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1. Introduction

Throughout the paper, we always assume that H is a real Hilbert space with inner
product 〈·, ·〉 and induced norm ‖ · ‖ and C is a nonempty, convex and closed subset
of H. Let F : C → H be a mapping. Recall that the classical variational inequality
problem (VIP, for brevity) is to find y ∈ C such that

〈F (y), x− y〉 ≥ 0, ∀x ∈ C. (1.1)

In this paper, we denote the solution set of the variational inequality problem by
V I(C,F ). The variational inequality problem, serves as a powerful mathematical
model, which unifies important concepts in applied mathematics, as special cases,
complementarity problems, systems of nonlinear equations or equilibrium problems
arising in several branches of applied sciences under a unified framework, see [9,19,
32, 35] and references therein. Recently, much attention has been given to develop
efficient and implementable numerical methods for solving variational inequality
problems and related optimization problems, for instance, [3, 9, 10, 13, 14, 33] and
references therein. In many cases, one considers the problem V I(C,F ) with some
additional properties imposed on mapping F . Let us recall some related definitions
here. A mapping F : H → H is said to be

(i) sequentially weakly continuous if for each sequence {xn}, we have that {xn}
converges weakly to x implies F (xn) converges weakly to Fx;

(ii) L-Lipschitz continuous iff there exists a positive constant L > 0 such that

‖Fx
′
− Fx‖ ≤ L‖x

′
− x‖, ∀x

′
, x ∈ C;
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(iii) monotone iff

〈x
′
− x, Fx

′
− Fx〉 ≥ 0, ∀x

′
, x ∈ C;

(iv) pseudo-monotone iff

〈Fx
′
, x− x

′
〉 ≥ 0⇒ 〈Fx, x− x

′
〉 ≥ 0, ∀x

′
, x ∈ C.

Now we recall the definition of the projection operator. For any y ∈ H, there exists
a unique point in C, denoted by PC(u), such that ‖y−PC(u)‖ ≤ ‖y− x‖, ∀x ∈ C.
The projection operator can be characterized by the following two properties

(i) 〈PCy − y, x− PCy〉 ≥ 0, ∀x ∈ C;

(ii) ‖PCy − x‖2 ≤ ‖y − x‖2 − ‖PCy − y‖2, ∀x ∈ C.

It is known that x solves the V I(C,F ) if and only if x is an equilibrium point of
the dynamical system, i.e.,

x = PC(x− βFx), β > 0.

A significant body of work on iteration methods for VIPs has accumulated in
literature recently. Specifically, the so-called extragradient algorithm was proposed
in 1976 by Korpelevich for solving saddle point problems and then extended to
VIPs [22]. The algorithm takes the following form, for any x0 ∈ H and yn = PC(xn − αF (xn)),

xn+1 = PC(xn − αF (yn)), n ≥ 1,
(1.2)

where F : C → H is a monotone and L-Lipschitz continuous mapping and α ∈(
0, 1

L

)
. The iterative sequence {xn} converges to some point in V I(C,F ). Recently,

this method was extensively analyzed and further studied; sees [11,15,24,26,36] and
references therein. Later, Censor, Gibali, and Reich [16] proposed a subgradient
extragradient algorithm in an Euclidean space. Starting with any point x0 ∈ H,
they defined a sequence {xn}n≥0 as

yn = PC(xn − αF (xn)),

Tn = {w ∈ H : 〈xn − αF (xn)− yn, w − yn〉 ≤ 0},

xn+1 = PTn
(xn − αF (yn)), n ≥ 1,

(1.3)

where F : C → H is a monotone and L-Lipschitz continuous mapping and α ∈(
0, 1

L

)
is a step-size parameter. In the context of algorithm (1.3), we can see that it

is calculated only one projection onto a specific constructible half-space Tn, but not
onto the general convex set C like in algorithm (1.2), on the second step. This is
actually one of the subgradient half-spaces. Basically, the subgradient extragradient
method is more applicable when a projection onto the general convex set C is a
nontrivial problem. In general, this method is only known to be weakly convergent
in the setting of infinite dimensional Hilbert spaces. Therefore, the natural question
that arises is how to construct an algorithm which generates a strong convergent
sequence in the framework of infinite dimensional Hilbert space. Aiming at this, an
alternative modification to subgradient extragradient method (1.3) is the following
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algorithm, which was also proposed by Censor, Gibali and Reich in [17]. Given any
point x0 ∈ H, 

yn = PC(xn − αF (xn)),

Tn = {w ∈ H : 〈xn − αF (xn)− yn, w − yn〉 ≤ 0},

zn = (1− λn)PTn(xn − αF (yn)) + λnxn,

Cn = {w ∈ C : ‖zn − w‖ ≤ ‖xn − w‖},

Qn = {w ∈ C : 〈xn − w, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x0),

(1.4)

where F : C → H is a monotone and L-Lipschitz continuous mapping, α ∈
(
0, 1

L

)
and 0 ≤ λn ≤ α < 1. They proved that the sequence {xn} generated by (1.4)
converges strongly to PV I(C,F )(x0).

In recent years, there have been increasing interests in studying inertial type
algorithms, which were first proposed by Polyak [31], as an acceleration process
to solve smooth convex minimization problems; see [1, 5, 12, 27]. Inertial type algo-
rithms, which are two-step iterative and the second iterative step is defined by using
previous two iterates. They are based on the heavy ball method of the two-order
time dynamical system. Recently, some authors constructed fast iterative algo-
rithms by using the inertial extrapolation, including inertial proximal algorithms,
inertial forward-backward splitting algorithms, inertial Mann algorithms and in-
ertial subgradient extragradient algorithms; see, e.g., [2, 4, 6, 7, 25, 28, 34] and the
references therein.

In this paper, inspired and motivated by the mentioned works in literature and
the ongoing research in these directions, we propose an inertial projection-based
algorithm for solving pseudomonotone variational inequality problems. This algo-
rithm is based on inertial ideas and hybrid gradient ideas. We also perform several
numerical examples to support the convergence of the algorithm presented in this
paper. This illustrates the numerical behaviors of our algorithm and compares them
with the algorithms in [20,29].

In order to prove our main result, we need the following two lemmas.

Lemma 1.1 (Minty lemma [18]). Consider problem V I(C,F ) with C a nonempty,
closed, convex subset of a real Hilbert space H and F : C → H pseudo-monotone
and continuous. Then, x̂ is a solution of V I(C,F ) if and only if 〈x − x̂, F (x)〉 ≥
0,∀x ∈ C.

Lemma 1.2 (Kadec-Klee property [8]). Let {xn} be a sequence in H. If ‖xn‖ →
‖x‖ and xn ⇀ x as n→∞, then xn → x as n→∞.

2. The algorithm and its convergence

The following assumptions will be used through the rest of this paper.

(a) The feasible set C is a nonempty, closed, convex subset of the real Hilbert space
H.
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(b) The underline mapping F : H → H is pseudo-monotone, L-Lipschitz continu-
ous and sequentially weakly continuous on bounded subsets of H.

(c) The solution set V I(C,F ) is nonempty.

Here we are in a position to design our algorithm, see Figure 1 for a further descrip-
tion.

Algorithm 2.1. (Inertial Hybrid Gradient Algorithm)

Initialization: Let x0, x1 ∈ C be arbitrary initial points and let {αn} ∈ (0,+∞)
and βn ∈ (0, a), where a = min

{
1, 1

2L2

}
, be two real sequences. Assume that {βn}

also satisfies 0 < lim infn→∞ βn. Set C0 = H, Q0 = H.

Step 0: Set n = 1.

Step 1: Given the current iterates xn−1 and xn, compute

yn = xn + αn(xn − xn−1),

zn = PC(xn − βnFyn).
(2.1)

Step 2: If xn−1 = xn = zn or F (yn) = 0, then stop. Otherwise, construct sets
Cn and Qn as

Cn = {w ∈ H : 〈xn − zn − βnFyn + βnFzn, zn − w〉 ≥ 0},
Qn = {w ∈ H : 〈xn − w, x0 − xn〉 ≥ 0}, n ≥ 1,

(2.2)

and calculate
xn+1 = PCn∩Qn

x0. (2.3)

Step 3: Replace n by n+ 1; go to step 1.

Figure 1. Iterative steps of Algorithm 2.1. The number of the projection onto the feasible set C is 1.
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Sets Cn look slightly complicated in contrast to (1.4). However, it is only for a
superficial examination, for a computation, it does not matter. In order to prove
our main result, we give the following remark.

Remark 2.1. If xn−1 = xn = zn in Algorithm 2.1, then xn ∈ V I(C,F ).

Proof. Since xn−1 = xn = zn, it follows from (2.1) that

yn = xn + αn(xn − xn−1) = xn.

According to projection characterization (i), we have

〈ω − zn, zn − (xn − βnFyn)〉 ≥ 0, ∀ω ∈ C,

which yields that βn〈Fxn, ω − xn〉 ≥ 0, ∀ω ∈ C. Invoking βn > 0, we find that
xn ∈ V I(C,F ).

If xn−1 = xn = zn, we are at a solution of this variational inequality problem.
In our convergence analysis, we will implicitly assume that this does not occur after
finitely many iterations, so that Algorithm 2.1 generates three infinite sequences.

Theorem 2.1. Let {xn}, {yn} and {zn} be three sequences generated by Algorithm
2.1. If assumptions (a), (b) and (c) hold, then the three sequences converge strongly
to z = PV I(C,F )x0.

Proof. Let ω ∈ V I(C,F ). Invoking zn ∈ C, we find that 〈Fω, zn − ω〉 ≥ 0. In
view of the pseudo-monotonicity of F and βn ≥ 0, we obtain that

〈βnFzn, zn − ω〉 ≥ 0. (2.4)

Due to (2.1), projection characterization (i) and ω ∈ C, we have

〈ω − zn, zn − (xn − βnFyn)〉 ≥ 0. (2.5)

By combining (2.4) with (2.5), it further implies that

〈zn − ω, xn − zn − βnFyn + βnFzn〉 ≥ 0. (2.6)

It is evident that sets Cn and Qn are closed and convex. Coming back to (2.6), we
have that V I(C,F ) ⊆ Cn, ∀n ∈ N. Let us show by the mathematical induction
that V I(C,F ) ⊆ Qn for all n ∈ N . Recalling that Q0 = H, it is obvious that
V I(C,F ) ⊆ Q0 when n = 0. Suppose that V I(C,F ) ⊆ Qn. It is sufficient to prove
that V I(C,F ) ⊆ Qn+1. Since V I(C,F ) ⊆ Cn ∩ Qn and xn+1 = PCn∩Qn

x0, we
conclude that 〈xn+1 − ω, x0 − xn+1〉 ≥ 0,∀ω ∈ V I(C,F ). Combining this with the
definition of Qn, we find that ω ∈ Qn+1. Since ω is chosen arbitrarily in V I(C,F ),
we have that V I(C,F ) ⊆ Qn+1 and hence V I(C,F ) ⊆ Cn ∩ Qn for all n ∈ N.
So {xn} is well defined. Denote z = PV I(C,F )x0. Since xn+1 = PCn∩Qn

x0 and
z ∈ V I(C,F ) ⊆ Cn ∩Qn, we have

‖z − x0‖ ≥ ‖xn+1 − x0‖.

This implies that {xn} is a bounded sequence. Invoking (2.3) and substituting
w = xn+1 into Cn, one gets that

〈xn − zn − βnFyn + βnFzn, zn − xn+1〉 ≥ 0,
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which further implies that

‖zn − xn+1‖2

≤〈zn − xn+1, xn − xn+1 + βnFzn − βnFyn〉
≤〈zn − xn+1, xn − xn+1〉 − βn〈zn − xn+1, Fyn − Fzn〉

≤ 1

2
(‖xn−xn+1‖2+‖xn+1−zn‖2−‖zn − xn‖2)+

βn
2

(L2‖yn−zn‖2+‖zn−xn+1‖2).

This is equivalent to

‖zn − xn+1‖2

≤‖xn − xn+1‖2 − ‖zn − xn‖2 + βnL
2‖yn − zn‖2 + βn‖zn − xn+1‖2

=‖xn−xn+1‖2−‖zn − xn‖2+βnL
2‖xn+αn(xn−xn−1)−zn‖2+βn‖zn − xn+1‖2

≤‖xn−xn+1‖2−‖zn−xn‖2+βn‖zn−xn+1‖2+2βnL
2(‖zn−xn‖2+‖αn(xn−1−xn)‖2)

≤‖xn−xn+1‖2+(2βnL
2−1)‖zn−xn‖2+2βnα

2
nL

2‖xn−1−xn‖2 + βn‖zn−xn+1‖2.

By virtue of βn ∈ (0, a), where a = min{ 1
2L2 , 1}, the above inequality implies that

(1− 2βnL
2)‖zn − xn‖2

≤ ‖xn+1 − xn‖2 + (βn − 1)‖zn − xn+1‖2 + 2βnα
2
nL

2‖xn−1 − xn‖2

≤ ‖xn+1 − xn‖2 + α2
n‖xn−1 − xn‖2.

(2.7)

It is immediately from (2.3) that xn+1 ∈ Cn ∩ Qn ⊆ Qn, which, together with
xn = PQn

x0, yields that

‖xn − x0‖ ≤ ‖xn+1 − x0‖. (2.8)

Combining this with (2.8), we obtain that limn→∞ ‖xn − x0‖ exists. In addition,
by putting together xn = PQn

x0 and xn+1 ∈ Qn, it derives that

‖xn − xn+1‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.

Since limn→∞ ‖xn − x0‖ exists, we arrive at

lim
n→∞

‖xn − xn+1‖ = 0. (2.9)

In fact, by combining (2.7) with (2.9), we find that

(1− 2βnL
2)‖xn − zn‖ ≤ ‖xn − xn+1‖2 + α2

n‖xn − xn−1‖2 → 0, as n→∞. (2.10)

Due to βn ∈
(
0, 1

2L2

)
, we have 1− 2βnL

2 > 0. Invoking (2.10), we also have

lim
n→∞

‖xn − zn‖ = 0. (2.11)

Indeed, by taking account of (2.1) and (2.9), we can see that

lim
n→∞

αn‖xn − xn−1‖ = lim
n→∞

‖yn − xn‖ = 0. (2.12)

It is immediately from (2.11) and (2.12) that

lim
n→∞

‖yn − zn‖ = 0. (2.13)



110 L. Liu & X. Qin

According to the boundedness of {xn}, there exists a subsequence {xni
} of {xn}

such that {xni
} converges weakly to some x̂ ∈ H. From (2.11) and (2.12), we

can see that both {yni} and {zni} also weakly converge to x̂. We now show that
x̂ ∈ V I(C,F ).

Indeed, from zn = PC(xn − βnFyn) and projection characterization (i), we
conclude that

〈zni − (xni − βniFyni), ω − zni〉 ≥ 0, ∀ω ∈ C,

which guarantees that

〈Fyni
, ω − zni

〉 ≥ 1

βni

〈zni
− xni

, zni
− ω〉, ∀ω ∈ C.

By rearranging the terms of the above inequality, we infer that

〈Fyni , ω − yni〉 ≥
1

βni

〈zni − xni , zni − ω〉 − 〈Fyni , yni − zni〉,∀ω ∈ C.

Fixing ω ∈ C and taking the limit as i→∞ in the above inequality, invoking (2.11),
(2.13) and lim infi→∞ βni

> 0, we have

lim inf
i→∞

〈Fyni , ω − yni〉 ≥ 0. (2.14)

Now we choose a positive real sequence {εi} decreasing and tending to 0. For each
εi, we denote by mi the smallest positive integer such that

〈F (ynj
), ω − ynj

〉+ εi ≥ 0, ∀j ≥ mi, (2.15)

where the existence of mi follows from (2.14). Since {εi} is decreasing, it is easy to
see that sequence {mi} is increasing. For each i, F (ynmi

) 6= 0, set

tnmi
=

F (ynmi
)

‖F (ynmi
)‖2

.

Note that 〈F (tnmi
), tnmi

〉 = 1 for each i. It follows from (2.15) that

〈F (ynmi
), ω + εitnmi

− ynmi
〉 ≥ 0.

By the pseudo-monotonicity of F , we can conclude from the above inequality that

〈F (ω + εitnmi
), ω + εitnmi

− ynmi
〉 ≥ 0. (2.16)

On the other hand, we have that {yni} converges weakly to x̂ as i → ∞. Since F
is sequentially weakly continuous on C , we have that {F (yni)} converges weakly
to F (x̂). Assume F (x̂) 6= 0 (otherwise, x̂ is a solution). Due to the norm mapping
is sequentially weakly lower semicontinuous, we obtain that

lim inf
i→∞

‖F (yni)‖ ≥ ‖F (x̂)‖.

From {ynmi
} ⊂ {yni} and εi → 0 as i→∞, we obtain

0 =
0

F (x̂)
≥ lim
i→∞

εi
‖F (ynmi

)‖
= lim
i→∞

‖εitnmi
‖ ≥ 0.
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By letting i→∞ in (2.16), we obtain

〈F (ω), ω − x̂〉 ≥ 0.

Combining this with Lemma 1.1, we get that x̂ ∈ V I(C,F ). In view of xni
=

PQni
(x0) and V I(C,F ) ⊆ Qni

, it follows from z = PV I(C,F )(x0) and the lower
semicontinuity of the norm that

‖x0 − z‖ ≤ ‖x0 − x̂‖ ≤ lim inf
i→∞

‖x0 − xni
‖ ≤ lim sup

i→∞
‖x0 − xni

‖ ≤ ‖x0 − z‖.

Hence, we have that
lim
i→∞

‖x0 − xni‖ = ‖x0 − x̂‖. (2.17)

Due to (2.17) and x0 − xni
⇀ x0 − x̂ as i → ∞, which together with Lemma 1.2,

amounts to x0 − xni
→ x0 − x̂ as i → ∞. This implies that xni

→ x̂ as i → ∞.
For the reasons that z ∈ V I(C,F ) ⊆ Qn and xn = PQn

x0, ∀n ≥ 1, it follows
from projection characterization (i) that 〈x0 − xni

, z − xni
〉 ≤ 0. Accordingly, we

conclude that

‖z − xni
‖2 = 〈z − x0, z − xni

〉+ 〈x0 − xni
, z − xni

〉 ≤ 〈z − x0, z − xni
〉.

As i→∞, we conclude from z = PV I(C,F )x0 and x̂ ∈ V I(C,F ), that

‖z − x̂‖2 ≤ 〈z − x0, z − x̂〉 ≤ 0.

Consequently, we derive that z = x̂. Since the subsequence {xni
} is arbitrarily

chosen in {xn}, it ensures that xn → z as n → ∞. From (2.11) and (2.12), we
conclude that yn → z and zn → z as n→∞. This completes the proof.

3. Numerical experiments

In this section, we consider several computational experiments in support of the
convergence of the proposed algorithm. We also compare our method with some
existing methods in literature.

Recall that the algorithm in [29] is as follows

Algorithm 3.1. (i) Choose x0 ∈ H, y0 ∈ C. The parameters λ, κ satisfy the
following conditions 0 < λ < 1

2L and κ > 1
1−2λL . Set C0 = Q0 = H.

(ii) Compute

yn+1 = PC(xn − λFyn),

εn = κ‖xn − xn−1‖2 + λL‖yn − yn−1‖2 −
(

1− 1

κ
− λL

)
‖yn+1 − yn‖2,

Cn = {w ∈ H : ‖yn+1 − w‖2 ≤ ‖xn − w‖2 + εn},
Qn = {w ∈ H : 〈w − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn∩Qn(x0).

(iii) Set n← n+ 1, and go to (i).



112 L. Liu & X. Qin

We recall the hybrid extragradient method of Nadezhkina and Takahashi [30] is
given as the following

Algorithm 3.2. (i) Choose x0 ∈ H and the parameter β such that 0 < β < 1
L .

Set C0 = Q0 = H .

(ii) Compute

yn = PC(xn − βFxn),

zn = PC(xn − βFyn),

Cn = {w ∈ H : ‖zn − w‖2 ≤ ‖xn − w‖2},
Qn = {w ∈ H : 〈w − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn∩Qn

(x0).

(iii) Set n← n+ 1, and go to (i).

All programs are written in Matlab (R2015b) and performed on a PC Desktop
Intel(R) Core (TM) i5-8250U CPU @1.60GHz. We respectively apply different
algorithms to solve the following convex feasibility problems.

Example 3.1. Consider the operator F (x) = Ax+ ι. This example is taken from
[20], where

A = BBT + C +D,

and B is a k × k matrix, C is a k × k skew-symmetric matrix, with their entries
being generated randomly in (−10, 10). D is a k×k diagonal matrix, whose diagonal
entries are positive in (0, 2) (hence A is positive symmetric definite), ι is a vector
in Rk. The feasible set C ⊂ Rk is a closed convex subset defined by C = {x ∈
Rk : −3 ≤ xi ≤ 6, i = 1, 2, · · · , k}. It is clear that F is monotone and Lipschitz
continuous with the constant L = ‖A‖. We see that C above is a polyhedral convex
set. The sets Cn and Qn in Algorithms 2.1, 3.1, 3.2 are either a half-space or the
whole space Rk, thus Cn ∩Qn is also a polyhedral convex set. The projection onto
Cn ∩Qn can be computed by Propositions 28.18 and 28.19 of [30].

We set the inertial parameter αn = 1, denote a = min
{

1, 1
2L2

}
and meanwhile

choose the parameter βn in (0, a) for Algorithm 2.1. We randomly choose λ ∈(
0, 1

2L

)
, κ ∈

(
1

1−2λL ,∞
)

for Algorithm 3.1 and β ∈
(
0, 1

L

)
for Algorithm 3.2. Recall

that x̄ ∈ V I(C,F ) if and only if x̄ = PC(x̄ − βF (x̄)) for all β > 0, which means
that we can used the sequence Dn = xn − PC(xn − βnFxn) (n = 0, 1, 2, 3 · · · ) to
study the convergence of Algorithms 2.1, 3.1 and 3.2. Note that, from the definition
of the metric projection, if ‖Dn‖ < ε, then xn can be considered as a ε-solution
of the problem. We randomly choose the starting points in the range of (0, 1)k

for Algorithms 2.1, 3.1 and 3.2. To illustrate that our proposed algorithm has a
competitive performance compared with Algorithm 3.1 and 3.2, we describe the
following numerical results shown in Figure 2 and Figure 3. We respectively take
the number of iterations n = 200, 500 as the stopping criterion in the following
experiments.
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Figure 2. Behaviors of elements of (xn)10×1 and the value of ‖Dn‖ with the number of iterations
n = 500. Numerical results for Algorithms 2.1, 3.1.

Figure 3. Behaviors of elements of (xn)10×1 and the value of ‖Dn‖ with the number of iterations
n = 200. Numerical results for Algorithms 2.1, 3.2.

The above two figures show that Algorithm 2.1 has a better behavior than
Algorithms 3.1 and 3.2. It achieves a more stable and higher precision after a fewer
steps. While the reduction of the sequence ‖Dn‖ of Algorithms 3.1 and 3.2 have
the oscillation with the increasing of the number of iterations. This illustrates that
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Algorithms 2.1 significantly reduces the number of iterations. We can see that the
effect of the acceleration of the inertial extrapolation to Algorithm 2.1 is obvious.
The convergent point of ‖Dn‖ is 0, means that the iterative sequences converge to
the solution of this experiment. Furthermore, with different random initial points
and parameters, the iterative sequences generated by each algorithm may converge
to different solutions of the variational inequality problem.

Definition 3.1. A differential function f : Rn → R is pseudo-convex on C if for
every pair of distinct points x, y ∈ C,

〈∇f(x), y − x〉 ≥ 0⇒ f(y) ≥ f(x).

In [23], Karamardian and Scchaible showed that a differentiable function is
pseudo-convex if and only if its gradient is pseudo-monotone, which reveals the
relationship between the variational inequality problem and the pseudo-convex op-
timization. Next, we indicate the significant class of applications to the variational
inequality problem involving pseudo-monotone mappings instead of monotone map-
pings.

Example 3.2. Consider the following fractional programming problem [21]

min f(x) = xTQx+aT x+a0
bT x+b0

,

subject to x ∈ C := {x ∈ Rk : bTx+ b0 > 0},

where

Q =


5 −1 2 0

−1 5 −1 3

2 −1 3 0

0 3 0 5

 , a =


1

−2

−2

1

 , b =


2

1

1

0

 , a0 = −2, b0 = 4.

We can see that Q is symmetric and positive definite in R4 and consequently f
is pseudo-convex on C = {x ∈ R4 : bTx + b0 > 0}. We minimize f over C via
Algorithm 2.1 with

F (x) := ∇f(x) =
(bTx+ b0)(2Qx+ a)− b(xTQx+ aTx+ a0)

(bTx+ b0)2
.

We used the error sequences Dn = xn − PC(xn − βnFxn) and En = xn − yn (n =
0, 1, 2, 3 · · · ) to study the convergence of Algorithms 2.1.

We randomly choose the initial points in the range of (0, 1)4 and take the number
of iterations n = 50 as the stopping criterion. The values of error sequences {Dn}
and {En} are represented by the y-axis, the number of iterations n is represented by
the x-axis. We apply Algorithm 2.1 to solve this problem. The numerical results are
shown in Figure 4. The convergence of {Dn} and {En} to (0, 0, 0, 0)T implies that
the iterative sequences converge to the solution of this experiment. Furthermore,
this problem has a unique solution x̂ = (1, 1, 1, 1)T ∈ C.
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Figure 4. Behaviors of elements of (Dn)4×1 and (En)4×1 with the number of iterations n = 50.
Numerical results for Algorithm 2.1.
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