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1. Introduction

The theory of multifractal analysis is a subfield of the dimension theory of dynam-
ical systems. It studies the complexity of the level sets of invariant local quantities
obtained from a dynamical system. For example, we can consider Birkhoff average,
Lyapunov exponents, pointwise dimensions, or local entropies. These functions are
usually only measurable and thus level sets are rarely manifold. Hence, in order to
measure the complexity of these sets it is appropriate to use quantities such as the
topological entropy or the Hausdorff dimension. The dimension spectrum has been
extensively studied for Hölder continuous potentials for C1+α conformal repellers Λ
in [3,4,7,10]. Feng etc [6] consider the dimension spectrum for the Birkhoff average
of continuous potentials on C1+α conformal repellers Λ. Barrel etc [1] consider C1

conformal repellers and potentials for which Φ is almost additive. Barreira etc [2]
study the spectrum of u−dimension for the almost additive potential with a unique
equilibrium measure. Cao [5] study the dimension spectrum of asymptotically ad-
ditive potentials for C1 average conformal repellers.

It is interesting to know whether the subtle structure of dimension survives after
small perturbations of the original system. We will consider this problem in this
paper. Let M be a C∞ Riemann manifold, dimM = d. Let U be an open subset
of M and let f : U → M be a C1 map. Suppose Λ ⊂ U is a compact invariant
set on which f is conformal expanding. Let ϕ : M → R be a continuous potential
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function. For any x ∈ Λ, we define the ergodic limit, when it exists, as

α(x) = lim
n→∞

Sn,f (x).

Given α ∈ R, we consider the level set:

Lα = {x ∈ Λ : α(x) = α}.

The dimension spectrum D : R→ R is defined by

D(α) = dimHLα.

If fk is a nonconformal perturbation of f , then there exists a nonconformal repeller
Λk such that fk|Λk is topological conjugate to f |Λ. We will consider the dimension
spectrum for ϕ with respect to the map fk on Λk and study the stability of Hausdorff
dimension for level sets.

2. Preliminaries

In this section we briefly recall some notations about topological pressure and Haus-
dorff dimensions of sets.

2.1. Topological pressure

We first recall the notion of topological pressure (see Pesin [8] for more details).
Let f : X → X be a continuous map. Given a finite cover V, we denote Wn(V)
the collection of vectors V = (V0, V1, . . . , Vn) with V0, V1, . . . , Vn ∈ V. For each
V ∈ Wn(V), we write m(V ) = n and we consider the open set

X(V ) =

n⋂
k=0

f−kVk.

Now let ϕ be a continuous function. For each V ∈ Wn(V) we write

ϕ(V ) =

 supX(V ) Snϕ(x), if X(V ) 6= ∅,

−∞, otherwise.

Given a set Z ⊂ X and α ∈ R, we define the function

M(Z,α, ϕ,V) = lim
n→∞

inf
Γ

∑
V ∈Γ

exp(−αm(V ) + ϕ(V )),

where the infimum is taken over all finite or countable collections Γ⊂
⋃
k≥nWk(V)

such that
⋃
V ∈ΓX(V ) ⊃ Z.

We also define PZ(ϕ,V) = inf{α ∈ R : M(Z,α, ϕ,V) = 0}. Then the limit

PZ(ϕ) = lim
diam(V)→0

PZ(ϕ,V)

is called the topogical pressure of ϕ in the set Z.
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Next we give the definition of the topological pressure of subset using a seper-
ated set. Let X be a compact metric space with a metric d and f : X → X
is a continuous transformation. We define a new metric dn on X by dn(x, y) =
max0≤i≤n−1 d(f ix, f iy) for x, y ∈ X. Bn(x, δ) = {y ∈ X : dn(x, y) < δ} is a bal-
l centered at x with radius δ under the metric dn. Now fix a potential function
φ : X → R. Given Z ⊂ X, δ > 0 and N ∈ N, let P(Z,N, δ) be the collection of
countable sets {(xi, ni) ⊂ Z × {N,N + 1, . . .}} such that Z ⊂

⋃
iBni(xi, δ). For

each s ∈ R, consider the set functions

mP (Z, s, φ,N, δ) = inf
P(Z,N,δ)

∑
(xi,ni)

exp(−nis+ Sniφ(xi)),

mP (Z, s, φ, δ) = lim
N→∞

mP (Z, s, φ,N, δ).

This function is non-increasing in s, and takes values ∞ and 0 at all but at most
one value of s. Denote the critical value of s by

PZ(φ, δ) = inf{s ∈ R : mP (Z, s, φ, δ) = 0}
= sup{s ∈ R : mP (Z, s, φ, δ) =∞},

we get mP (Z, s, φ, δ) = ∞ when s < PZ(φ, δ) and 0 when s > PZ(φ, δ). The
topological pressure of φ on Z is defined as

PZ(φ) = lim
δ→0

PZ(φ, δ).

The limit exists because given δ1 < δ2, we have P(Z,N, δ1) ⊂ P(Z,N, δ2) and hence
mP (Z, s, φ, δ1) ≥ mP (Z, s, φ, δ2), then PZ(φ, δ1) ≥ P(Z,N, δ2).

2.2. Hausdorff dimensions of sets

Given a subset Z of X, for s ≥ 0 and δ > 0, define

Hsδ(Z) = inf

{∑
i

|Ui|s : Z ⊂
⋃
i

Ui, diam(Ui) ≤ δ

}
.

Note that Hsδ(Z) is decreasing in δ. Thus, the limit

Hs(Z) = lim
δ→0
Hsδ(Z)

exists(may be infinite). Hs(Z) is called s−dimensional Hausdorff measures of Z.
And the hausdorff dimension of Z, denoted by dimH Z, is defined as follows:

dimH Z = inf{s : Hs(Z) = 0} = sup{s : Hs(Z) =∞}.

3. Main result

Let M be a C∞ compact Riemann manifold. f : M → M is a C1 map and
Λf ⊂M is a conformal repeller of f . Let M(Λf , f) the set of all f -invariant Borel
probability measures supported on Λf . For each µ ∈ M(Λf , f), denote by hµ(f)
the measure-theoretic entropy of f with respect to µ.
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Suppose ϕ : M → R is a continuous function. For α ∈ R, the level set Lα is
defined as

Lα
4
= Lf,α = {x ∈ Λf | lim

n→∞

Sn,fϕ(x)

n
= α},

where Sn,fϕ(x) =
∑n−1
i=0 ϕ(f i(x)) is the Birkhoff sum of ϕ respect to f . It is easy

to check that Lα 6= ∅ if and only if α ∈ [minµ∈M(Λf ,f)

∫
ϕdµ,maxµ∈M(Λf ,f)

∫
ϕdµ].

For every k ∈ N, we now consider a C1 map fk : M → M which is C1 close to
f . Suppose the sequence {fk} converges to f as k →∞. By the structure stability
of expanding maps, there exists Λk ⊂M which is a repeller(may not be conformal)
of fk such that fk|Λk is topological conjugate to f |Λf . More precisely, there exists
a homeomorphism πk : Λ→ Λk satisfies πk ◦ f = fk ◦ πk and πk → Id as k →∞.

For αk ∈ [minµ∈M(Λk,fk)

∫
ϕdµ,maxµ∈M(Λk,fk)

∫
ϕdµ], we denote the corre-

sponding level set for fk by

Lαk
4
= Lfk,αk = {x ∈ Λk| lim

n→∞

Sn,fkϕ(x)

n
= αk}.

In the following we write

α = min
µ∈M(Λf ,f)

∫
ϕdµ, α = max

µ∈M(Λf ,f)

∫
ϕdµ

and

αk = min
µ∈M(Λk,fk)

∫
ϕdµ, αk = max

µ∈M(Λk,fk)

∫
ϕdµ

for convenience.
It is easy to check that limk→∞ αk = α. In fact, suppose m ∈ M(Λ, f) such

that
∫
ϕdm = α, then mk = π∗km ∈M(Λk, fk) and αk ≤

∫
ϕdmk. Hence

lim sup
k→∞

αk ≤ lim
k→∞

∫
ϕdmk = lim

k→∞

∫
ϕ ◦ πkdm =

∫
ϕdm = α.

On the other hand, let limn→∞ αkn = lim infk→∞ αk. There existsmkn ∈M(Λkn , fkn)
such that

∫
ϕdmkn

= αkn . Suppose m is a limit point of {mkn
}, then m ∈M(Λ, f).

Therefore

α ≤
∫
ϕdm = lim

n→∞

∫
ϕdmkn = lim inf

k→∞

∫
ϕdmk.

Similarly, we obtain that limk→∞ αk = α. Thus for every α ∈ (α, α) and every se-
quence {αk} satisfies limk→∞ αk = α, we conclude that αk ∈ (αk, αk) for sufficiently
large k ∈ N.

The main result in this paper is the following theorem.

Theorem 3.1. Suppose α ∈ (α, α). If limk→∞ αk = α, then

lim
k→∞

dimH Lαk = dimH Lα.

4. The proof of main result

In this section, we give the proof of main result Theorem 3.1. In order to prove
theorem, we start with some lemmas.
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Lemma 4.1. For α ∈ (α, α), we have

dimH Lα = max
µ∈M(Λf ,f)

{
hµ(f)∫

log ‖Df‖dµ

∣∣∣ ∫ ϕdµ = α

}
= min

q∈R
T (q, α),

where T (q, α) is the unique root of equation P (q(ϕ− α)− t log ‖Df‖) = 0.

This lemma is an immediate consequence of Theorem C in Cao [5], since Λf is
a conformal repeller.

Lemma 4.2. Suppose µk ∈ M(Λk, fk) for k ∈ N, if µk → µ in the weak* topology
in M(X), then µ ∈M(Λf , f) and lim supk→∞ hµk(fk) ≤ hµ(f).

Proof. Since µk ∈M(Λk, fk), for any continuous g : M → R, we have∫
g ◦ fkdµk =

∫
gdµk.

Therefore ∫
g ◦ fdµ = lim

k→∞

∫
g ◦ fdµk

= lim
k→∞

(

∫
g ◦ fdµk −

∫
g ◦ fkdµk +

∫
g ◦ fkdµk)

= lim
k→∞

∫
g ◦ (f − fk)dµk + lim

k→∞

∫
g ◦ fkdµk

= lim
k→∞

∫
gdµk

=

∫
gdµ.

This implies µ is f -invariant.
For every k, let µk = (π−1

k )∗µk. Then µk(B) = µk(πk(B)) for any measurable
B ⊂ X and µk ∈ M(Λf , f). We claim that µk → µ as k → ∞. In fact, for any
continuous g : M → R, we have∫

gdµk =

∫
g ◦ π−1

k dµk =

∫
g ◦ π−1

k dµk −
∫
g ◦ π−1

k dµ+

∫
g ◦ π−1

k dµ.

By using µk → µ and πk → Id, we have that limk→∞
∫
gdµk =

∫
gdµ, which implies

µk → µ.
Since entropy is conjugacy invariant then we have hµk(fk) = hµk(f). The upper

semi-continuity of the map µ 7→ hµ(f) implies that

lim sup
k→∞

hµk(fk) = lim sup
k→∞

hµk(f) ≤ hµ(f).

Lemma 4.3. If αk ∈ (αk, αk), then

t∗(k) ≤ dimHLαk ≤ t∗(k),

where t∗(k), t∗(k) is the root of equation

PLαk (−t log ‖Dfk‖) = 0 and PLαk (−t logm(Dfk)) = 0

respectively.
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Proof. First we proof that dimHLαk ≥ t∗(k). Without loss of generality, we
assume t∗(k) > 0. Since the inequality holds for t∗(k) = 0. For every 0 < s < t∗(k),
we have PLαk (fk,−s log ‖Dfk‖) > 0 and denote it by A. Let ρ be small enough
such that sρ < A. Then there exists r0 such that if d(x, y) < r0 then

e−ρ ≤ Dfk(x)

Dfk(y)
≤ eρ.

By the definition of the Haudorff measure, for every ε > 0, there is a cover Cε =
{B(xi, ri), ri < ε} such that

Hsε(Lαk) + 1 ≥
∑

B(xi,ri)∈Cε

(2ri)
s.

Fix δ > 0, for every B(xi, ri) there exists ni ∈ N such that B(xi, ri) ⊂ Bni(xi, δ) but
B(xi, ri) * Bni+1(xi, δ). Hence there exists y ∈ B(xi, ri) such that d(f ik(xi), f

i
k(y)) <

δ for i = 0, 1, · · · , ni but d(fni+1
k (xi), f

ni+1
k (y)) ≥ δ. Thus we have

δ ≤ d(fni+1
k (xi), f

ni+1
k (y)) ≤ K‖Dfnik (ξ)‖d(xi, y)

≤ KΠni−1
j=0 ‖Dfk(f jk(ξ))‖ri ≤ KeniρΠni−1

j=0 ‖Dfk(f jk(xi))‖ri.

Therefore

ri ≥
δ

KeniρΠni−1
j=0 ‖Dfk(f jk(xi))‖

.

It implies that∑
B(xi,ri)∈Cε

(2ri)
s ≥ (2δ)s

Ks

∑
Bni (xi,δ)

1

esniρΠni−1
j=0 ‖Dfk(f jk(xi))‖s

=
(2δ)s

Ks

∑
Bni (xi,δ)

exp(−sSni,fk log ‖Dfk(xi)‖ − sniρ)

≥ (2δ)s

Ks
mP (Lαk , sρ,−s log ‖Dfk‖, N, δ),

where N = min{ni}. Obviously, we can see that N → ∞ as ε → 0. From the
definition of topological pressure and the fact that sρ < PLαk (fk,−s log ‖Dfk‖), it
follows that

lim
N→∞

mP (Lαk , sρ,−s log ‖Dfk‖, N, δ) =∞.

Thus we have limε→∞Hsε(Lαk) = ∞. Hence dimH Lαk ≥ s. The arbitrariness of
s < t∗(k) implies that dimH Lαk ≥ t∗(k).

Next we prove that dimH Lαk ≤ t∗(k).

For every s > t∗(k), we have PLαk (fk,−s logm(Df))
4
= B < 0. Then there

exists δ0 > 0 such that PLαk (fk,−s logm(Df), δ) < B
2 < 0 if δ < δ0. Hence

mP (Lαk ,
B
2 ,−s logm(Dfk), δ) = 0. Let ρ > 0 be small enough and satisfy sρ < −B2 .

It has e−ρ ≤ m(Dfkx)
m(Dfky) ≤ e

ρ if d(x, y) is sufficiently small. Observe that

mP (Lαk ,
B

2
,−s logm(Dfk), N, δ)
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= inf

 ∑
Bni (xi,δ)

exp(−B
2
ni − sSni(logm(Dfk(xi))))


= inf

 ∑
Bni (xi,δ)

exp(−B
2
ni) ·

ni−1∏
j=0

(
m(Dfk(f jk(xi)))

)−s
where the infimum is taken over by the set of all covers Cδ = {Bni(xi, δ) : ni ≥ N}
of Lαk . For any y ∈ Bni(x, δ), there exists ξ ∈ Bni(xi, δ) such that

δ ≥ d(fnik (xi), f
ni
k (y)) ≥ m(Dfnik (ξ)))d(xi, y)

≥
ni−1∏
j=0

m(Dfk(f jk(ξ))d(xi, y) ≥ e−niρ
ni−1∏
j=0

m(Dfk(f jk(xi)))d(xi, y).

Therefore

diam(Bni(xi, δ)) ≤
δeniρ∏ni−1

j=0 m(Dfk(f jk(xi)))
.

Thus

mP (Lαk ,
B

2
,−s logm(Dfk), N, δ)

≥ inf

 ∑
Bni (xi,δ)

exp(−B
2
ni − sniρ) · 1

δs
· diam(Bni(xi, δ))

s


≥ inf

 ∑
Bni (xi,δ)

1

δs
· diam(Bni(xi, δ))

s


≥ 1

δs
Hsδ(Lαk).

Taking N →∞, we get

0 = mP (Lαk ,
B

2
,−s logm(Dfk), δ)

= lim
N→∞

mP (Lαk ,
B

2
,−s logm(Dfk), N, δ)

≥ 1

δs
Hsδ(Lαk).

This impliesHsδ(Lαk) = 0 and henceHs(Lαk) = 0. This shows that dimH(Lαk) ≤ s.
Since s > t∗(k) is arbitrary, we obtain that dimH(Lαk) ≤ t∗(k).

Lemma 4.4. t∗(k), t∗(k), αk is defined as above, then

t∗(k) = max
µk∈M(Λk,fk)

{
hµk(fk)∫

log ‖Dfk‖dµk

∣∣∣ ∫ ϕdµk = αk

}
and

t∗(k) = max
µk∈M(Λk,fk)

{
hµk(fk)∫

logm(Dfk)dµk

∣∣∣ ∫ ϕdµk = αk

}
.



The stability of Hausdorff dimension for the level sets 1127

Proof. By modifying the argument in the proof of Theorem 4.1 in Cao [5], we
obtain that

PLαk (−t log ‖Dfk‖) = max
µk∈M(Λk,fk)

{
hµk(fk)− t

∫
log ‖Dfk‖dµk

∣∣∣ ∫ ϕdµk = αk

}
.

Then for every µk ∈M(Λk, fk) with
∫
ϕdµk = αk, we have

hµk(fk)− t∗(k)

∫
log ‖Dfk‖dµk ≤ 0.

Thus

t∗(k) ≥ hµk(fk)∫
log ‖Dfk‖dµk

.

On the other hand, the upper semi-continuity of the map µk → hµk(fk) implies
that there exists µ∗k with

∫
ϕdµ∗k = αk such that

PLαk (−t∗(k) log ‖Dfk‖) = hµ∗k(fk)− t∗(k)

∫
log ‖Dfk‖dµ∗k = 0.

Hence we have t∗(k) =
hµ∗
k

(fk)∫
log ‖Dfk‖dµ∗k

. Therefore

t∗(k) = max
µk∈M(Λk,fk)

{
hµk(fk)∫

log ‖Dfk‖dµk

∣∣∣ ∫ ϕdµk = αk

}
.

Similar arguments shows that

t∗(k) = max
µk∈M(Λk,fk)

{
hµk(fk)∫

logm(Dfk)dµk

∣∣∣ ∫ ϕdµk = αk

}
.

For αk ∈ (αk, αk), we now consider the equation

P (q(ϕ− αk)− t log ‖Dfk‖) = 0 (4.1)

where q ∈ R. For fixed αk, q, the function pk(t) = P (q(ϕ−αk)−t log ‖Dfk‖) is con-
tinuous and strictly decreasing. Moreover, limt→−∞ pk(t) = +∞, limt→∞ pk(t) =
−∞. Then there exists a unique root Tk(q, αk) of equation (4.1).

In the next we want to establish the equality t∗(k) = minq∈R Tk(q, αk). This
process is a slightly modification of Proposition 4.3 in Cao [5]. Here we present it
for completeness.

Lemma 4.5. if αk ∈ (αk, αk), then

inf
q∈R

P (q(ϕ− αk)− t∗(k) log ‖Dfk‖) ≥ 0.

Proof. Given δ > 0 and m ∈ N, we consider the set

Lδ,m = {x ∈ Λk : |Sn,fkϕ(x)− nαk| < δn for n ≥ m}.

It is easy to check that Lαk ⊂
⋂
δ>0

⋃
m∈N Lδ,m. Let V be a finite cover of Λk

with sufficiently small diameter such that |ϕ(x1)− ϕ(x2)| ≤ δ for every V ∈ V and
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x1, x2 ∈ V . Now take Γ ⊂
⋃
n≥mWn(V) such that Lδ,m ⊂

⋃
V⊂ΓX(V ). Without

loss of generality we assume that there is no V with X(V )
⋂
Lδ,m = ∅. Then for

any x in X(V ), there exists y ∈ X(V )
⋂
Lδ,m = ∅ such that

|Sm(V ),fkϕ(x)−m(V )αk| ≤ |Sm(V ),fkϕ(x)− Sm(V ),fkϕ(y)|
+|Sm(V ),fkϕ(y)−m(V )αk|

≤ m(V )δ +m(V )δ = 2m(V )δ.

It means that −2m(V )δ ≤ Sm(V ),fkϕ(V )−m(V )αk ≤ 2m(V )δ and hence q(Sm(V ),fk

ϕ(V )−m(V )αk) + 2|q|m(V )δ ≥ 0. Then for every β ∈ R, we have∑
V ∈Γ

exp(−βm(V )− t∗(k)Sm(V ),fk log ‖Dfk‖(V ))

≤
∑
V ∈Γ

exp(−βm(V ) + 2|q|m(V )δ + q(Sm(V ),fkϕ(V )−m(V )αk)

−t∗(k)Sm(V ),fk log ‖Dfk‖(V ))

≤
∑
V ∈Γ

exp(−βm(V ) + 2|q|m(V )δ + [q(Sm(V ),fkϕ−m(V )αk)

−t∗(k)Sm(V ),fk log ‖Dfk‖](V )).

This implies that

M(Lδ,m, β,−t∗(k)Sm(V ),fk log ‖Dfk‖,V)

≤ M(Lδ,m, β − 2|q|δ, q(Sm(V ),fkϕ−m(V )αk)− t∗(k)Sm(V ),fk log ‖Dfk‖,V).

Then

PLδ,m(−t∗(k) log ‖Dfk‖,V)− 2|q|δ ≤ PLδ,m(q(ϕ− αk)− t∗(k) log ‖Dfk‖,V).

Letting diam(V)→ 0, we have

PLδ,m(−t∗(k) log ‖Dfk‖) ≤ PLδ,m(q(ϕ− αk)− t∗(k) log ‖Dfk‖) + 2|q|δ

for every δ > 0 and q ∈ R. On the other hand, by the definition of t∗(k) we have

0 = PLαk (−t∗(k) log ‖Dfk‖) ≤ P⋃
m∈N Lδ,m

(−t∗(k) log ‖Dfk‖)
= sup

m∈N
PLδ,m(−t∗(k) log ‖Dfk‖) ≤ P (q(ϕ− αk)− t∗(k) log ‖Dfk‖) + 2|q|δ.

Since δ > 0 is arbitrary, we obtain P (q(ϕ − αk) − t∗(k) log ‖Dfk‖) ≥ 0. This
completes the proof of the lemma.

Lemma 4.6. if αk ∈ (αk, αk), then

min
q∈R

P (q(ϕ− αk)− t∗(k) log ‖Dfk‖) = 0.

Proof. Let rk be the distance of αk to R\(αk, αk). For q ∈ R, define

Fk(q) = P (q(ϕ− αk)− t∗(k) log ‖Dfk‖).
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Then Fk(q) is continuous. Let β = αk + rk
2 when q > 0, and β = αk − rk

2 when
q < 0. Then β ∈ (αk, αk). It means that there exists µk ∈ M(Λk, fk) such that
limn→∞

∫
ϕdµk = β. Therefore

Fk(q) = max
µ
{hµ(fk) +

∫
(q(ϕ− αk)− t∗(k) log ‖Dfk‖)dµ}

≥ hµk(fk) +

∫
(q(ϕ− αk)− t∗(k) log ‖Dfk‖)dµk

= hµk(fk) +

∫
(q(ϕ− β) + q(β − αk)− t∗(k) log ‖Dfk‖)dµk

= hµk(fk)− t∗(k)

∫
log ‖Dfk‖dµk +

1

2
|q|rk.

We note that the right-hand side of the inequality takes arbitrarily large values
for |q| sufficiently large. Thus there exists M ∈ R such that Fk(q) ≥ Fk(0) with
|q| > M . The continuity of Fk(q) implies that Fk(q) attains a minimum at some
points qk with |qk| ≤M . Thus for every q ≥ qk, Fk(q)− Fk(qk) ≥ 0. Let µq be the
equilibrium of q(ϕ− αk)− t∗(k) log ‖Dfk‖. Then

Fk(q)− Fk(qk) ≤ hµq (fk) +

∫
(q(ϕ− αk)− t∗(k) log ‖Dfk‖)dµq

−
(
hµq (fk) +

∫
(qk(ϕ− αk)− t∗(k) log ‖Dfk‖)dµq

)
= (q − qk)

∫
(ϕ− αk)dµq.

Hence
∫

(ϕ − αk)dµq ≥ 0. Now without loss of generality, suppose µq → ν1 as
q → qk. The upper semi-continuity of entropy hµk implies that

Fk(qk) = lim
q→qk

Fk(q) ≤ hν1(fk) +

∫
(qk(ϕ− αk)− t∗(k) log ‖Dfk‖)dν1.

Thus ν1 is an equilibrium of qk(ϕ− αk)− t∗(k) log ‖Dfk‖ and
∫

(ϕ− αk)dν1 ≥ 0.
Similarly by considering the case q ≤ qk, then Fk(q) − Fk(qk) ≥ 0 and we

can find an invariant measeure ν2 such that ν2 is an equilibrium of qk(ϕ − αk) −
t∗(k) log ‖Dfk‖ and

∫
(ϕ− αk)dν2 ≤ 0.

For a ∈ [0, 1], let µa = aν1 + (1−a)ν2. Then p(a) =
∫

(ϕ−αk)dµa is continuous
on [0, 1] and p(0) ≤ 0, p(1) ≥ 0. Hence there exists a0 such that p(a0) =

∫
(ϕ −

αk)dµa0 = 0. Since ν1, ν2 are equilibriums of qk(ϕ−αk)− t∗(k) log ‖Dfk‖, then µa0
is an equilibrium of qk(ϕ − αk) − t∗(k) log ‖Dfk‖. If Fk(qk) > 0, then hµa0 (fk) −
t∗(k)

∫
log ‖Dfk‖dµa0 > 0. Therefore we have

t∗(k) <
hµa0∫

log ‖Dfk‖dµa0
.

This contradicts the fact

t∗(k) = max
µk∈M(Λk,fk)

{
hµk(fk)∫

log ‖Dfk‖dµk

∣∣∣ ∫ ϕdµk = αk

}
.

Hence Fk(qk) = 0 and t∗(k) =
hµa0∫

log ‖Dfk‖dµa0
. This completes the proof of the

lemma.
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Remark 4.1. In the proof of lemma 4.6, we can prove that there exists M ∈ R
such that for k ∈ N sufficient large, Fk(q) attains a minimum at some points qk
with |qk| ≤M . In fact, we only take rk ≥ r̃ > 0 for some r̃ and sufficient large k.

Lemma 4.7. If αk ∈ (αk, αk), then t∗(k) = minq∈R Tk(q, αk).

Proof. It follows from lemma 4.6 that if αk ∈ (αk, αk), then there exists qk such
that

0 = F (qk) = P (qk(ϕ− αk)− t∗(k) log ‖Dfk‖).

Hence t∗(k) = Tk(qk, αk). On the other hand, for every q ∈ R, F (q) = P (q(ϕ −
αk)− t∗(k) log ‖Dfk‖) ≥ 0 which implies t∗(k) ≤ Tk(q, αk) for every q ∈ R. Hence
t∗(k) = minq∈R{Tk(q, αk)}.

Now we move to the proof of Theorem 3.1.
Proof. It is sufficient to verify that

lim sup
k→∞

dimH Lαk ≤ dimH Lα ≤ lim inf
k→∞

dimH Lαk .

By lemma 4.3 and lemma 4.4 we have

dimH Lαk ≤ t∗(k) = max
µ∈M(Λk,fk)

{
hµk(fk)∫

logm(Dfk)dµk

∣∣∣ ∫ ϕdµk = αk

}
for αk ∈ (αk, αk). Supppose µ̃k is the fk-invariant measure at which the maximum
in the last equality can be attained. Then

dimH Lαk ≤
hµ̃k(fk)∫

logm(Dfk)dµ̃k
and

∫
ϕdµ̃k = αk.

Without loss of generality, we may assume µ̃k → µ∗ as k → ∞. It implies µ∗ ∈
M(Λf , f) and

∫
ϕdµ∗ = limk→∞

∫
ϕdµ̃k = limk→∞ αk = α. Then by lemma 4.2

and lemma 4.1 we have

lim sup
k→∞

dimH Lαk ≤ lim sup
k→∞

hµ̃k(fk)∫
logm(Dfk)dµ̃k

≤ hµ∗(f)∫
logm(Df)dµ∗

≤ max
µ∈M(Λ,f)

{
hµ(f)∫

logm(Df)dµ

∣∣∣ ∫ ϕdµ = α

}
= dimH Lα.

On the other hand, by lemma 4.7

dimH Lαk ≥ t∗(k) = min
q∈R

Tk(q, αk).

Take qk such that minq∈R Tk(q, αk) = Tk(qk, αk). By Remark 4.1 we obtain that
|qk| ≤ M for every large k. This implies that the sequence {qk} has limit point.
Without loss of generality, we may assume limk→∞ qk = q∗. By Theorem 9.8 in
Walters [9, p216] we have

PΛk(fk, qk(ϕ− αk)− t log ‖Dfk‖) = PΛ(f, (qk(ϕ− αk)− t log ‖Dfk‖) ◦ πk).
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Then

PΛk(fk, qk(ϕ− αk)− t log ‖Dfk‖)→ PΛ(f, q∗(ϕ− α)− t log ‖Df‖)

as k →∞. Hence limk→∞ Tk(qk, αk) = T (q∗, α).
Therefore for sufficiently small ε > 0 we have

lim inf
k→∞

dimH Lαk ≥ T (q∗, α)− ε ≥ min
q∈R

T (q, α)− ε = dimH Lα − ε.

As ε is arbitrary, we obtain that

lim inf
k→∞

dimH Lαk ≥ dimH Lα.

This implies the result.
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