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PATTERN FORMATION IN
REACTION-DIFFUSION NEURAL

NETWORKS WITH LEAKAGE DELAY∗

Jiazhe Lin1, Rui Xu2,† and Xiaohong Tian2

Abstract Due to the heterogeneity of the electromagnetic field in neural
networks, the diffusion phenomenon of electrons exists inevitably. In this
paper, we investigate pattern formation in a reaction-diffusion neural network
with leakage delay. The existence of Hopf bifurcation, as well as the necessary
and sufficient conditions for Turing instability, are studied by analyzing the
corresponding characteristic equation. Based on the multiple-scale analysis,
amplitude equations of the model are derived, which determine the selection
and competition of Turing patterns. Numerical simulations are carried out
to show the possible patterns and how these patterns evolve. In some cases,
the stability performance of Turing patterns is weakened by leakage delay and
synaptic transmission delay.
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1. Introduction

Over the past decades, neural networks and their various generalizations have at-
tracted much attention in different fields of science and engineering, owing to their
valuable applications in associative memory [1,3,18,26], pattern recognition [13,14],
image processing [15,19] and so on. Early neural network models assumed that neu-
rons respond synchronously to signals. In reality, time delay unavoidably occurs due
to the finite speed of signal transmission and amplifiers switching, which is known
as synaptic transmission delay. Usually, time delay is harmful to the dynamical
behaviors of neural networks, causing oscillation, divergence, even chaos. In view
of above-mentioned reasons, Olien and Bélair [16] proposed the following neural
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network model with synaptic transmission delay


du(t)

dt
= −u(t) + a1f1(v(t− τ)) + b1g1(u(t− τ)),

dv(t)

dt
= −v(t) + a2f2(u(t− τ)) + b2g2(v(t− τ)),

(1.1)

where u(t), v(t) represent the voltage of different units; ai, bi (i = 1, 2) denote
connection weights; τ is the synaptic transmission delay; the transfer functions fi,
gi (i = 1, 2) are continuously differentiable, strictly increasing and odd. By linear
stability analysis, Olien and Bélair found that Hopf bifurcation occurs when the
delay passes through some critical values. Following this work, system (1.1) is
further investigated by Huang etc [8, 9]. Based on normal form method and center
manifold theory, the direction of Hopf bifurcation and the stability of bifurcating
periodic solution were obtained.

It is worth mentioning that the first term in each of the right side of system
(1.1) corresponds to stabilizing negative feedback of the system which acts instan-
taneously without time delay and these terms are variously known as “forgetting”
or leakage terms (see, for instance, [12]). In actual neural network circuits, when
the neuron disconnects from the network connection and external input, it takes
time to isolate to the static state. Gopalsamy [4,5] illustrated that this typical time
delay in the negative feedback terms, which he called leakage delay, has a tendency
to destabilize the system. There have been several works about the impact of leak-
age delay on neural networks (see, for example, [10, 11]). In [11], Huang etc found
that the leakage delay plays an important role in the dynamical behaviors of neural
networks and may devastate the stability performance.

Besides, neural networks are realized by large scale integrated circuits, and the
density of the electromagnetic field is generally not uniform. Therefore, in factual
modeling, only considering the change of time seems to be not comprehensive when
electrons are moving in asymmetric and nonuniform electromagnetic fields [20, 21].
Influenced by diffusion, neural networks have rich spatial dynamical behaviors, like
various Turing patterns. Spatial dynamics in reaction-diffusion systems was orig-
inally proposed by Turing [22] in 1952. This pioneering work of Turing not only
came into being a theoretical foundation for understanding diverse patterns occur-
ring in the natural world, but also opened a new research field, namely, pattern
dynamics, which has received extensive attention and is still a hot topic in many
scientific fields such as species dynamics [7,27,29], medicine [25,30], neural network-
s [2,23,28]. Based on the reaction-diffusion theory of Turing [22], Chua and Goraş [2]
investigated the phenomenon of pattern formation in cellular neural networks. Re-
cently, Zhao etc [28] proposed a model for reaction-diffusion neural network and
obtained the conditions of Turing instability. By multiple-scale analysis method,
the amplitude equations of the model are derived, which determine the stability
of different spatial patterns. In [23], Tyagi etc investigated a general two-neuron
delayed network model with reaction-diffusion terms and studied the existence of
Hopf bifurcation and the conditions of Turing instability.

Motivated by Olien and Bélair [16], Gopalsamy [4] and Zhao etc [28], we are
concerned with the effect of leakage delay on the pattern formation in reaction-
diffusion neural networks. To this end, we consider the following reaction-diffusion
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neural network with leakage delay and synaptic transmission delay

∂u(x, y, t)

∂t
=d1∆u(x, y, t)− c1u(x, y, t− τ1) + a1f1(v(x, y, t− τ2))

+ b1g1(u(x, y, t)),

∂v(x, y, t)

∂t
=d2∆v(x, y, t)− c2v(x, y, t− τ1) + a2f2(u(x, y, t− τ2))

+ b2g2(v(x, y, t)),

(1.2)

under Neumann boundary condition

∂u(x, y, t)

∂n
=
∂v(x, y, t)

∂n
= 0, (x, y) ∈ ∂Ω, (1.3)

with initial condition

u(x, y, 0) = u0 > 0, v(x, y, 0) = v0 > 0, (x, y) ∈ Ω, (1.4)

where u(x, y, t), v(x, y, t) stand for state variables of neurons at time t and spatial
position (x, y); a square domain Ω = (0, L)×(0, L), in which L is a positive bounded

constant; ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator in two-dimensional space Ω; d1

and d2 are the diffusion coefficients of electrons between neurons; c1 and c2 describe
the stability of internal neuron processes; τ1 is leakage delay, while τ2 is synaptic
transmission delay; n is the outward unit normal vector of the boundary ∂Ω that
is assumed to be smooth. Besides, c1, c2, d1 and d2 are positive constants.

System (1.2) is a fully connected single-layer neural network with self-feedback.
Each neuron transmits its output to all the other neurons by connection weights
and receives input from all the other neurons simultaneously. Thus, the output
state of neuron in the network is indirectly related to its previous output state.

The paper is organized as follows. In Section 2, we analyze the linear stability
of system (1.2) and obtain the conditions for the existence of Hopf bifurcation and
the occurrence of Turing instability, respectively. In order to study the selection of
Turing patterns, we use multiple-scale analysis to derive the amplitude equations
of system (1.2) in Section 3. In Section 4, we investigate the stability of ampli-
tude equations and construct different Turing patterns, which will be illustrated by
numerical simulations in Section 5. In Section 6, the paper ends with a conclusion.

2. Linear stability analysis

Throughout this paper, we suppose that the following assumption holds.
(H1) fj , gj ∈ C1,k(R,R) (j = 1, 2) with k≥3, which satisfy fj(0) = gj(0) = 0.
It is easy to show that if (H1) holds, system (1.2) always has a homogeneous

steady state E0 = (u0, v0) = (0, 0). In this section, we focus on the linear stability
analysis of E0. Linearizing system (1.2) at E0 yields

∂u(x, y, t)

∂t
= d1∆u(x, y, t)− c1u(x, y, t− τ1) + φ1v(x, y, t− τ2) + ϕ1u(x, y, t),

∂v(x, y, t)

∂t
= d2∆v(x, y, t)− c2v(x, y, t− τ1) + φ2u(x, y, t− τ2) + ϕ2v(x, y, t),

(2.1)
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where φj = ajf
′
j(0), ϕj = bjg

′
j(0) (j = 1, 2). For simplicity, we assume that

τ1 = τ2 = τ . Expand the perturbation variables in the Fourier spaceu

v

 =

∞∑
k=0

 c1k

c2k

eλkt+ikr, (2.2)

where λk is the growth rate of perturbations in time t, i is the imaginary unit and
i2 = −1, r = (x, y) is the spatial vector in two dimensions. Then substituting (2.2)
into (2.1), the characteristic equation follows that

λ2 + p1λ+ p2 + (q1λ+ q2)e−τλ + re−2τλ = 0, (2.3)

where

p1 = k2d1 + k2d2 − ϕ1 − ϕ2, p2 = (k2d1 − ϕ1)(k2d2 − ϕ2),

q1 = c1 + c2, q2 = c1(k2d2 − ϕ2) + c2(k2d1 − ϕ1), r = c1c2 − φ1φ2.

2.1. Hopf bifurcation analysis

In this section, we investigate the existence of Hopf bifurcation in system (1.2).
Firstly, multiplying eτλ on both sides of (2.3) yields

eτλ
(
λ2 + p1λ+ p2

)
+ (q1λ+ q2) + re−τλ = 0. (2.4)

Substituting λ = iω into (2.4) and separating the real and imaginary parts yield{
(p2 − ω2) cos(ωτ)− p1ω sin(ωτ) + q2 + r cos(ωτ) = 0,

(p2 − ω2) sin(ωτ) + p1ω cos(ωτ) + q1ω − r sin(ωτ) = 0.
(2.5)

Direct calculation shows that

cos(ωτ) = −q2(p2 − ω2 − r) + p1q1ω
2

(p2 − ω2)
2 − r2 + p2

1ω
2
, sin(ωτ) =

p1q2 − q1(p2 − ω2 + r)

(p2 − ω2)
2 − r2 + p2

1ω
2
ω.

(2.6)
Noting that sin2(ωτ) + cos2(ωτ) = 1, ω is a positive real root of the following
equation

ω8 + s1ω
6 + s2ω

4 + s3ω
2 + s4 = 0, (2.7)

where

s1 = 2p2
1 − 4p2 − q2

1 ,

s2 = p4
1 + 6p2

2 + 2p2q
2
1 + 2q2

1r − 2r2 − q2
2 − 4p2

1p2 − p2
1q

2
1 ,

s3 = 2p2
1p

2
2 + 4p2r

2 + 2p2q
2
2 + 4p1q1q2r − p2

1q
2
2 − 2p2

1r
2 − 4p3

2 − 2q2
2r

− p2
2q

2
1 − q2

1r
2 − 2p2q

2
1r,

s4 = p4
2 + r4 + 2p2q

2
2r − 2p2

2r
2 − p2

2q
2
2 − q2

2r
2.

From (2.6), we obtain that

τ (n) =
1

ω

[
arccos

(
−q2(p2 − ω2 − r) + p1q1ω

2

(p2 − ω2)
2 − r2 + p2

1ω
2

)
+ 2nπ

]
,
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in which n = 0, 1, 2, · · · . Define τ0 = min
{
τ (n)

}
. According to [17], Hopf bifurcation

occurs when Im(λk) 6= 0, Re(λk) = 0, at k = 0. It is not difficult to obtain the
following result.

Theorem 2.1. For system (1.2) without diffusion, if Eq. (2.7) has at least one
positive real root and Re(dλ/dτ) |τ=τ0 6= 0, the following results hold

a) The steady state E0 is locally asymptotically stable for τ ∈ [0, τ0);
b) System (1.2) undergoes a Hopf bifurcation at the steady state E0 when τ = τ0,

i.e., it has a branch of periodic solutions bifurcating from E0 near τ = τ0.

In the following, we carry out some numerical simulations about Hopf bifur-
cation to support the theoretical analysis. By direct calculation, we obtain that
ω = 2.2730. In Fig. 1, we see that when τ = 0.02 < τ0 = 0.0759, the steady state
E0 is locally asymptotically stable. As τ = 0.08 > τ0 = 0.0759, Hopf bifurcation
occurs in system (1.2). From Fig. 2, when τ varies from 0 to 0.15, the bifurca-
tion diagram indicates that system (1.2) has rich and complex dynamics including
chaotic behaviors.
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Figure 1. Phase diagrams of system (1.2) with τ = 0.02 < τ0 = 0.0759 (see left-hand figure) and
τ = 0.08 > τ0 = 0.0681 (see right-hand figure), where c1 = 2, c2 = 4, a1 = −4, a2 = 2, b1 = 3.6,
b2 = 1.2 and fi(·), gi(·) (i = 1, 2) are chosen as tanh(·).

Figure 2. The bifurcation diagram of system (1.2) with respect to the delay τ ∈ [0, 0.15].

2.2. Turing instability analysis

In this section, we study the conditions of Turing instability in system (1.2) based
on the pattern dynamics theory proposed by Turing [22].

In reality, both leakage delay τ1 and synaptic transmission delay τ2 are relatively
small. For such a small delay, we develop u(t − τ), v(t − τ) into power series of τ
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and only remain the first order terms

u(x, y, t− τ) = u(x, y, t)− τ ∂u(x, y, t)

∂t
, v(x, y, t− τ) = v(x, y, t)− τ ∂v(x, y, t)

∂t
.

(2.8)
Substituting (2.8) into (2.1), we obtain that

(1− c1τ)
∂u(x, y, t)

∂t
+ φ1τ

∂v(x, y, t)

∂t
=d1∆u(x, y, t)− c1u(x, y, t) + φ1v(x, y, t)

+ ϕ1u(x, y, t),

(1− c2τ)
∂v(x, y, t)

∂t
+ φ2τ

∂u(x, y, t)

∂t
=d2∆v(x, y, t)− c2v(x, y, t) + φ2u(x, y, t)

+ ϕ2v(x, y, t).

By direct calculation, it follows that

∂u(x, y, t)

∂t
=D11(τ)∆u(x, y, t) +D12(τ)∆v(x, y, t) +A1(τ)u(x, y, t)

+B1(τ)v(x, y, t),

∂v(x, y, t)

∂t
=D21(τ)∆u(x, y, t) +D22(τ)∆v(x, y, t) +A2(τ)u(x, y, t)

+B2(τ)v(x, y, t),

(2.9)

where

D11(τ) =
d1(1− c2τ)

(1− c1τ)(1− c2τ)− φ1φ2τ2
, D12(τ) = − φ1d2τ

(1− c1τ)(1− c2τ)− φ1φ2τ2
,

A1(τ) =
(ϕ1 − c1)(1− c2τ)− φ1φ2τ

(1− c1τ)(1− c2τ)− φ1φ2τ2
, B1(τ) =

φ1(1− c2τ) + φ1τ(c2 − ϕ2)

(1− c1τ)(1− c2τ)− φ1φ2τ2
,

D21(τ) =
d1 −D11(τ)(1− c1τ)

φ1τ
, D22(τ) = −D12(τ)(1− c1τ)

φ1τ
,

A2(τ) =
ϕ1 − c1 −A1(τ)(1− c1τ)

φ1τ
, B2(τ) =

φ1 −B1(τ)(1− c1τ)

φ1τ
.

Thus, we only need to investigate system (2.9), which can be regard as a cross-
diffusion model. Linearizing system (2.9) at E0, we have

λ2 − trk(J)λ+ detk(J) = 0,

where

J =

A1(τ)−D11(τ)k2 B1(τ)−D12(τ)k2

A2(τ)−D21(τ)k2 B2(τ)−D22(τ)k2

 .

The eigenvalues λk are calculated as

λk =
trk(J)±

√
tr2
k(J)− 4detk(J)

2
,
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where

trk(J) =A1(τ) +B2(τ)− (D11(τ) +D22(τ)) k2,

detk(J) = (D11(τ)D22(τ)−D12(τ)D21(τ)) k4

− (A1(τ)D22(τ) +B2(τ)D11(τ)−A2(τ)D12(τ)−B1(τ)D21(τ)) k2

+A1(τ)B2(τ)−A2(τ)B1(τ).
(2.10)

The unbalanced changes of phases, corresponding to Turing branches, are the tran-
sitions of system (2.9) from the uniform state to the oscillatory state. After the
process, the formed patterns are called Turing patterns. From (2.10), we can ob-
tain the necessary conditions for causing Turing instability:

(H2) tr0(J) =A1(τ) +B2(τ) < 0,

(H3) det0(J) =A1(τ)B2(τ)−A2(τ)B1(τ) > 0,

(H4) detk(J) = (D11(τ)D22(τ)−D12(τ)D21(τ)) k4

− (A1(τ)D22(τ) +B2(τ)D11(τ)−A2(τ)D12(τ)−B1(τ)D21(τ)) k2

+A1(τ)B2(τ)−A2(τ)B1(τ) < 0.

(H2)-(H4) indicate that the system is unstable for some perturbations to the wave
number k. Thus we have detk(J) = 0 at the critical value. That is to say, Turing
bifurcation occurs when Im(λk) = 0, Re(λk) = 0, at k = kT 6= 0. The critical value
of the Turing bifurcation parameter τT is determined by the following equation

(A1(τT )D22(τT ) +B2(τT )D11(τT )−A2(τT )D12(τT )−B1(τT )D21(τT ))
2

− 4 (A1(τT )B2(τT )−A2(τT )B1(τT ))(D11(τT )D22(τT )−D12(τT )D21(τT )) = 0.

When Turing patterns come into being, the wave number kT satisfies

k2
T =

A1(τ)D22(τ) +B2(τ)D11(τ)−A2(τ)D12(τ)−B1(τ)D21(τ)

2(D11(τ)D22(τ)−D12(τ)D21(τ))
.

Solving detk(J) = 0, we obtain that

B2(τ, k) = D22(τ)k2 +
(
B1(τ)−D12(τ)k2

) D21(τ)k2 −A2(τ)

D11(τ)k2 −A1(τ)
.

Letting B2(τ, k) = B2(τ, k + 1) yields

B1(τ, k, k + 1) =
D22(τ)

(
D11(τ)k2 −A1(τ)

) [
D11(τ)(k + 1)2 −A1(τ)

]
A1(τ)D21(τ)−A2(τ)D11(τ)

+
A1(τ)D12(τ)D21(τ)

[
(k + 1)2 + k2

]
A1(τ)D21(τ)−A2(τ)D11(τ)

− D11(τ)D12(τ)D21(τ)k2(k + 1)2 +A1(τ)A2(τ)D12(τ)

A1(τ)D21(τ)−A2(τ)D11(τ)
.

From above discussions, we can get the following result.

Theorem 2.2. If (H2), (H3) and the following conditions hold:

(H5) A1(τ)D22(τ) +B2(τ)D11(τ)−A2(τ)D12(τ)−B1(τ)D21(τ) > 0,
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(H6) (A1(τ)D22(τ) +B2(τ)D11(τ)−A2(τ)D12(τ)−B1(τ)D21(τ))2

− 4(A1(τ)B2(τ)−A2(τ)B1(τ))(D11(τ)D22(τ)−D12(τ)D21(τ)) > 0,

meanwhile, B2(τ) = B2(τ, k) and B1(τ) ∈ [B1(τ, k − 1, k), B1(τ, k, k + 1)) in which
k ⊂ N+, then system (1.2) will undergoes k−mode Turing bifurcation.

According to Theorem 2.2, the conditions of Turing instability are determined
by τ due to that all coefficients of system (2.9) are functions with respective to τ .
Denote the left hand terms of inequations in conditions (H2), (H3), (H5) and (H6)
by h1(τ), h2(τ), h3(τ), h4(τ), namely, Turing instability occurs when h1(τ) < 0 and
h2(τ), h3(τ), h4(τ) > 0. To further investigate the conditions of Turing instability,
we set ϕ1 as a free parameter and fix other parameters. The trajectories of h1(τ),
h2(τ), h3(τ) and h4(τ) with respect to the delay τ are drawn in Fig. 3. From Fig.
3(a), it is easy to find that Turing instability may happen at τ ∈ [0, 0.079] (marked
by the small yellow region in Fig. 3(a)). When ϕ1 varies from 3.6 to 3.1, we observe
in Fig. 3(b) that Turing instability cannot come up in system (1.2).
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Figure 3. The trajectories of h1(τ), h2(τ), h3(τ) and h4(τ) with respect to the delay τ , where d1 = 0.1,
d2 = 1.6, c1 = 2, c2 = 4, φ1 = −4, φ2 = 2, ϕ1 = 3.6, ϕ2 = 1.2 (Fig. 3(a)) and d1 = 0.1, d2 = 1.6,
c1 = 2, c2 = 4, φ1 = −4, φ2 = 2, ϕ1 = 3.1, ϕ2 = 1.2 (Fig. 3(b)). fi(·), gi(·) (i = 1, 2) are chosen as
tanh(·).

3. Amplitude equations

In this section, based on the multiple-scale analysis method, we derive the ampli-
tude equations near the instability threshold, which help us determine the different
Turing patterns. From [17], the basic state is unstable only in regard to perturba-
tions with wave numbers close to the critical value kT . For more details concerning
the multiple-scale analysis method, please refer to [7, 28,29,31].

First, we develop u(t−τ), v(t−τ) into power series of τ and only remain the first
order terms, in which reaction-diffusion terms are also considered. Then, system



2232 J. Lin, R. Xu & X. Tian

(1.2) is transformed into

∂u(x, y, t)

∂t
= d1∆u(x, y, t)− c1ũ(x, y, t) + a1f1(ṽ(x, y, t)) + b1g1(u(x, y, t)),

∂v(x, y, t)

∂t
= d2∆v(x, y, t)− c2ṽ(x, y, t) + a2f2(ũ(x, y, t)) + b2g2(v(x, y, t)),

∂ũ(x, y, t)

∂t
= ∆ũ(x, y, t) +

1

τ
(u(x, y, t)− ũ(x, y, t)),

∂ṽ(x, y, t)

∂t
= ∆ṽ(x, y, t) +

1

τ
(v(x, y, t)− ṽ(x, y, t)),

(3.1)
where ũ(x, y, t) = u(x, y, t−τ), ṽ(x, y, t) = v(x, y, t−τ). For simplicity, we set fj(·),
gj(·) (j = 1, 2) as tanh(·). According to Taylor series expansion, system (3.1) can
be rewritten as

∂u(x, y, t)

∂t
=d1∆u(x, y, t)− c1ũ(x, y, t) + a1ṽ(x, y, t) + b1u(x, y, t)

− 1

3
a1ṽ

3(x, y, t)− 1

3
b1u

3(x, y, t),

∂v(x, y, t)

∂t
=d2∆v(x, y, t)− c2ṽ(x, y, t) + a2ũ(x, y, t) + b2v(x, y, t)

− 1

3
a2ũ

3(x, y, t)− 1

3
b2v

3(x, y, t),

∂ũ(x, y, t)

∂t
=∆ũ(x, y, t) +

1

τ
(u(x, y, t)− ũ(x, y, t)),

∂ṽ(x, y, t)

∂t
=∆ṽ(x, y, t) +

1

τ
(v(x, y, t)− ṽ(x, y, t)).

(3.2)

The Turing patterns of system (3.2) can be described by the modulus that consists
of three wave vectors, namely, k1, k2 and k3, which intersect at 120◦. The solutions
of system (3.2) near the bifurcation threshold can be expanded to

P =


u

v

ũ

ṽ

 =

3∑
i=1


Auj

Avj

Aũj

Aṽj

e
ikjr + c.c., j = 1, 2, 3, (3.3)

where c.c. stands for the complex conjugate. Then, system (3.2) can be converted
to the following system

∂P

∂t
= LP +N, (3.4)

where

L=


d1∆+b1 0 −c1 a1

0 d2∆ + b2 a2 −c2
1
τ 0 ∆− 1

τ 0

0 1
τ 0 ∆− 1

τ

 , N=


− 1

3b1u
3(x, y, t)− 1

3a1ṽ
3(x, y, t)

− 1
3b2v

3(x, y, t)− 1
3a2ũ

3(x, y, t)

0

0

 .
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For system (3.4), we need only to analyze the behavior of the controlled parameter
τ which is close to the onset τT . With this method, we can expand τ in the following
term

τT − τ = ετ1T + ε2τ2T + ε3τ3T + o
(
ε4
)
, (3.5)

where ε is a small parameter. Expanding the variable P and the nonlinear term N
according to this small parameter, we have the following results

P =


u

v

ũ

ṽ

 = ε


u1

v1

ũ1

ṽ1

+ ε2


u2

v2

ũ2

ṽ2

+ ε3


u3

v3

ũ3

ṽ3

+ o(ε4),

N = ε3h3 + o(ε4),

(3.6)

where h3 corresponds to the third order of ε in the expansion of the nonlinear
operator. Next, L can be expanded as follows

L = LT + (τT − τ)M, (3.7)

where

LT =


d1∆ + b1 0 −c1 a1

0 d2∆ + b2 a2 −c2
1
τT

0 ∆− 1
τT

0

0 1
τT

0 ∆− 1
τT

 , M =


0 0 0 0

0 0 0 0

1
ττT

0 − 1
ττT

0

0 1
ττT

0 − 1
ττT

 .

The essence of the multiple-scale analysis method is separating the dynamical be-
haviors of system (3.1) according to different time scale or spatial scale. In this
section, we just need to separate the time scale for system (3.4) (i.e. T0 = t, T1 = εt,
T2 = ε2t). Each time scale Tj (j = 0, 1, 2) can be considered as an independent
variable, namely, Tj corresponds to the dynamical behaviors of the variables whose
scales are ε−j . Thus the derivative with respect to time converts to the following
term

∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ o(ε3).

The bases of solution (3.3) have nothing to do with the time, while the amplitude A
is a variable that changes slowly. For system (3.4), we consider the following result

∂A

∂t
= ε

∂A

∂T1
+ ε2 ∂A

∂T2
+ o

(
ε3
)
. (3.8)

Substituting (3.5)-(3.7) into (3.4) and expanding (3.4) according to different orders
of ε, we obtain that

ε : LT


u1

v1

ũ1

ṽ1

 = 0, ε2 : LT


u2

v2

ũ2

ṽ2

 =
∂

∂T1


u1

v1

ũ1

ṽ1

− τ1TM

u1

v1

ũ1

ṽ1

 ,
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ε3 : LT


u3

v3

ũ3

ṽ3

 =
∂

∂T1


u2

v2

ũ2

ṽ2

+
∂

∂T2


u1

v1

ũ1

ṽ1

− τ1TM

u2

v2

ũ2

ṽ2

− τ2TM

u1

v1

ũ1

ṽ1

− h3.

For the first order of ε, as LT is the linear operator of system (3.1) close to the onset,
(u1, v1, ũ1, ṽ1)T is the linear combination of the eigenvectors that corresponds to the
eigenvalue 0. Solving the first order of ε yields

u1

v1

ũ1

ṽ1

 =


l1l2

l1

l2

1


(
W1e

ik1r +W2e
ik2r +W3e

ik3r
)

+ c.c., (3.9)

in which

l1 = τT k
2
T + 1, l2 =

a1

c1 − (b1 − d1k2
T )(τT k2

T + 1)
.

Besides, |kj | = kT (j = 1, 2, 3) and c.c. denotes the conjugate of the former terms.
Wj is the amplitude of the mode eikjr when the system is under the first-order
perturbation, while, its form is determined by the perturbational term of the higher
order.

For the second order of ε, we have

LT


u2

v2

ũ2

ṽ2

 =
∂

∂T1


u1

v1

ũ1

ṽ1

− τ1TM

u1

v1

ũ1

ṽ1

 =


Fu

Fv

Fũ

Fṽ

 . (3.10)

To make sure Eq. (3.10) has nontrivial solutions, according to Fredholm solubility
condition, the vector function of the right-hand side of Eq. (3.10) must be orthog-
onal with the 0 eigenvector of operator L+

T . Here, L+
T is the adjoint operator of the

operator LT . In addition, the 0 eigenvector of L+
T is

(
1 l′1 l

′
2 l
′
3

)T
exp(−ikjr) + c.c., j = 1, 2, 3,

where

l′1 =
c1 + (τT k

2
T + 1)(d1k

2
T − b1)

a2
, l′2 = τT (d1k

2
T − b1),

l′3 =
τT (d2k

2
T − b2)

[
c1 + (τT k

2
T + 1)(d1k

2
T − b1)

]
a2

.
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From the orthogonality condition, we obtain that

(
1 l′1 l

′
2 l
′
3

)

F ju

F jv

F jũ

F jṽ

 = 0, (3.11)

where F ju , F jv , F jũ and F jṽ represent the coefficients corresponding to eikjr in Fu,
Fv, Fũ and Fṽ, respectively, that is to say,

Fu

Fv

Fũ

Fṽ

 =


F 1
u

F 1
v

F 1
ũ

F 1
ṽ

 eik1r +


F 2
u

F 2
v

F 2
ũ

F 2
ṽ

 eik2r +


F 3
u

F 3
v

F 3
ũ

F 3
ṽ

 eik3r.

In later analysis, we only investigate eik1r. From (3.9) and (3.11), we have

(l1l2 + l1l
′
1 + l2l

′
2 + l′3)

∂W1

∂T1
=
τ1T (l1 − 1)(l2l

′
2 + l′3)

ττT
W1. (3.12)

Then, substituting (3.9) into (3.10) yields
u2

v2

ũ2

ṽ2

 =

3∑
i=1


Ui

Vi

Ũi

Ṽi

e
ikir + c.c., (3.13)

in which Ui = l1l2Ṽi, Vi = l1Ṽi, Ũi = l2Ṽi. For the third order of ε, it follows that

LT


u3

v3

ũ3

ṽ3

 =
∂

∂T1


u2

v2

ũ2

ṽ2

+
∂

∂T2


u1

v1

ũ1

ṽ1

− τ1TM

u2

v2

ũ2

ṽ2

− τ2TM

u1

v1

ũ1

ṽ1

− h3

=


Hu

Hv

Hũ

Hṽ

 .

(3.14)
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Similarly, Hj
u, Hj

v , Hj
ũ and Hj

ṽ correspond to eikjr in Hu, Hv, Hũ and Hṽ, respec-
tively. Then, we derive that

H1
u

H1
v

H1
ũ

H1
ṽ

 =


l1l2

l1

l2

1


(
∂Ṽ1

∂T1
+
∂W1

∂T2

)
− (l1 − 1)

ττT


0

0

l2

1


(
τ1T Ṽ1 + τ2TW1

)

+


G11

∣∣W 2
1

∣∣+G12

(∣∣W 2
2

∣∣+
∣∣W 2

3

∣∣)
G21

∣∣W 2
1

∣∣+G22

(∣∣W 2
2

∣∣+
∣∣W 2

3

∣∣)
0

0

W1,

where

G11 = b1l
3
1l

3
2 + a1, G12 = 2G11, G21 = b2l

3
1 + a2l

3
2, G22 = 2G21.

According to Fredholm solubility condition, it follows that

(l1l2 + l1l
′
1 + l2l

′
2 + l′3)

(
∂Ṽ1

∂T1
+
∂W1

∂T2

)
=

(l1 − 1)(l2l
′
2 + l′3)

ττT

(
τ1T Ṽ1 + τ2TW1

)
−
[
(G11 + l′1G21)

∣∣W 2
1

∣∣+ (G12 + l′1G22)
(∣∣W 2

2

∣∣+
∣∣W 2

3

∣∣)]W1.
(3.15)

Let Ai = Aui = l2A
v
i = l1A

ũ
i = l1l2A

ṽ
i be the coefficient of eikir, then

Aui

Avi

Aũi

Aṽi

 = ε


l1l2

l1

l2

1

Wi + ε2


l1l2

l1

l2

1

 Ṽi + o(ε3), i = 1, 2, 3. (3.16)

Multiplying (3.12) and (3.15) by ε, ε2, respectively, meanwhile, using (3.8) and
(3.16) to merge the variables, we obtain the amplitude equation corresponding to
A1 as follows

τ0
∂A1

∂t
= µA1 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1, (3.17)

where

τ0 =
τ(l1l2 + l1l

′
1 + l2l

′
2 + l′3)

(l1 − 1)(l2l′2 + l′3)
, µ =

τT − τ
τT

, g1 =
τ (G11 + l′1G21)

(l1 − 1)(l2l′2 + l′3)
, g2 = 2g1.

As for other cases, we can get corresponding results by changing subscripts.
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4. Turing pattern analysis

In this section, we investigate the stability of amplitude equations and construct
different Turing patterns. Denote the amplitudes in Eq. (3.17) as follows

Ai = ρie
iφi , i = 1, 2, 3, (4.1)

where mode ρi = |Ai| and φi is the corresponding phase angle. Substituting (4.1)
into (3.17) and separating the real and imaginary parts yield

τ0
∂φ

∂t
= 0,

τ0
∂ρ1

∂t
= µρ1 − g1ρ

3
1 − g2(ρ2

2 + ρ2
3)ρ1,

τ0
∂ρ2

∂t
= µρ2 − g1ρ

3
2 − g2(ρ2

1 + ρ2
3)ρ2,

τ0
∂ρ3

∂t
= µρ3 − g1ρ

3
3 − g2(ρ2

1 + ρ2
2)ρ3,

(4.2)

where φ = φ1 + φ2 + φ3. Following the pattern dynamics theory proposed by
Turing [22], system (4.2) has four kinds of solutions as follows.

(i) The stationary state ρ1 = ρ2 = ρ3 = 0.
The stationary state corresponds to the linear perturbation equation τ0

∂ρi
∂t =

µρi. Thus, the stationary state is stable for µ
τ0
< 0 and unstable for µ

τ0
> 0.

(ii) Stripe patterns, determined by

ρ1 =

√
µ

g1
, ρ2 = ρ3 = 0,

exist only when µg1 > 0.

Set ρ̂1 =
√

µ
g1

+ σ1, ρ̂2 = σ2, ρ̂3 = σ3. Linearizing Eq. (4.2) at (ρ1, 0, 0) yields

∂

∂t


σ1

σ2

σ3

 =


− 2µ
τ0

0 0

0 µ
τ0

0

0 0 µ
τ0



σ1

σ2

σ3

 .

The characteristic equation follows that(
λ+

2µ

τ0

)(
λ+

µ

τ0

)2

= 0, (4.3)

which has three eigenvalues − 2µ
τ0

, − µ
τ0

, − µ
τ0

. Thus, if µ
τ0
> 0, the stripe patterns

are stable.
(iii) Spot patterns, determined by

ρ1 = ρ2 = ρ3 =

√
5g1µ

5g1
,

occur when µg1 > 0.
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Set ρ̂1 =
√

5g1µ
5g1

+ σ1, ρ̂2 =
√

5g1µ
5g1

+ σ2, ρ̂3 =
√

5g1µ
5g1

+ σ3. Linearizing Eq. (4.2)

at (ρ1, ρ2, ρ3) yields

∂

∂t


σ1

σ2

σ3

 =


− 2µ

5τ0
− 4µ

5τ0
− 4µ

5τ0

− 4µ
5τ0
− 2µ

5τ0
− 4µ

5τ0

− 4µ
5τ0
− 4µ

5τ0
− 2µ

5τ0



σ1

σ2

σ3

 .

The characteristic equation follows that(
λ+

2µ

τ0

)(
λ− 2µ

5τ0

)2

= 0, (4.4)

which has three eigenvalues − 2µ
τ0

, 2µ
5τ0

, 2µ
5τ0

. If µ
τ0
> 0 or µ

τ0
< 0, Eq. (4.4) always

has positive eigenvalues, then the spot patterns are unstable.
(iv) The mixed patterns, determined by

ρ1 = 0, ρ2 = ρ3 =

√
µ

3g1
,

are always unstable.

Remark 4.1. Above discussions imply that Turing patterns of system (1.2) mainly
consist of stripe patterns and spot patterns. But, only stripe patterns can keep
stable under some circumstances, namely, µg1 > 0 and µ

τ0
> 0.

5. Numerical simulations

Numerical algorithms for reaction-diffusion systems are often complicated, which
need tedious MATLAB programming. In [6], Garvie proposed a semi-implicit (in
time) finite-difference scheme to approximate the solutions of reaction-diffusion sys-
tems. The semi-implicit method means this algorithm involves approximations at
the current time level tn and at the previous time level tn−1. Finally, the algo-
rithm leads to a sparse, banded and linear system of algebraic equations. In this
section, to obtain the numerical solutions of system (1.2), we improve the algorithm
of Garvie [6] by introducing delay terms into its iterative processes.

System (1.2) is simulated numerically in a L × L (L = 50) two-dimensional
square region. We assume that nothing enters this system and nothing exits this
system. Thus, we will introduce zero-flux boundary conditions. Time step ∆t and
space step ∆h are set as 0.005 and 0.25, respectively, which needs large computation
but ensures the accuracy of numerical simulations. Diffusion coefficients (d1, d2) are
chosen as (0.1, 1.6). Besides, c1 = 2, c2 = 4, a1 = −4, a2 = 2. b1 and b2 are chosen
as free parameters. Let τ = nτ∆t and tn = n∆t.

First, we denote f̂i and ĝi (i = 1, 2) as the discrete functions corresponding to
fi and gi, respectively. Discretize system (1.2) as follows

∂ui,j(n)

∂t
= d1∆ui,j(n)− c1ui,j(n− nτ ) + a1f̂1(vi,j(n− nτ )) + b1ĝ1(ui,j(n)),

∂vi,j(n)

∂t
= d2∆vi,j(n)− c2vi,j(n− nτ ) + a2f̂2(ui,j(n− nτ )) + b2ĝ2(vi,j(n)),

(5.1)
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where i, j = 0, · · · , L/∆h. Denote

H1(n) = −c1ui,j(n− nτ ) + a1f̂1(vi,j(n− nτ )) + b1ĝ1(ui,j(n)),

H2(n) = −c2vi,j(n− nτ ) + a2f̂2(ui,j(n− nτ )) + b2ĝ2(vi,j(n)).

Finally, we obtain thatB1 0

0 B2

ui,j(n+ 1)

vi,j(n+ 1)

 =

ui,j(n) + ∆tH1(n)

vi,j(n) + ∆tH2(n)

 ,

where the constant matrices B1 and B2 can be referred to [6].
Taking parameter values in Fig. 4 into the expressions of µ, τ0 and g1, we have

µ = 0.9940 > 0, τ0 = 0.0028 > 0, g1 = 0.0921 > 0. According to the theoretical
analysis, there might be both stripe and spot patterns in this circumstance, but
only the stripe patterns are stable. As we can observe in Fig. 4, it forms mixed
patterns at first, mainly including spot patterns. As time T increases from 0 to 200,
spot patterns fade away and stripe patterns prevail through all the domain.

Figure 4. Snapshots of contour pictures of the time evolution of u(x, y, t) at time T = 5, 50, 100, 200,
respectively, with parameter values τ = 0.01, d1 = 0.1, d2 = 1.6, c1 = 2, c2 = 4, a1 = −4, a2 = 2
b1 = 3.4, b2 = 1.2 and initial condition u0 = v0 = sin(x) cos(y) + ξ(x, y) in which ξ(x, y) is a stochastic
process with respect to the spatial variable (x, y).

The stability of the homogeneous steady state E0 is the precondition for the
occurrence of Turing instability. Usually, larger leakage delay and synaptic trans-
mission delay may give rise to Hopf bifurcation and weaken the stability performance
of E0, which is illustrated in Section 2.1. Naturally rises a question that whether
leakage delay and synaptic transmission delay have some effects on the conditions
of Turing instability. In Fig. 5, choose (b1, b2) as free parameters and project the
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Figure 5. The bifurcation diagram of the parameters b1 and b2 with τ = 0.01, 0.04, 0.08, respectively,
where d1 = 0.1, d2 = 1.6, c1 = 2, c2 = 4, a1 = −4, a2 = 2. The position of the ‘+’ is (3.6, 1.8).

parameter set (consists of d1, d2, c1, c2, a1, a2, b1 and b2) into a two-dimensional
space with respect to (b1, b2). When (b1, b2) stays in the yellow regions in Fig. 5,
Turing instability occurs in system (1.2). As τ increases from 0.01 to 0.08, the
yellow region shrinks gradually.

Besides, we select a position of the mark ‘+’, which stays in the yellow region
of the first figure (τ = 0.01) in Fig. 5 but stays outside the yellow region of the
last figure (τ = 0.08). In Fig. 6, its parameter values correspond with the mark
‘+’ of the first figure (τ = 0.01) in Fig. 5, and we observe that Turing patterns
with respect to u(x, y, t) form gradually and finally keep their shape. But, once
altering τ from 0.01 to 0.08 , as we can see in Fig. 7, Turing patterns with respect
to u(x, y, t) always change, which implies that under this condition, system (1.2)
cannot form stable patterns, namely, the stability performance of Turing patterns
is weakened by leakage delay and synaptic transmission delay.

6. Conclusion

In this paper, we proposed a reaction-diffusion neural network with leakage delay.
The existence of Hopf bifurcation was investigated by analyzing characteristic equa-
tions, while the conditions of Turing instability were derived following the pattern
dynamics theory proposed by Turing [22]. Based on the multiple-scale analysis, we
derived the amplitude equations of system (1.2), which help us determine the se-
lection and competition of Turing patterns. In actual neural network circuits, both
leakage delay and synaptic transmission delay are relatively small and the error of
our theoretical analysis is little. Numerical simulations illustrate our theoretical
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Figure 6. Snapshots of contour pictures of the time evolution of u(x, y, t) at time T = 10, 20, 40, 60,
respectively, with parameter values τ = 0.01, d1 = 0.1, d2 = 1.6, c1 = 2, c2 = 4, a1 = −4, a2 = 2,
b1 = 3.6, b2 = 1.8 and initial condition u0 = v0 = (x− 25)2 + (y − 25)2 < 100.

Figure 7. Snapshots of contour pictures of the time evolution of u(x, y, t) at time T = 10, 20, 40, 60,
respectively, where τ = 0.08 and other parameter values are similar to those in Fig. 6.
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analysis and reveal the impact of leakage delay and synaptic transmission delay on
the dynamical behaviors of system (1.2). As time delays in system (1.2) increase,
the conditions of Turing instability are changed, namely, the former stable Turing
patterns may become unstable.

Pattern dynamics in neural networks with diffusion has been investigated in
[2, 28], but previous research does not consider leakage delay or synaptic transmis-
sion delay. In our study, we illustrate the impact of leakage delay on spatial and
temporal dynamics in system (1.2) and obtain meaningful results. Recently, the
experimental study indicates that fractional calculus can depict the memory and
hereditary attributes of neural networks more accurately. In our further work, we
will introduce both diffusion and fractional derivative into reaction-diffusion neural
networks with leakage delay.
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