pe = prem(prem(p&pg,a1)7prem(p6,p2, a1), a1)
= —584459149639680a§(3a3 — by)w(ag, as, by, ba),

where w(ag, az, b1, ba) = 6a3az+24aza3by —324a3 +192a3be — 35a3b3 +2b3. Consider
w(az, al,<1.2(ag, al, bs),b5) = (4al — b3)e as the equation of ay. Solving for ag from
this equation, we get az = 01,2. Then

pe(A?)

—584459149639680a3” (3a3 — b3)w(ag, a3, b7, b3)
= —584459149639680a " b3 (A*)sgn(ds (A" )ps(A*))e.

It is easy to check that ¢3(A*) # 0, since b5 # 3a}, 4a3, and af # 0. Thus

Pe(A?)ps (A7) <0.
For any \* = (a},a},a},b},b5) € A%, we have pa(\*) = ps(A*) = 0 and
pe(A*) # 0. From Theorem 4, we know

A(a;7a§’ T,b;)SO, aT:Ul(a;a;b;b;) or 02(&;,&;7 Tab§)7 &3#0

We prove the independence in two cases: ab # —4b] and a3 = —4b7. If a3 #
—4b3, then every neighborhood of A* contains a point \° = (af,a’ — 4sgn((a} +



1924 Z. Yu & Z. Wang

4b7)pe(A*))e, a3, by + sgn((ad + 4b7)ps(A*))e, b3), where € > 0 is sufficiently small.
One can check that pa(A°) = 0 and

pa(A°) = —737280a%> (a5 + 4b%)sgn((ab + 4b7)p(A*))e.

Thus ps(A\%)pe(\*) < 0. If a3 = —4b}, then every neighborhood of A* contains a

point A° = (a9, a3, a3, b$,b3), where

o e SOOI 60— B)sen(6. (N Ipo (X ))e + 3¢

e 4 A(aj + sgn(¢a(\)ps(A))e)
as = aj,
a3 = a3 + sgn(pa(A\")ps(A*))e,
by = b1,

o .+ 6(a3 —b3)sgn(da(X*)ps(X*))e + 3¢
b2 - b2 + * * * ’

a3 + sgn(pa(A*)ps(A*))e
a3(6a3(3a3 — bz) + (6@5 — bg)\/ —3&3(3@3 — bg)), ay = o1,
Pa(N) =

a3(6a3(3a3 — bg) — (6(13 — bg)\/ —30,3(3(13 — bg)), a; = o9,

and € > 0 is sufficiently small. One can check that pa(A°) = 0 and
Pa(A?) = —184320¢4(A")sgn(@a(A")ps (A7))e.

Moreover, it is easy to find that ¢4(A*) = 0 and af # 0 only if b5 = 3a} or
b5 = 6(2 + v/2)ai. When b5 = 3a3, under a5 = —4b} and p(\*) = 0, we get
ai = a*, which implies A* € ICs and is contradictory with pg(A*) # 0. When
by = 6(2 + v/2)aj, under ay = —4b}, az # 0, and pa(\*) = 0 we get py(\*) # 0.
Then we know that ¢4(A*) # 0 and ps(A°)ps(A*) < 0.

For any \* = (a},a},a},b},b5) € Ak, we have pa(A*) = 0 and py(N\*) # 0.
We also consider the cases a5 # —4bj and af = —4b]. If a5 # —4b], then every
neighborhood of A* contains a point A° = (af, a5 —sgn((as +4b7)pa(A*))e, a}, bt, b3),
where € > 0 is sufficiently small. One can check that

p2(N°) = —2(a3 + 4b7)sgn((a3 + 4b7)pa(A"))e + €.

Then p2(A°)pa(N*) < 0. If ab = —4b7, then every neighborhood of A* contains a
point A° = (a} —sgn(¢ps(A\*)pa(A*))e, ab, al, by, b3), where ¢5(A\) = 4a; —by — ag and
€ > 0 is sufficiently small. One can check that

P2(A°) = —8¢5(\*)sgn(ds(A*)pa(A*))e + 166,

Moreover, solving ¢5(A*) = 0, a5 = —4b}, p2(A*) = 0, and ag # 0, we get \* € IC,
which is contradictory with ps(A*) # 0. Then ¢5(A\*) # 0 and pa(A°)pa(A*) < 0.
This completes the proof. O
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