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HEREDITARY EFFECTS OF
EXPONENTIALLY DAMPED OSCILLATORS

WITH PAST HISTORIES∗

Guozhong Xiu1, Jian Yuan2,†, Bao Shi1 and Liying Wang1

Abstract This paper presents hereditary effects of exponentially damped
oscillators with past histories. Unlike the classical viscously damped oscil-
lators, the nonviscously damped ones involve damping forces which depend
on time-histories of vibrating motions via convolution integrals. As a re-
sult, equations of motion of such systems are a set of coupled second-order
Volterra integro-differential equations. In this work, initial value problems for
the integro-differential equations are revisited. The initial conditions should
contain time-histories of vibrating motions. Then, initialization response of
exponentially damped oscillators is obtained. It is used to characterize the
hereditary effects on the dynamic response. At last, stability of initialization
response is proved from the theoretical viewpoint and verified by numerical
simulations. This reveals that the hereditary effects gradually recede with
increasing of time.
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MSC(2010) 45D05, 45J05.

1. Introduction

Viscoelastic materials have seen broad applications in vibration control engineering
due to their high damping capacity [8]. The modeling of constitutive relations of vis-
coelastic materials is of great importance for analysis and design of viscoelastically
damped structures. However, it is difficult to be modeled because the mechanical
behavior of viscoelastic materials is highly dependent on various factors such as
time, temperature, the vibrating frequency and so on [22].

Integral constitutive models of viscoelastic materials are derived based on me-
chanical properties of stress relaxation and creep. The stress relaxation functions
and creep functions are memory and hereditary kernels in the integral constitu-
tive equations. They can be expressed by a series of exponential functions [13, 24],
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power-law functions [14], Mittage-Leffler functions [14], or other types of functions.
Integral constitutive models are superior to the differential ones in many aspects: (i)
the fading memory property can be characterized and time-history of loading acting
on materials can be recorded; (ii) the stress relaxation functions or creep functions
are easily and directly obtained via experiment data fitting; (iii) other factors such
as temperature and the ageing affects can be conveniently included in the model.
When integral constitutive relations are used as damping models in viscoelastically
damped structures, equations of motion of such systems are a set of coupled second-
order integro-differential equations. The presence of the “integral” term makes the
vibration analysis and control design more complicated than the classical ones. The
integral type damping models are also called nonviscously damping models. The
corresponding oscillators are called nonviscously damped oscillators.

Researches on nonviscously damped oscillators are mainly concentrated on two
types: one is the exponentially damped oscillators, where the damping forces are ex-
pressed by exponentially fading memory kernels; the other is the fractional-order os-
cillators, where the viscoelastic relaxation functions are characterized by power-law
functions or Mittage-Leffler functions. Adhikari and his colleagues have system-
atically investigated the structural dynamics with exponentially damped models
in [1–3]. They have discovered that, unlike the classical viscously damped oscilla-
tors, an exponentially damped single-degree-of-freedom oscillator has three eigen-
values. The complex conjugate pair of roots corresponds to the vibration motion
and the third one corresponds to a purely dissipative motion. Dynamics of exponen-
tially damped oscillators is governed by both of the viscous damping factor and the
nonviscous damping factor. For the dynamic analysis of multi-degree-of-freedom
systems, they have developed a state-space approach using additional dissipation
coordinates and the configuration space method. It was shown that the character-
istic equation for an N degree-of-freedom system is more than N and the modes
are divided into elastic modes and nonviscous modes. In [4], an analytical solu-
tion using modal superposition are developed for the analysis of an exponentially
damped solid rod. In [10], a method has been proposed to calculate eigensolution
derivatives for the nonviscously damped systems. In [19], a state-space method
has been proposed to identify modal and physical parameters for the nonviscously
damped systems. A closed-form approximation expression of the eigenvalues for
non-viscous, non-proportional systems has been derived in [11].

Fractional-order oscillators are another type of nonviscously damped oscillators.
They are under extensive investigations for the last three decades. The constitutive
models involving fractional-order derivatives have been viewed more accurate and
concise than other ones [15]. As a result, researches on fractional oscillators have
been expected to be a promising work for structural dynamics analysis and control
design. However, the fractional differential equations of motions are difficult to
deal with due to the presence of the weakly singular kernels. Studies on dynamic
responses of fractional-order oscillators have been reviewed in [20]. Asymptotically
steady state behavior of fractional oscillators has been presented in [16, 17, 21].
The criteria for the existence and the behavior of solutions have been obtained
in [5, 9, 23]. In [26] , expression of mechanical energy in fractional oscillators has
been determined and energy regeneration and dissipation have been obtained. In
[27,28], vibration controls have been designed using sliding mode control technique
for several oscillators.

The damping forces in nonviscously damped oscillators depend on the past his-
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tory of motion via convolution integrals. As a result, dynamics of the nonviscously
damped oscillators is said to have memory. However, the memory and hereditary
properties of fractional-order systems have been neglected and ambiguous for a
long time [18]. Considering the memory effect and prehistory of fractional oscilla-
tors, the historical effects and initialization problems have been proposed in [7,12].
Stability of initialization response of fractional oscillators has been proved based
on the unit impulse response function in [25]. Initial value problems for general
fractional order systems have been studied in [6, 29, 30]. In [29], the complexity
and the importance of the initial value problem have been presented by simulation
examples. The named aberration phenomenon has been revealed by generalizing
the infinite dimensional property and the long memory property. In [30], the term
pre-initial process has been used to describe the long memory property of fractional
order systems. A method of segmented linearization has been proposed to fit the
time-varying initialization function. In [6], a practical method has been proposed
to estimate the exact initial states of fractional order systems.

In short, nonviscously damped oscillators are capable of characterizing dynam-
ics of viscoelastically damped structures in vibration engineering. They are mainly
classified into two types: exponentially damped ones and fractional-order ones. This
paper focuses on the hereditary effects of the exponentially damped oscillators with
past histories. The main objective is to prove stability of initialization response
and to show that the hereditary effects gradually recede with time. For this end,
we revisit initial value problems for nonvicously damped oscillators in Section 2.
We declare that knowledge of the equations of motion, along with the initial dis-
placement and velocity is insufficient to determine the dynamics behaviors. The
initial conditions should also contain past history of response velocity. In Section
3, we obtain initialization response of exponentially damped oscillators. It can be
used to characterize the hereditary effects of history on the dynamic response. In
Section 4, we prove that hereditary effects on the initialization response recede to
zero with increasing of time. Numerical simulations are carried out to verify this
phenomenon.

2. Initialization for nonviscously damped oscillators

The integral constitutive relations of viscoelastic materials are represented by the
following integro-differential equation of Volterra type:

σ (t) =

∫ t

−∞
G (t− τ) ε̇ (τ) dτ, (2.1)

where σ (t) is the stress, ε (t) is the stain, G (t) is the stress relaxation function. The
lower terminal in the integral is −∞ because the stress of viscoelastic materials is
dependent on all the time histories of the strain [22].

Fig.1 shows an single-degree-of-freedom oscillator with an viscoelastic damper.
When Eq.(2.1) is used to characterize the damping force, i.e.,

fd (t) = c

∫ t

−∞
G (t− τ) ẋ (τ) dτ,
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the equation of motion of the oscilaator can be expressed as

mẍ(t) + c

∫ t

−∞
G (t− τ) ẋ (τ) dτ + kx(t) = f (t) , (2.2)

where m is the mass, k is the stiffness, c is the damping coefficient, x (t) is the
displacement, f (t) is the external force acting on the system.

Figure 1. Single-degree-of-freedom exponentially damped oscillator, damping force fd (t) =

c
∫ t
−∞G (t− τ) ẋ (τ) dτ .

The integral term in Eq.(2.2) makes the dynamic models different from the
classical ones. It contains not only the information of vibrating displacement x (t)
and velocity ẋ (t), but also the time-histories of velocity ẋ (t). This implies that,
unlike the viscously damped systems, the equation of motion, the instantaneous
displacement and velocity are insufficient to predict the dynamic behaviors. Time-
histories of motion should be added to initial conditions to fully determine the
dynamics of nonvicously damped oscillators. As a result, the dynamic equation
with past history is described as

mẍ(t) + c
∫ t
−∞G (t− τ) ẋ (τ) dτ + kx(t) = f (t) , t > 0,

x(0) = x0, ẋ(0) = v0,

ẋ(t) = v(t), −∞ < t < 0,

(2.3)

where t = 0 is the initial time and the lower terminal in the integral t = −∞ is the
starting time of vibration. In reality it is more reasonable to set the starting time
as t = −a, which means that the system is at quiescent before t = −a and begins
vibrating at t = −a.

To be more familiar with the dynamic systems with memory, the integral term
in Eq.(2.3) can be separated into two part:∫ t

−a
G (t− τ) ẋ (τ) dτ =

∫ 0

−a
G (t− τ) ẋ (τ) dτ +

∫ t

0

G (t− τ) ẋ (τ) dτ.

The first part characterizes the hereditary effects of the histories of motion on the
system dynamics, which is denoted as ψ (t):

ψ (t) =

∫ 0

−a
G (t− τ) ẋ (τ) dτ =

∫ 0

−a
G (t− τ) v (τ) dτ. (2.4)
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ψ (t) contains the time histories of motion, acts as an internal force and influ-
ence the behavior of dynamic systems after the initial time t = 0. Eq.(2.3) can be
rewritten as{

mẍ(t) + c
∫ t

0
G (t− τ) ẋ (τ) dτ + kx(t) = f (t)− cψ (t) , t > 0,

x(0) = x0, ẋ(0) = v0.
(2.5)

Remark 2.1. If the nonvicously damped oscillator is at rest before t = 0, there is
no vibrating motion from past histories, i.e.,

x (t) = 0,−∞ < t < 0.

In this special case, the equation of motion is

mẍ(t) + c

∫ t

0

G (t− τ) ẋ (τ) dτ + kx(t) = f (t) .

The initial values contain only the initial displacement x(0) and the initial velocity
ẋ(0).

It is a special case of Eq.(2.3) and has been studied by Adhikari and his colleagues
[6]. Because the system is quiescent before t = 0, there’s no hereditary effect on the
system dynamics. However, in the present work, the more general case with past
histories is considered. Hereditary effects on such systems are needed to be studied.

Remark 2.2. In Eqs.(2.1)-(2.5), G (t) is a relaxation function of viscoelastic ma-
terials and characterizes the mechanical properties. In practical applications, G (t)
can be effectively expressed by several types of decaying functions and further de-
termined by fitting experimental data. In the following sections, the exponentially
decaying function e−µt is chosen, i.e.,

G (t) = µe−µt, µ > 0.

The corresponding oscillator is named as exponentially damped oscillator.
The other two functions to specify G (t) are power-law function t−α, 0 < α < 1

and Mittage-Leffler function Eα,β (t) =
∞∑
k=0

tk

Γ(αk+β) , α > 0, β > 0 . In both of the

cases, the integral constitutive equation becomes fractional-order derivative. The
corresponding oscillator is named as fractional-order oscillator.

3. Hereditary effects on the dynamic response

Now we are ready to study the initialization response of exponentially damped
oscillators with memories, which characterizes the hereditary effects of the vibrating
motion from the past history. For this purpose, the external acting force f (t) is not
considered and is set to be zero. In this case, the equation of motion with initial
condition is{

mẍ(t) + c
∫ t

0
G (t− τ) ẋ (τ) dτ + kx(t) = −cψ (t) , t > 0,

x(0) = x0, ẋ(0) = v0.
(3.1)

where G (t) = µe−µt, µ > 0.



Hereditary effects of oscillators 2217

Applying the Laplace transform to both sides of Eq.(3.1), we obtain

m
(
s2x̄ (s)− sx0 − v0

)
+ c

(
µs

µ+ s
x̄ (s)− µ

µ+ s
x0

)
+ kx̄ (s) = −cψ̄ (s) , (3.2)

where x̄ (s) is the Laplace transform of x (t), ψ̄ (s) is the Laplace transform of ψ (t).
After rearranging Eq.(3.2), one has(

ms2 +
cµs

µ+ s
+ k

)
x̄ (s) = −cψ̄ (s) +msx0 +

cµ

µ+ s
x0 +mv0. (3.3)

We denote that d̄ (s) = ms2 + cµs
µ+s + k and h̄ (s) = 1

d̄(s)
.

From Eq.(3.3), the solution of x̄ (s) can be derived as

x̄ (s) = −ch̄ (s) ψ̄ (s) +mx0sh̄ (s) + cµx0
h̄ (s)

s+ µ
+mv0h̄ (s) . (3.4)

Taking the inverse Laplace transform of Eq.(3.4), one derives

x (t) = −c
∫ t

0

h (t− τ)ψ (τ) dτ +mx0ḣ (t)

+ cµx0

∫ t

0

h (t− τ)e−µτdτ +mv0h (t) ,

(3.5)

where h (t) is inverse Laplace transform of h̄ (s).
Next we determine the expression of h (t). It has been shown in [1] that d̄ (s)

has zeros at s = sj , j = 1, 2, 3:

s1 = −α+ βi, s2 = −α− βi, s1 = −γ, (3.6)

where α, β, γ > 0.
Furthermore, h̄ (s)can be expressed in the pole-residue form as

h̄ (s) =

3∑
j=1

Rj
s− sj

,

where Rj are the residues and calculated as

Ri = Res
s=sj

h̄ (s) = lim
s→sj

(s− sj) h̄ (s) =
1

lim
s→sj

ms2+ cµs
µ+s+k

s−sj

=
1

∂d̄(s)
∂s |s=sj

.

Taking the inverse Laplace transform of Eq.(3.7), one derives

h (t) = L−1
{
h̄ (s)

}
=

3∑
j=1

Rje
−sjt. (3.7)

Eq.(3.6)and Eq.(3.5) determine the initialization response of the oscillators. It
represents the hereditary effects of past histories of motions from the starting time
at t = −a.
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4. Stability of initialization response

Section 2 and Section 3 have shown the effects of past histories of motions on initial
conditions and dynamic response. In this section, we proceed to show the hereditary
effects on stability of initialization response. We will prove theoretically that this
influence will gradually recede with increasing of time, and then carry out numerical
simulations to verify this statement.

4.1. Theoretical stability analysis

From Eq.(3.5), it is clear that the initialization response involves four parts. The
last three terms decreased as time increases. Next we will prove that the first term
also decays with increasing of time.

Inserting Eq.(3.6) into the first term in Eq.(3.5), we have

−c
∫ t

0

h (t− τ)ψ (τ) dτ = −c
∫ t

0

R1e
s1(t−τ)ψ (τ) dτ − c

∫ t

0

R1e
s2(t−τ)ψ (τ) dτ

− c
∫ t

0

R3e
s3(t−τ)ψ (τ) dτ.

(4.1)

Substituting Eq.(3.6) into Eq.(4.1), we have

− c
∫ t

0

h (t− τ)ψ (τ) dτ

= −c
∫ t

0

R1e
−(α−βi)(t−τ)ψ (τ) dτ − c

∫ t

0

R1e
−(α+βi)(t−τ)ψ (τ) dτ

− c
∫ t

0

R3e
−γ(t−τ)ψ (τ) dτ

= −2cR1

∫ t

0

e−α(t−τ) cosβ (t− τ)ψ (τ) dτ − cR3

∫ t

0

e−γ(t−τ)ψ (τ) dτ.

(4.2)

We denote that

I1 = −2cR1

∫ t

0

e−α(t−τ) cosβ (t− τ)ψ (τ) dτ, (4.3)

I2 = −cR3

∫ t

0

e−γ(t−τ)ψ (τ) dτ. (4.4)

Then Eq.(4.2) is simplified as

−c
∫ t

0

h (t− τ)ψ (τ) dτ = I1 + I2.

Substituting Eq.(2.4) into Eq.(4.2), one has

|I1| = 2cR1

∣∣∣∣∫ t

0

e−α(t−τ) cosβ (t− τ)ψ (τ) dτ

∣∣∣∣
= 2cR1

∣∣∣∣∫ t

0

e−α(t−τ) cosβ (t− τ) dτ

∫ 0

−a
G (τ − τ1)v (τ1) dτ1

∣∣∣∣ . (4.5)
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It is reasonable to suppose that the response velocity before initial time is bounded,
i.e.,

|v (t)| ≤M, t ∈ [−a, 0] .

Noting that |cos (βt)| ≤ 1, then Eq.(4.4) yields

|I1| ≤ 2cR1M

∣∣∣∣∫ t

0

e−α(t−τ)dτ

∫ 0

−a
G (τ − τ1)dτ1

∣∣∣∣ . (4.6)

Substituting G (t) = µe−µt into Eq.(16) yields

|I1| ≤ 2cR1M
(
1− e−µa

) ∣∣∣∣∫ t

0

e−α(t−τ)−µτdτ

∣∣∣∣
= 2cR1M

(
1− e−µa

)
e−αt

∣∣∣∣∫ t

0

e(α−µ)τdτ

∣∣∣∣
=

2cR1M (1− e−µa)

|α− µ|
∣∣e−µt − e−αt∣∣ .

(4.7)

Due to the fact that µ, α > 0, it is clear to see that

lim
t→∞

I1 = 0. (4.8)

Substituting Eq.(4) into Eq.(14), one has

|I2| = cR3

∣∣∣∣∫ t

0

e−γ(t−τ)ψ (τ) dτ

∣∣∣∣
=cR3

∣∣∣∣∫ t

0

e−γ(t−τ)dτ

∫ 0

−a
G (τ − τ1)v (τ1) dτ1

∣∣∣∣
≤McR3

(
1− e−µa

) ∣∣∣∣∫ t

0

e−γ(t−τ)−µτdτ

∣∣∣∣
= McR3

(
1− e−µa

)
e−γt

∣∣∣∣∫ t

0

e(γ−µ)τdτ

∣∣∣∣
=
McR3 (1− e−µa)

|γ − µ|
∣∣e−µt − e−γt∣∣ .

(4.9)

Because µ, γ > 0, it is also clear to see that

lim
t→∞

I2 = 0. (4.10)

By now, we have proved that lim
t→∞

I1 = 0 and lim
t→∞

I2 = 0. This implies that the

first term of Eq.(3.5) decreases to zero, i.e.,

−c
∫ t

0

h (t− τ)ψ (τ) dτ → 0 as t→∞.

It is apparent that the last three terms in Eq.(3.5) also decrease to zero. Conse-
quently, the solution of equation of motion, which has been determined in Eq.(10)
converges to zero, i.e.,

x (t)→ 0 as t→∞. (4.11)

In other words, the initialization response of the oscillator will gradually decay in
amplitude with increasing of time. In practical applications, it reveals a fact that
memories from past histories of motion have no influence on the stability of such
systems.
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4.2. Experimental stability analysis

In this section, numerical simulations are carried out to verify stability of initializa-
tion response of such systems. The mass of the oscillator is taken to be m = 5kg,
the stiffness k = 500N/s, the damping coefficient c = 40N · s/m. Other parameters
are chosen as µ = 5 and a = 4s.

By introducing the following new variables:

x1 = x, x2 = ẋ, x3 =

∫ t

0

e−µ(t−τ)ẋ (τ) dτ,

Eq.(3.1) can be transformed into
ẋ1 = x2,

ẋ2 = − k
mx1 − cµ

m x3 − c
mψ (t) ,

ẋ3 = x2 − µx3.

(4.12)

Vibrating motions in time period [−a, 0] are specified by the following four
history functions,

v1 (t) = cos 5t, v2 (t) = 0.5 cos 5t, v3 (t) = sin 5t, v4 (t) = 1.

In terms of Eq.(2.4), the initialization functions are calculated respectively as

ψ1 (t) = 0.5e−µt, ψ2 (t) = 0.25e−µt, ψ3 (t) = −0.5e−µt, and ψ4 (t) = 1.03e−5t.

Initial conditions for Eq.(4.12) are respectively as 1

0

0

 ,

 0.5

0

0

 ,

 0

− 5

0

 , and

 1

0

0

 .

Fig.2 show the initialization responses of the oscillators with different initial-
ization functions. From the above figures, it is clear that although past histories
of motion are different, vibrating motions always gradually decay with increasing
of time. Consequently, the stability of initialization response has been verified by
these numerical simulations.

5. Conclusions

The main contribution of this paper is to prove stability of initialization response of
exponentially damped oscillators and to show that the hereditary effects gradually
recede with time. From the theoretical analysis and numerical simulations, it has
been shown that initialization response of such systems gradually recedes with in-
creasing of time, in spite of different histories of vibrating motions. This implies that
although motions from past histories affect the dynamic behavior of such systems,
they have no influence in the stability. This phenomenon brings a fact to practical
applications: for linear single-degree-of-freedom exponentially damped oscillators
without external forces, vibrations always cease due to internal damping, whatever
past histories of vibrating motions are. Further research is needed to investigate
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(a) Initialization response with past history
v1 (t) = cos 5t.
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(b) Initialization response with past history
v2 (t) = 0.5 cos 5t.
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(c) Initialization response with past history
v3 (t) = sin 5t.
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(d) Initialization response with past history
v4 (t) = 1.

Figure 2. Initialization responses with different past histories of vibrating motion.

hereditary effects on the vibration control design in order to propose more accurate
and effective control laws.
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