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Abstract In this paper, we find new canonical forms of self-adjoint boundary
conditions for regular differential operators of order two and four. In the second
order case the new canonical form unifies the coupled and separated canonical
forms which were known before. Our fourth order forms are similar to the new
second order ones and also unify the coupled and separated forms. Canonical
forms of self-adjoint boundary conditions are instrumental in the study of the
dependence of eigenvalues on the boundary conditions and for their numerical
computation. In the second order case this dependence is now well understood
due to some surprisingly recent results given the long history and voluminous
literature of Sturm-Liouville problems. And there is a robust code for their
computation: SLEIGN2.
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1. Introduction

Consider the regular Sturm-Liouville equation

−(py′)′ + qy = λwy, J = (a, b), −∞ ≤ a < b ≤ +∞, (1.1)

with coefficients functions p, q, w satisfying

1

p
, q, w ∈ L1(J,R), p > 0, w > 0, a.e. on J, (1.2)

and boundary conditions

AY (a) +BY (b) = 0, A, B ∈M2(C), Y =

 y

py′

 . (1.3)
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Eq. (1.1) generates a minimal operator Smin and a maximal operator Smax with
domains Dmin and Dmax, respectively. The self-adjoint operators S in the Hilbert
space L2(J,w) generated by (1.1), (1.2), and (1.3) satisfy

Smin ⊂ S = S∗ ⊂ Smax. (1.4)

It is clear that these operators S differ from each other only by their domains. These
domains D(S) are characterized by matrices A, B which satisfy

rank(A : B) = 2, AE2A∗ = BE2B∗, E2 =

 0 −1

1 0

 . (1.5)

That is, the linear manifold D(S) defined by

D(S) = {y ∈ Dmax : (1.3) and (1.5) hold} (1.6)

is a self-adjoint domain and every operator S satisfying (1.4) is determined this
way.

Here and below, Mn(X) denotes the n by n matrices with entries from X = C
the complex numbers, or X = R, the real numbers, and (A : B) denotes the n by
2n matrix whose first n columns are those of A in the same order and the last n
are those of B in the same order.

It is well known that the self-adjoint condition (1.5) can be classified into
two mutually exclusive classes: coupled and separated, and these classes have the
following canonical form representations:

(A : B) =
(
eiγK : I2), K ∈M2(R

)
, det(K) = 1, −π < γ ≤ π; (1.7)

cos(α) y(a)− sin(α) (py′)(a) = 0, α ∈ [0, π),

cos(β) y(b)− sin(β) (py′)(b) = 0, β ∈ (0, π]; (1.8)

respectively. Here I2 denotes the 2 by 2 identity matrix.
These representations (1.7), (1.8) make it possible to define the

eigenvalues λn(γ,K) and λn(α, β) and study their properties as functions
of these parameters and to compute them numerically; see [14,16], [26].

How are the eigenvalues determined by the separated boundary
conditions (1.8) related to the eigenvalues determined by the coupled
boundary conditions (1.7)? This is clearly not apparent from the representations
(1.7) and (1.8). In 2000 Kong, Wu, Zettl [15] constructed a space of boundary
conditions with a geometric structure and used this structure to study the
relationship between eigenvalues determined by different boundary conditions.
This was extended by Haertzen, Kong, et. al. [12] and by Cao, Kong, et. al. [6].

In this paper, we obtain a different canonical form representation of (1.5). This
new self-adjoint boundary representation ‘unifies’ (1.7), (1.8). And we find a similar
‘unified’ canonical form for n = 4 where there are three types of self-adjoint
conditions: separated, coupled, and mixed. (In the second order case there are
no mixed self-adjoint conditions.)

Consider the equation

My = [(p2y
′′)′ − (p1y

′)]′ + p0y = λwy, on J = (a, b) (1.9)
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with coefficients satisfying

1

p2
, p1, p0, w ∈ L1(J,R), p2 > 0, w > 0 a.e. J. (1.10)

It is well known that (1.9) is a symmetric (formally self-adjoint) differential
equation. For smooth coefficients the differential expression

M y =

2∑
j=0

(−1)j(pjy
(j))(j)

is a closed form for the symmetric (formally self-adjoint) expressions of order four [7].
With hypothesis (1.10) the extra bracket [ ] is needed in (1.9), see [24].

It is well known that the self-adjointness characterization (1.5) extends to the
fourth order case:

rank(A : B) = 4, AE4A∗ = BE4B∗, E4 =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 . (1.11)

In [21] Wang et. al. proved that for fourth order problems there are three
mutually exclusive classifications of the self-adjoint boundary conditions:

Theorem 1.1 (Wang-Sun-Zettl). Let (1.9), (1.10), and (1.11) hold. Then

1.

2 ≤ rank(A) ≤ 4, 2 ≤ rank(B) ≤ 4. (1.12)

2. Let 0 ≤ r ≤ 2. If rank(A) = 2 + r, then rank(B) = 2 + r. Assume that

rank(A) = 2 + r. (1.13)

Then the boundary conditions are separated when r = 0, mixed when r = 1, and
coupled when r = 2.

Remark 1.1. This theorem gives a rigorous definition of the separated, coupled,
and mixed self-adjoint boundary conditions. In [21] this theorem is proven for all
even order problems n = 2k, k > 1. For each of these problems there are only
three classifications of the self-adjoint boundary conditions: separated, coupled,
and mixed.

For n = 4 canonical forms for all three classifications were found by Hao et. al.
in [11] where it is shown that there are four types of coupled conditions, 16 types
of mixed conditions, and 16 types of separated conditions. And for each of these
three types there is a fundamental type in the sense that each of the conditions
of that type can be transformed to the fundamental one with elementary matrix
manipulations.

In this paper we find a new canonical form for n = 2 and a similar canonical
form for n = 4. Both of these new forms unify the different types of conditions with
each other. More specifically we:
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1. Find a new canonical form for the second order problem. This unifies the
coupled and separated forms (1.7), (1.8). It has the representations: r1 1 c 0

−c 0 r2 1

 . (1.14)

• When c 6= 0 is a nonreal number, then (1.14) represents a canonical form
for the nonreal coupled conditions.

• When c 6= 0 is a real number, then (1.14) represents a canonical form for
the real coupled conditions.

• When c = 0, then (1.14) is a canonical form of the separated boundary
conditions with the understanding that two ‘special’ separated conditions
require letting r1 and r1 approach infinity. See Remarks 2.2 and 2.3 below
for details.

2. Find a new canonical form for fourth order problems which has the block
matrix representation:

(A : B) =

 R1 J2 C 0

−C∗ 0 R2 J2

 , J2 =

 0 1

1 0

 , C ∈M2(C). (1.15)

• When rank(C) = 2, then (1.15) represents a canonical form for the
coupled conditions.

• When rank(C) = 1, then (1.15) represents a canonical form for the mixed
conditions.

• When rank(C) = 0, then (1.15) represents a canonical form for the
separated conditions.

• Furthermore, R1, R2 and J2 are symmetric and thus can be considered
as playing the roles of r1, r2, and 1 in (1.14). The complex matrix C
plays the role of the complex number c in (1.14).

In addition we find other equivalent canonical forms for the coupled conditions
in both the second and fourth order cases. In the second order case this condition
has the form:

(A : B) =

K1

 1
c 0

0 c̄

K2 : I2

 , (1.16)

where K1 =

 1 0

−r2 1

, K2 =

 r1 1

−1 0

.

For order four we get

(A : B) =

K1

C−1 02×2

02×2 C∗

K2 : I2

 , (1.17)
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where

K1 =

 I2 02×2

−J2R2 J2

 , K2 =

 R1 J2

−I2 02×2

 ,

and R2, R1, I2, J2 are all symmetric matrices, and |det(K1)| = |det(K2)| = 1.
Note that there is a 1− 1 correspondence between (1.15) and (1.14) with c 6= 0

when n = 2, and between (1.17) and (1.15) with rank(C) = 2 when n = 4.
Our proof uses a delicate interplay between the theory of linear differential

equations [10,18,27] and the theory of linear algebra.
This paper is organized as follows. In Section 2 we introduce a new method for

studying the n = 2 case. In Section 3 we use some parts of this method of proof to
establish the case n = 4. Examples to illustrate these results are given in Section 4.
We plan to investigate the general case of n = 2k for k > 2 in a subsequent paper.

2. A New Canonical Form For Order Two

In this section we develop a new method for studying the self-adjoint n = 2 problem.
Let Ã = A and B̃ = B and let

(Ã : B̃) =

 ã11 ã12 b̃11 b̃12

ã21 ã22 b̃21 b̃22

 . (2.1)

Then the linear submanifold:

D(S) =

y ∈ Dmax : ÃY (a) + B̃Y (b) = 0, Y =

 y[0]

y[1]

 , (2.2)

with Ã, B̃ satisfying (1.5) is a self-adjoint domain, and all self-adjoint domains are
generated in this way.

Next we derive a new canonical form for n = 2.
If rank(B̃) = 2, then it follows from (1.5) that rank(Ã) = 2 and therefore the

boundary condition is coupled. So by elementary matrix transformation of rows,

the matrix B̃ can be transformed into the identity matrix

 1 0

0 1

 .

Noting that the domain is invariant under the elementary matrix
transformations of the rows of (Ã : B̃), the matrix (Ã : B̃) can be transformed
into the following form if ã11 6= 0:

(Ã : B̃) =

 ã11 ã12 b̃11 b̃12

ã21 ã22 b̃21 b̃22

−−−−→rewrite

 ã11 ã12 1 0

ã21 ã22 0 1


→

 1 a12 b11 0

ã21 ã22 0 1

→
 1 a12 b11 0

0 a22 b21 1

 = (A : B), (2.3)
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where a22 6= 0, b11 6= 0.
Suppose ã11 = 0. Then from rank(Ã) = 2, we have ã12 6= 0, then (Ã : B̃) can be

transformed to

(Ã : B̃) =

 ã11 ã12 b̃11 b̃12

ã21 ã22 b̃21 b̃22

−−−−→rewrite

 0 ã12 1 0

ã21 ã22 0 1


→

 0 1 b11 0

ã21 ã22 0 1

→
 0 1 b11 0

a21 0 b21 1

 = (A : B), (2.4)

where a21 6= 0, b11 6= 0.
We have the following lemma:

Lemma 2.1. Suppose rank(Ã : B̃) = 2 and rank(B̃) = 2. Then we obtain new
coupled canonical forms:

1.

(Ã : B̃) =

 ã11 ã12 b̃11 b̃12

ã21 ã22 b̃21 b̃22

 =

 1 r1 c 0

0 c r2 1

 , (2.5)

where r1, r2 are real numbers, i.e. a12 = ā12, b21 = b̄21, and b11 = ā22 = c.

2. Or

(Ã : B̃) =

 ã11 ã12 b̃11 b̃12

ã21 ã22 b̃21 b̃22

 =

 0 1 c 0

−c 0 r 1

 , (2.6)

where r is a real number, i.e. b21 = b̄21, and b11 = −ā21 = c, c ∈ C.

Proof. By using formula (1.5) and (2.3), we calculate that 1 a12

0 a22

 0 −1

1 0

 1 0

ā12 ā22

 =

 b11 0

b21 1

 0 −1

1 0

 b̄11 b̄21

0 1

 ,

so a12 −1

a22 0

 1 0

ā12 ā22

 =

 0 −b11

1 −b21

 b̄11 b̄21

0 1

 .

Therefore a12 − ā12 −ā22

a22 0

 =

 0 −b11

b̄11 b̄21 − b21

 .

This shows that

a12 = ā12, a22 = b̄11 = c, b21 = b̄21, c ∈ C,

and we obtain the form (2.5).
Similarly, by using (1.5) and (2.4), we obtain b21 = b̄21, a21 = −b̄11 =

−c, in (2.4), i.e., the canonical form (2.6) is established.
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Theorem 2.1. The two canonical forms (2.5) and (2.6) in Lemma 2.1 can be
combined to obtain the following self-adjoint canonical form: r1 1 c 0

−c 0 r2 1

 . (2.7)

Proof. It is easy to verify that (2.7) is a self adjoint boundary condition. And:

• when r1 = 0 in (2.7) it can be reduced to (2.6), where r2 = r.

• when r1 6= 0 in (2.7) it can be transformed to 1 1
r1

c
r1

0

−c 0 r2 1

→
1 1

r1
c
r1

0

0 c
r1
r2 + cc

r1
1


=

 1 r̃1 c̃ 0

0 c̃ r̃2 1

 (r̃1 =
1

r1
, c̃ =

c

r1
, r̃2 = r2 +

cc

r1
)

−−−−→
rewrite

1 r1 c 0

0 c r2 1

 ,

where r1, r2 ∈ R, c ∈ C. Thus, in this case, (2.7) can be transformed to the
form (2.5).

Remark 2.1. We can get separated self-adjoint boundary conditions from (2.7).
In (2.7) if c = 0, then (2.7) is reduced to

(Ã : B̃) =

 r1 1 0 0

0 0 r2 1

 . (2.8)

This is a real separated boundary condition.

Remark 2.2. Further, we can derive the self-adjoint separated boundary
conditions (1.8) from (2.8). In fact (2.8) can be transformed to

(Ã : B̃) =

 r1 1 0 0

0 0 r2 1



→

− r√
r21+1

− 1√
r21+1

0 0

0 0 − r2√
r22+1

− 1√
r22+1

 . (2.9)

Let

cos(α) = − r1√
r2
1 + 1

, − sin(α) = − 1√
r2
1 + 1

, α ∈ (0, π),

cos(β) = − r2√
r2
2 + 1

, − sin(β) = − 1√
r2
2 + 1

, β ∈ (0, π),



New canonical forms of self-adjoint boundary conditions 2197

then (2.9) can be transformed to

→

 cos(α) − sin(α) 0 0

0 0 cos(β) − sin(β)

 . (2.10)

This is the self-adjoint separated boundary condition (1.8). And

r1 → −∞, cos(α)→ +1, sin(α)→ 0, α→ 0,

r1 → +∞, cos(α)→ −1, sin(α)→ 0, α→ π,

r1 = 0, cos(α) = 0, sin(α) = 1, α =
π

2
,

r2 → −∞, cos(β)→ +1, sin(β)→ 0, β → 0,

r2 → +∞, cos(β)→ −1, sin(β)→ 0, β → π,

r2 = 0, cos(β) = 0, sin(β) = 1, β =
π

2
.

Remark 2.3. Note that (2.7) is a new characterization of the second order
self-adjoint domains, which is different from the well known canonical forms
(1.7), (1.8). Also note that the separated conditions can be parameterized with
r1 = −cot(α), 0 < α < π and r2 = −cot(β), 0 < β < π and the ‘special’ condition
(py′)(a) = 0 = y(b) mentioned above corresponds to α = π

2 , β = π.

Next we show that the coupled self-adjoint boundary forms described
by (1.7) are equivalent to (2.7) in Theorem 2.1. Notice that the boundary conditions

described in the domain D(S) do not change when the matrix (Ã : B̃) is left
multiplied by a nonsingular matrix B−1.

When rank(A) = 2 = rank(B), we have c 6= 0 in (2.7) , then from (2.7) we

consider the matrix product B̃−1Ã, i.e.,

B̃−1Ã =

 c 0

r2 1

−1 r1 1

−c 0

 =
1

c

 1 0

−r2 c

 r1 1

−c 0



=
1

c

 r1 1

−r1r2 − cc̄ −r2

 =
| c |
c

 r1
|c|

1
|c|

− r1r2+c̄c
|c| − r2

|c|

 .

Assume that k11 = r1
|c| , k12 = 1

|c| , k21 = − r1r2+cc̄
|c| , k22 = − r2

|c| ,
|c|
c = eiγ(−π < γ ≤

π), and hence

B̃−1Ã = eiγ

k11 k12

k21 k22

 = eiγK, (2.11)

where K = (kij)(i,j=1,2) is a real matrix, and det(K) = 1.
Eq. (2.11) shows that the second order coupled self-adjoint boundary conditions

can be characterized as:

ÃY (a) + B̃Y (b) = 0,
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in which

B̃ = I2, Ã = eiγK, γ ∈ (−π, π]. (2.12)

That is, the corresponding boundary matrix of the coupled canonical form is:

(Ã : B̃) =
(
eiγK : I2

)
, (2.13)

where K = (kij)(i,j=1,2) is a real matrix and det(K) = 1.

Remark 2.4. The result (2.10) or (2.13) is well known, see [25]. Thus the
boundary matrix form (2.7) gives a new description of the second order self-adjoint
domains which unifies the different representations of the separated and coupled
conditions. This should simplify the study of the relationship of the eigenvalues of
coupled boundary conditions to the eigenvalues of nearby separated conditions.

Also notice that (2.11) can be rewritten as follows:

B̃−1Ã = eiγK = eiγ

k11 k12

k21 k22


=

 c 0

r2 1

−1 r1 1

−c 0

 =
1

c

 r1 1

−r1r2 − cc̄ −r2


=

 1 0

−r2 1

 1
c 0

0 c̄

 r1 1

−1 0

 = K1

 1
c 0

0 c̄

K2,

where K1 =

 1 0

−r2 1

, K2 =

 r1 1

−1 0

.

Remark 2.5. That is, the boundary matrix forms (2.7) corresponding to the
coupled self-adjoint canonical form for the second order differential operators can
be transformed into:

(Ã : B̃) =

K1

 1
c 0

0 c̄

K2 : I2

 , (2.14)

where the matrix Ã = K1

 1
c 0

0 c̄

K2 is the product of three matrices, the middle

matrix is a diagonal matrix which is determined by c = b11 and the absolute
value of its determinant is 1; the other two matrices are real, and they are
determined by r1 and r2 respectively (note that in the form (2.6) K1 is determined
by r and K2 = −E2) and det(K1) = det(K2) = 1 and K1, K2 are symplectic
matrices [13]. And there is a one to one correspondence between the coupled
self-adjoint canonical forms (2.7) and (2.14) (or (2.13)).

The canonical form of coupled self-adjoint conditions for n = 4 established
below in Section 3 (Theorem 3.3, Remark 3.2, Theorem 3.4) are similar to the
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forms established here in Section 2 with the exception, of course, that for n = 2
there are only separated and coupled conditions but for n = 4 there are separated,
coupled, and mixed conditions. The coupled self-adjoint canonical forms for n = 4
established below were motivated by our new form (2.7) for n = 2. Both new forms
relate the different classifications with each other more than the previously known
forms did, e.g. for n = 2 the forms (1.7) and (1.8) are not closely related. We expect
that the more closely related forms will be useful tools to get more information
about the relationships between the eigenvalues of separated and coupled boundary
conditions.

3. Canonical Forms Of Self-Adjoint Boundary
Conditions For Order Four

As mentioned above, in this section we obtain new canonical forms of self-adjoint
boundary conditions for fourth order equations:

My = [(p2y
′′)′ − (p1y

′)]′ + p0y = λwy, on J = (a, b), (3.1)

with coefficients satisfying

1

p2
, p1, p0, w ∈ L1(J,R), p2 > 0, w > 0 a.e. J. (3.2)

Let

Q =


0 1 0 0

0 0 1
p2

0

0 p1 0 −1

p0 0 0 0

 , (3.3)

and define quasi-derivatives by

y[0] = y, y[1] = y′, y[2] = p2(y[1])′, y[3] = p1y
[1] − (y[2])′, (3.4)

and let

My = y[4] = p0y
[0] − (y[3])′. (3.5)

Note that these quasi-derivatives y[i] = y
[i]
Q , i = 0, · · ·, 4 depend on Q and (3.1)

is given by

My = y[4] = p0y
[0] − (y[3])′ = λwy.

For simplicity of exposition we omit the subscript Q. The domain of M, D(M),

consists of all complex valued functions y such that y[i] = y
[i]
Q , i = 0, · · ·, 4 is

absolutely continuous on each compact subinterval of J = (a, b). Then

My = y[4] = λwy

is defined a.e. on J.
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Consider the boundary conditions.

A


y[0](a)

y[1](a)

y[2](a)

y[3](a)

+B


y[0](b)

y[1](b)

y[2](b)

y[3](b)

 = 0, A, B ∈M4(C), (3.6)

where y[i] = y
[i]
Q , i = 0, · · ·, 4.

Fundamental to the study of boundary value problems is the Lagrange identity.
The next Lemma and Theorem establish this identity.

Lemma 3.1. Let Q be given by (3.3). Then Q = −F−1
4 Q∗F4, where

F4 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 =

02×2 −J2

J2 02×2

 , (3.7)

02×2 is a 2 by 2 zero matrix and J2 =

 0 1

1 0

 .

Proof. Note that

F ∗4 = −F4 = F−1
4 . (3.8)

By a direct calculation, we have

−F−1
4 Q∗F4 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0




0 0 0 p0

1 0 p1 0

0 1
p2

0 0

0 0 −1 0




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0



=


0 0 1 0

0 − 1
p2

0 0

1 0 p1 0

0 0 0 p0




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 =


0 1 0 0

0 0 1
p2

0

0 p1 0 −1

p0 0 0 0

 = Q.

Theorem 3.1 (Lagrange Identity). Let Q be given by (3.3) and let M = MQ = y[4].
For any y, z ∈ D(M) we have

[y, z] =

2∑
k=1

{y[k−1]z[4−k] − y[4−k]z[k−1]} = Z∗F4Y, (3.9)
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where

Z =
(
z[0] z[1] z[2] z[3]

)T
, Y =

(
y[0] y[1] y[2] y[3]

)T
, (3.10)

and y[i], z[i], i = 0, 1, · · · , 3 are defined by (3.4).

Proof. By a direct caculation, we have

[y, z]ba =

∫ b

a

zMydx−
∫ b

a

Mzydx = −
∫ b

a

(y[3])′zdx+

∫ b

a

(z[3])′ydx

= −y[3]z +

∫ b

a

y[3]z′dx+ z[3]y −
∫ b

a

z[3]y′dx

= −y[3]z +

∫ b

a

{p1y
[1] − (y[2])′}z[1]dx+ z[3]y −

∫ b

a

{p1z[1] − (z[2])′}y[1]dx

= −y[3]z −
∫ b

a

(y[2])′z[1]dx+ z[3]y +

∫ b

a

(z[2])′y[1]dx

= −y[3]z − y[2]z[1] + z[3]y + z[2]y[1]

=
(
z[3], z[2],−z[1],−z[0]

)
Y = Z∗F4Y.

The above Lagrange identity is based on the representation M = MQ. The next
Theorem establishes a different (but, of course, equivalent) characterization of the
self-adjoint boundary conditions (1.11). The following Theorem, with the help of
Lemma 3.1 and Theorem 3.1 above, will establish a new canonical form for the
fourth order self-adjoint boundary conditions which is similar to the new second
order canonical form established in Section 2 above.

Theorem 3.2. Let Q be given by (3.3) and let M = MQ and let the

quasi-derivatives y[i] = y
[i]
Q i = 0, 1, 2, 3 be defined by (3.4). Let F4 be given by

(3.7) and assume the matrices A, B ∈M4(C) satisfy

AF4A
∗ = BF4B

∗, rank(A : B) = 4. (3.11)

Define a linear submanifold D(S) of Dmax by

D(S) =

{
y ∈ Dmax : AY (a) +BY (b) = 0, Y =

(
y[0] y[1] y[2] y[3]

)T}
. (3.12)

Then D(S) is the domain of a self-adjoint extension S of Smin , i.e.,

Smin ⊂ S = S∗ ⊂ Smax, (3.13)

and every self-adjoint extension of Smin is determined this way.
In particular, if rank(A) = rank(B) = 4, i.e. r = 2 in Theorem 1.1, then

the boundary condition (3.12) is coupled and every coupled self-adjoint boundary
condition is generated in this way.

Proof. This follows from the Lagrange identity. By Theorem 3.1, we obtain∫ b

a

zMydx−
∫ b

a

Mzydx = [y, z]ba = Z∗(b)F4Y (b)− Z∗(a)F4Y (a) = 0,
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then

D(S) =

{
y ∈ Dmax : AY (a) +BY (b) = 0, Y =

(
y[0] y[1] y[2] y[3]

)T}
is self-adjoint domain if and only if

AF4A
∗ = BF4B

∗.

Based on Theorem 3.2, we construct the canonical forms of the self-adjoint
boundary conditions. For this it is convenient to use the following block form of
(A : B):

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 , Ai, Bi ∈M2(C), i = 1, 2, 3, 4. (3.14)

If rank(A) = 4, then rank(A2 : A4)T = 2. So the matrix (A2 : A4)T can be
transformed into the following form by elementary matrix transformations of rows:

A2

A4

 =


0 1

1 0

0 0

0 0

 . (3.15)

Since AF4A
∗ = BF4B

∗, rankB = rankA = 4. We have:

Lemma 3.2 ( [11]). Noticing that when rank(B) = rank(A) = 4, we have rank(B3 :
B4) = 2. By row transformations, (B3 : B4) can be transformed into the following
six forms:

(1)

 b31 b32 0 1

b41 b42 1 0

 , (2)

 b31 0 b33 1

b41 1 0 0

 , (3)

 0 b32 1 0

1 0 0 0

 ,

(4)

0 1 0 0

1 0 0 0

 , (5)

 0 b32 b33 1

1 0 0 0

 , (6)

 b31 0 1 0

b41 1 0 0

 .

Since the boundary conditions (3.12) are invariant under elementary matrix
transformation of rows of (A : B), in case (1) of Lemma 3.1 the matrix (A : B) can
be transformed into the following form:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

→
 Ã1 J2 B̃1 B̃2

A3 A4 B3 B4

→
 Ã1 J2 B̃1 B̃2

Ã3 02×2 B̃3 B̃4

 (3.16)

−−−−→
rewrite

 Ã1 J2 B̃1 B̃2

Ã3 02×2 B̃3 J2

−−−−→rewrite

 Ã1 J2 B̃1 02×2

Ã3 02×2 B̃3 J2

 = (Ã : B̃),

where A3 and B1 are nonsingular matrices. Then we have the following Theorem:
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Theorem 3.3. If rank(A : B) = 4, (A2 : A4)T can be transformed into (3.15), with
rank(B4) = 2, then the matrix (A : B) satisfying AF4A

∗ = BF4B
∗ can be

transformed into the following canonical form:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 =

 R1 J2 C 02×2

−C∗ 02×2 R2 J2

 , (3.17)

where J2, R1, R2 are symmetric matrices, and the canonical form is determined
by R1, R2, C.

Proof. From (3.16), the matrix (A : B) can be transformed into

(A : B) =

 Ã1 J2 B̃1 02×2

Ã3 02×2 B̃3 J2

 .

From AF4A
∗ = BF4B

∗ we have Ã1 J2

Ã3 02×2

 02×2 −J2

J2 02×2

 Ã∗1 Ã∗3

J∗2 02×2

=

 B̃1 02×2

B̃3 J2

02×2 −J2

J2 02×2

 B̃∗1 B̃∗3

02×2 J
∗
2

 .

Hence J2J2 −Ã1J2

02×2 −Ã3J2

 Ã∗1 Ã∗3

J∗2 02×2

 =

 02×2 −B̃1J2

J2J2 −B̃3J2

 B̃∗1 B̃∗3

02×2 J
∗
2

 .

Since J−1
2 = J2 = J∗2 , we have Ã∗1 − Ã1 A∗3

−Ã3 02×2

 =

 02×2 −B̃1

B̃∗1 B̃∗3 − B̃3

 .

From this it follows that

Ã1 = Ã∗1, Ã3 = −B̃∗1 , B̃3 = B̃∗3 .

Therefore we have the self-adjoint boundary condition

(A : B) =

 R1 J2 C 02×2

−C∗ 02×2 R2 J2

 ,

where R1, R2 are symmetric, and C ∈M2(C), completing the proof.

Remark 3.1. Note that if the boundary matrices A, B in (3.14) satisfy AF4A
∗ =

BF4B
∗ and rank(B4) = 2, then a canonical form for coupled self-adjoint boundary

conditions of order four is:

(A : B) =


r1 ā21 0 1 b11 b12 0 0

a21 r2 1 0 b21 b22 0 0

−b̄11 −b̄21 0 0 r3 b̄41 0 1

−b̄12 −b̄22 0 0 b41 r4 1 0

 , (3.18)
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where r1, r2, r3, r4 are real numbers, i.e., R1, R2 are symmetric matrices, and A3 =
−B∗1 = −C∗.

Remark 3.2. Here in (3.17) the symmetric matrices R1, R2 correspond to the real
numbers r1, r2 in (2.7),A3 = −B∗1 corresponds to the complex conjugate a21 = −b11

in (2.7).

Remark 3.3. From (3.17), we see that if C = 0, then (3.17) represents the
separated conditions, if the rank(C) = 1, then (3.17) represents the mixed
conditions. In this way the canonical forms (3.17) unify the coupled, separated,
and mixed canonical forms into one single form. We believe this will become an
important tool for studying the dependence of the eigenvalues on the boundary
conditions.

Next we show that for coupled self-adjoint boundary conditions the self-adjoint
domains characterized by (3.17) are quite similar to those of the second order
case. This may lead to similar methods for studying the dependence of the
eigenvalues on the boundary conditions for fourth order problems.

For coupled self-adjoint boundary conditions (3.17), rank(B) = 4, rank(C) =
2. Since the boundary conditions are invariant under left multiplication, we have:

B−1A =

 C 02×2

R2 J2

−1 R1 J2

−C∗ 02×2

 =

 C−1 02×2

−J2R2C
−1 J2

 R1 J2

−C∗ 02×2


= K1

C−1 02×2

02×2 C∗

K2,

where

K1 =

 I2 02×2

−J2R2 J2

 , K2 =

 R1 J2

−I2 02×2

 .

Remark 3.4. That is, the boundary matrix corresponding to the coupled canonical
form for the fourth order differential operators can be transformed into:

(A : B) =

K1

C−1 02×2

02×2 C∗

K2 : I4

 , (3.19)

where A = K1

C−1 02×2

02×2 C∗

K2 is the product of three matrices, the second

matrix is a diagonal matrix, which is determined by C, and the determinant of
A has absolute value equal to 1; the other two matrices consist of four symmetric
block matrices, which are determined by R2 and R1 respectively, and |det(K1)| =
|det(K2)| = 1, I4 denotes the 4 by 4 identity matrix. And there is a 1-1
correspondence between the coupled self-adjoint canonical forms (3.17) and
(3.19). The examples in the next section will illustrate this point further.

Remark 3.5. Compare these four formulas (2.7), (2.14), (3.17), (3.19), the coupled
self-adjoint canonical forms for the fourth order differential operators have very
similar forms with the second order case.
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According to the above analysis, we have:

Theorem 3.4. Coupled self-adjoint domains D(S) of fourth order differential
operators (3.1) are determined by two point boundary conditions

D(S) =

{
y ∈ Dmax : AY (a) + Y (b) = 0, Y =

(
y[0] y[1] y[2] y[3]

)T}
, (3.20)

with matrices A, B ∈M4(C) satisfying

A =

 I2 02×2

−J2R2 J2

C−1 02×2

02×2 C∗

 R1 J2

−I2 02×2

 = K1

C−1 02×2

02×2 C∗

K2,

where I2, J2, R1, R2 are symmetric matrices, and rank(C) = 2.

Theorem 3.5. For the boundary matrices satisfying (3.11), according to the
classification of (B3 : B4) in Lemma 3.1, we have:

• If (B3 : B4) =

 b31 0 b33 1

b41 1 0 0

 , the canonical forms follows below:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 =


r1 ā21 0 1 b11 0 b13 0

a21 r2 1 0 b21 0 b23 0

−b11 −b21 0 0 r3 0 b33 1

b13 b23 0 0 −b33 1 0 0

 , (3.21)

where r1, r2, r3 ∈ R.

• If (B3 : B4) =

 0 b32 1 0

1 0 0 0

 , the canonical forms are as below:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 =


r1 ā21 0 1 0 b12 0 b14

a21 r2 1 0 0 b22 0 b24

−b12 −b22 0 0 0 r3 1 0

b14 b24 0 0 1 0 0 0

 , (3.22)

where r1, r2, r3 ∈ R.

• If (B3 : B4) =

 0 1 0 0

1 0 0 0

 , the canonical forms for coupled conditions are:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 =


r1 ā21 0 1 0 0 b13 b14

a21 r2 1 0 0 0 b23 b24

b13 b23 0 0 0 1 0 0

b14 b24 0 0 1 0 0 0

 , (3.23)
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where r1, r2 ∈ R.

• For

(B3 : B4) =

 0 b32 b33 1

1 0 0 0

 ,

and

(B3 : B4) =

 b31 0 1 0

b41 1 0 0

 ,

there are no canonical forms for coupled self-adjoint boundary conditions of
order four.

Proof. These observations follow from the above results.

Remark 3.6. Comparing (3.17) and Theorem 3.5, we see the latter should be
transformed by the former (3.17) by elementary column transformations.

We call (3.17) (or (3.18)) as the “fundamental canonical form” of the self-adjoint
boundary conditions. Theorem 3.5 greatly simplifies the canonical forms in [11]. See
the next Remark.

Remark 3.7. The results in [11] are based on the well known characterization
(1.11) based on the matrix E4. The characterization given by Theorem 3.5 is based
on the matrix F4. The quasi-derivatives used in [11] are somewhat different from
those used here. We find it remarkable that such an apparently minor change from
E4 to F4 has a major consequence in the construction of canonical forms.

4. Examples

In this section we give some simple examples to illustrate our main results.

Example 4.1. Let r1, r2 ∈ R, b11 = i, in (2.7), then we have the canonical form
of self-adjoint differential operators of order two as following form:

(A : B) =

a11 a12 b11 b12

b21 b22 b21 b22

 =

 r1 1 i 0

i 0 r2 1

 .

From (2.14), we know a canonical form for the coupled self-adjoint second order
differential operators also can be written as below:

(A : B) =

K1

−i 0

0 −i

K2 : I2

 =

 −ir1 −i 1 0

ir1r2 − i ir2 0 1

 , (4.1)

where K1 =

 1 0

−r2 1

, K2 =

 r1 1

−1 0

, det(K1) = det(K2) = 1, and det(A) = −1.
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Remark 4.1. By (2.8), A = eiγK, here

A =

 −ir1 −i

ir1r2 − i ir2

 = i

 −r1 −1

r1r2 − 1 r2

 = e
π
2 iK,

where K is a real matrix and det(K) = 1.

If we change b11 to 0, then the above canonical form will become a separated
self-adjoint boundary condition.

Next we give some examples for canonical forms of self-adjoint differential
operators of order four:

Example 4.2. Let A1 = I2, B1 = E2, B3 = J2, in terms of (3.17), then we
have the following canonical form of self-adjoint domains:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 =


1 0 0 1 0 −1 0 0

0 1 1 0 1 0 0 0

0 −1 0 0 0 1 0 1

1 0 0 0 1 0 1 0

 . (4.2)

From (3.19), we get the coupled self-adjoint canonical form:

(A : B) =

K1

−E2 02×2

02×2 −E2

K2 : I4

 , (4.3)

where K1 =

 I2 02×2

−I2 J2

, K2 =

 I2 J2

−I2 02×2

 and det(K1) = det(K2) = −1, i.e.:

(A : B) =


0 1 1 0 1 0 0 0

−1 0 0 −1 0 1 0 0

1 −1 −1 0 0 0 1 0

1 −1 0 1 0 0 0 1

 , (4.4)

where det(A) = 1.

If we let B1 = 02×2, the boundary condition (4.2) becomes a separated

self-adjoint boundary condition. If we let B1 =

 0 0

1 0

, the boundary condition

(4.2) becomes a mixed self-adjoint boundary condition.

Example 4.3. Assume that A1 = B3 = iE2, B1 = iJ2, from (3.17), we obtain the
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canonical form of self-adjoint domains as follows:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 =


0 −i 0 1 0 i 0 0

i 0 1 0 i 0 0 0

0 i 0 0 0 −i 0 1

i 0 0 0 i 0 1 0

 ,

where A1, B3 are complex symmetric matrices.
From (3.19), we obtain the coupled self-adjoint canonical form:

(A : B) =

K1

−iJ2 02×2

02×2 −iJ2

K2 : I4

 =


1 0 −i 0 1 0 0 0

0 −1 0 −i 0 1 0 0

0 0 −1 0 0 0 1 0

0 0 0 1 0 0 0 1

 , (4.5)

where K1 =

 I2 02×2

−iJ2E2 J2

, K2 =

 iE2 J2

−I2 02×2

 and det(K1) = det(K2) =

−1. Furthermore, we have det(A) = 1.

Example 4.4. Assume that A1 = I2, B3 = J2, B1 =

 1 + i 0

0 3 + i

 in terms of

(3.17), we obtain canonical forms of self-adjoint domains having the following form:

(A : B) =

 I2 J2 B1 02×2

−B∗1 02×2 J2 J2

 =


1 0 0 1 1 + i 0 0 0

0 1 1 0 0 3 + i 0 0

−1 + i 0 0 0 0 1 0 1

0 −3 + i 0 0 1 0 1 0

 ,

where A1, B3 are symmetric matrices.
From (3.19), we obtain the coupled self-adjoint canonical form:

(A : B) =

K1

B−1
1 02×2

02×2 B∗1

K2 : I4

 =



1−i
2 0 0 1−i

2 1 0 0 0

0 3−i
10

3−i
10 0 0 1 0 0

− 1−i
2 −3 + i 0 − 1−i

2 0 0 1 0

−1 + i − 3−i
10 − 3−i

10 0 0 0 0 1

 ,

(4.6)

where K1 =

 I2 02×2

−I2 J2

 , K2 =

 I2 J2

−I2 02×2

 , B∗1 =

1− i 0

0 3− i

 , B−1
1 =
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2 0

0 3−i
10

 , and |det(A)| =| [(1−i)(3−i)]2
20 |= 1.

Example 4.5. Let (B3 : B4) =

0 0 i 1

i 1 0 0

 . Suppose A1 = A3 = iE2 in terms

of (3.20) in Theorem 3.5, we obtain the coupled canonical form of self-adjoint
domains having the following form:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 =


0 −i 0 1 0 0 −i 0

i 0 1 0 −i 0 0 0

0 −i 0 0 0 0 i 1

i 0 0 0 i 1 0 0

 ,

where A1 = A3 are all complex symmetric matrices.

Example 4.6. Let (B3 : B4) =

 0 i 1 0

1 0 0 0

 . Suppose A1 = iE2, A3 = iJ2 in

terms of (3.22) in Theorem 3.5, we obtain the coupled canonical form of self-adjoint
domains having the following form:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 =


0 −i 0 1 0 0 0 −i

i 0 1 0 0 i 0 0

0 i 0 0 0 i 1 0

i 0 0 0 1 0 0 0

 ,

where A1 is a complex symmetric matrix.

Example 4.7. Let (B3 : B4) =

 0 1 0 0

1 0 0 0

 . Suppose A1 = I2, A3 = iJ2 in

terms of (3.23) in Theorem 3.5, we obtain the coupled canonical form of self-adjoint
domains having the following form:

(A : B) =

A1 A2 B1 B2

A3 A4 B3 B4

 =


1 0 0 1 0 0 0 −i

0 1 1 0 0 0 −i 0

0 i 0 0 0 1 0 0

i 0 0 0 1 0 0 0

 ,

where A1 is a real symmetric matrix.
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