A NON-RADIALLY SYMMETRIC SOLUTION TO A CLASS OF ELLIPTIC EQUATION WITH KIRCHHOFF TERM*

Jianqing Chen ${ }^{1, \dagger}$ and Xiuli Tang ${ }^{1}$

Abstract

We consider the following equation with Kirchhoff term - $(a+$ $\left.b \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x\right) \Delta u+u=|u|^{p-2} u, u \in H^{1}\left(\mathbb{R}^{3}\right)$, where a, b are positive constants and $2<p<6$. By deducing a variant variational identity and a constraint set, we are able to prove the existence of a non-radially symmetric solution $u\left(x_{1}, x_{2}, x_{3}\right)$ for the full range of $p \in(2,6)$. Moreover this solution $u\left(x_{1}, x_{2}, x_{3}\right)$ is radially symmetric with respect to $\left(x_{1}, x_{2}\right)$ and odd with respect to x_{3}.

Keywords Equation with Kirchhoff term, non-radially symmetric solution, variant variational identity.

MSC(2010) 35J20.

1. Introduction and main results

This paper is concerned with the existence of non-radially symmetric solutions to the following equation with Kirchhoff term

$$
\left\{\begin{array}{l}
-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x\right) \Delta u+u=|u|^{p-2} u \tag{1.1}\\
u:=u(x), x \in \mathbb{R}^{3}, u \in H^{1}\left(\mathbb{R}^{3}\right)
\end{array}\right.
$$

where a, b are positive constants and $2<p<6$. Equation (1.1) is a model of the following

$$
\begin{equation*}
-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x\right) \Delta u+V(x) u=f(x, u) \tag{1.2}
\end{equation*}
$$

where $a>0, b \geq 0, V: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C\left(\mathbb{R}^{3} \times \mathbb{R}, \mathbb{R}\right)$. The $\int_{\mathbb{R}^{3}}|\nabla u|^{2} d x \Delta u$ is usually called Kirchhoff term.

In the past ten years, many researchers have been devoted to finding solutions to (1.2), see e. g. [11, 13, 14, 16, 23]. In these papers, critical point theorems are applied to the functional

$$
\Phi(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(a|\nabla u|^{2}+V(x)|u|^{2}\right) d x+\frac{b}{4}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} d x\right)^{2}-\int_{\mathbb{R}^{3}} F(x, u) d x
$$

[^0]defined on $E:=\left\{u \in H^{1}\left(\mathbb{R}^{3}\right): \int_{\mathbb{R}^{3}} V(x)|u|^{2} d x<\infty\right\}$ with $F(x, u)=\int_{0}^{u} f(x, s) d s$. In the process of finding critical points of Φ, there are some difficulties. The first is lack of compactness embedding from E into $L^{q}\left(\mathbb{R}^{3}\right)$ for $2<q<6$. To overcome this, one may assume that both $V(x)$ and $f(x, u)$ are radially symmetric on x and then restrict Φ on the subspace of E which contains only radially symmetric functions. Or assume that $V(x) \in C\left(\mathbb{R}^{3}, \mathbb{R}\right)$ and satisfies suitable compactness condition such that the embedding from E into $L^{q}\left(\mathbb{R}^{3}\right)(2<q<6)$ is compact, see e.g. [9-11,15,22].

The second difficulty is the "geometry condition". Comparing with the case of $b=0$, one usually assume that the growth of $F(x, u)$ on u is faster than $|u|^{4}$, see e. g. $[5,8,11,22]$, where the authors assume $f(x, u)$ is 4 -superlinear at infinity in the sense that

$$
\lim _{|u| \rightarrow+\infty} \frac{F(x, u)}{|u|^{4}}=+\infty \quad \text { uniformly in } \quad x \in \mathbb{R}^{3}
$$

Observing the results mentioned above, a typical case of nonlinear function $f(x, u)=|u|^{p-2} u$ is not covered when $2<p<4$. Recently, by using monotonicity trick, the authors in [12] proved that the following equation

$$
\begin{equation*}
-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x\right) \Delta u+V(x) u=|u|^{p-2} u \tag{1.3}
\end{equation*}
$$

has a positive ground state solution in E for any $p \in(3,6)$.
For (1.1), Wu [22] has essentially proven the existence of radially symmetric solution when $4<p<6$. Also for $p \in(4,6)$, Sun and Zhang [21] proved that the positive ground state solution to (1.1) is unique and radially symmetric. Recently, such kind of results has been extended to fractional Kirchhoff type equation or p-Kirchhoff equations, see e. g. $[1,3,6,17,18]$ as well as the references therein. But we do not see any results about the existence of non-radial solutions to (1.1) for $2<p<4$. The purpose of the present paper is to prove that (1.1) admits at least one non-radially symmetric solution for the full range of $p \in(2,6)$. Our main result is the following theorem.

Theorem 1.1. Assume that $a, b>0$ and $2<p<6$. Then (1.1) admits a nonradially symmetric solution $u \in H^{1}\left(\mathbb{R}^{3}\right)$. Moreover if denoting $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $u:=u\left(x_{1}, x_{2}, x_{3}\right)$, then u is radially symmetric with respect to $\left(x_{1}, x_{2}\right)$ and odd with respect to x_{3}.

The proof of Theorem 1.1 is by variational methods. Our idea is inspired from the paper of Ruiz [20] where the author constructed a kind of Nehari-Pohozaev type identity and studied a class of Schrodinger-Poisson system. Our strategy is to deduce a variant variational identity and define a subset \mathcal{M} (see Section 3) of $H^{1}\left(\mathbb{R}^{3}\right)$. On the set \mathcal{M} we minimize the following functional

$$
I(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(a|\nabla u|^{2}+u^{2}\right) d x+\frac{b}{4}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} d x\right)^{2}-\frac{1}{p} \int_{\mathbb{R}^{3}}|u|^{p} d x
$$

and prove that the minimum can be achieved.
This paper is organized as follows. In Section 2, we give some preliminaries about group action on \mathbb{R}^{3}. In Section 3, we deduce a variant variational identity and define a subset \mathcal{M}; then we prove that a minimizer of $I_{\left.\right|_{\mathcal{M}}}$ is a critical point of I on $H^{1}\left(\mathbb{R}^{3}\right)$. We emphasize that with the help of this construction, we manage to
prove the existence of solution for the full range of $p \in(2,6)$, which is a complement of several previous works. In Section 4, we finish the proof of Theorem 1.1.
Notation. Throughout this paper, all integrals are taken over \mathbb{R}^{3} unless specified. $C_{n}(n=1,2, \cdots)$ denotes a positive constant whose exact value is not important. $L^{q}\left(\mathbb{R}^{3}\right)(1 \leq q<+\infty)$ is the usual Lebesgue space with the standard norm $|u|_{q}$. For $a>0$, we introduce an equivalent norm on $H^{1}\left(\mathbb{R}^{3}\right):\|u\|^{2}:=\int\left(a|\nabla u|^{2}+u^{2}\right) d x$ with the corresponding inner product $(u, v):=\int(a \nabla u \nabla v+u v) d x$.

2. Preliminaries

In this section, we introduce a group action on \mathbb{R}^{3} which is originated from [4]. For every $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$, we define a map on $H^{1}\left(\mathbb{R}^{3}\right)$ as

$$
\left(T_{\theta} u\right)(x):=-u\left(g_{\theta} x\right), \quad \text { where } \quad g_{\theta}:=\left(\begin{array}{ccc}
\cos \theta-\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Then, $T_{\theta}: u \mapsto T_{\theta} u$ is a linear operator from $H^{1}\left(\mathbb{R}^{3}\right)$ to $H^{1}\left(\mathbb{R}^{3}\right)$. And T_{θ} satisfies the following properties.

Proposition 2.1 ([4]). For any $\theta_{1}, \theta_{2} \in \mathbb{R} / 2 \pi \mathbb{Z}$ and $u, v \in H^{1}\left(\mathbb{R}^{3}\right)$

$$
\begin{gather*}
T_{\theta_{1}} T_{\theta_{2}}=T_{\theta_{1}+\theta_{2}} T_{0}=T_{0} T_{\theta_{1}+\theta_{2}}=T_{\theta_{2}} T_{\theta_{1}} \tag{2.1}\\
T_{0} T_{0}=I d, \tag{2.2}\\
\left(T_{\theta} u, T_{\theta} v\right)=(u, v) \tag{2.3}
\end{gather*}
$$

Next, we introduce a set of fixed points in $H^{1}\left(\mathbb{R}^{3}\right)$:

$$
\tilde{H}:=\left\{u \in H^{1}\left(\mathbb{R}^{3}\right): \text { for any } \theta \in \mathbb{R} / 2 \pi \mathbb{Z}, T_{\theta} u=u\right\}
$$

Remark 2.1. (1). The \tilde{H} is closed and weakly closed in $H^{1}\left(\mathbb{R}^{3}\right)$.
(2). For every $u \in \tilde{H}, u$ is radially symmetric with respect to $\left(x_{1}, x_{2}\right)$ and odd with respect to x_{3}. Indeed, for a. e. $x:=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$

$$
u\left(x_{1}, x_{2},-x_{3}\right)=u\left(g_{0} x\right)=-u\left(x_{1}, x_{2}, x_{3}\right)
$$

and

$$
u\left(r_{\theta}\left(x_{1}, x_{2}\right), x_{3}\right)=u\left(g_{\theta}\left(x_{1}, x_{2},-x_{3}\right)\right)=-u\left(x_{1}, x_{2},-x_{3}\right)=u\left(x_{1}, x_{2}, x_{3}\right)
$$

where

$$
r_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Lemma 2.1. If $u \in \tilde{H}$ is a critical point of $\left.I\right|_{\tilde{H}}$, then u is a critical point of I.

Proof. From (2.3), we get that for every $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$ and $u, v \in H^{1}\left(\mathbb{R}^{3}\right)$

$$
\begin{aligned}
I\left(T_{\theta} u\right) & =\frac{1}{2} \int\left(a\left|\nabla\left(T_{\theta} u\right)\right|^{2}+\left|T_{\theta} u\right|^{2}\right) d x+\frac{b}{4}\left(\int\left|\nabla\left(T_{\theta} u\right)\right|^{2} d x\right)^{2}-\frac{1}{p} \int\left(\left|T_{\theta} u\right|^{2}\right)^{p / 2} d x \\
& =\frac{1}{2} \int\left(a|\nabla u|^{2}+|u|^{2}\right) d x+\frac{b}{4}\left(\int|\nabla u|^{2} d x\right)^{2}-\frac{1}{p} \int|u|^{p} d x \\
& =I(u)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle I^{\prime}(u), T_{\theta} v\right\rangle & =\left.\frac{d}{d \lambda} I\left(u+\lambda T_{\theta} v\right)\right|_{\lambda=0}=\left.\frac{d}{d \lambda} I\left(T_{\theta}\left(T_{-\theta} u+\lambda v\right)\right)\right|_{\lambda=0} \\
& =\left.\frac{d}{d \lambda} I\left(T_{-\theta} u+\lambda v\right)\right|_{\lambda=0}=\left\langle I^{\prime}\left(T_{-\theta} u\right), v\right\rangle
\end{aligned}
$$

Since the gradient of I at u is defined by, for every $v \in H^{1}\left(\mathbb{R}^{3}\right)$,

$$
(\nabla I(u), v)=\left\langle I^{\prime}(u), v\right\rangle
$$

we have that for every $u \in \tilde{H}$ and $v \in H^{1}\left(\mathbb{R}^{3}\right)$

$$
\begin{aligned}
\left(T_{\theta}(\nabla I(u)), v\right) & =\left(T_{\theta}(\nabla I(u)), T_{\theta} T_{-\theta} v\right)=\left(\nabla I(u), T_{-\theta} v\right) \\
& =\left\langle I^{\prime}(u), T_{-\theta} v\right\rangle=\left\langle I^{\prime}\left(T_{\theta} u\right), v\right\rangle \\
& =\left(\nabla I\left(T_{\theta} u\right), v\right)=(\nabla I(u), v)
\end{aligned}
$$

which implies that

$$
\nabla I(u) \in \tilde{H}
$$

Since \tilde{H} is closed in $H^{1}\left(\mathbb{R}^{3}\right)$, denoted with \tilde{H}^{\perp} its orthogonal, we write

$$
H^{1}\left(\mathbb{R}^{3}\right)=\tilde{H}+\tilde{H}^{\perp}
$$

If $u \in \tilde{H}$ is a critical point of $\left.I\right|_{\tilde{H}}$, for every $v \in H^{1}\left(\mathbb{R}^{3}\right)$ as the sum of $v_{1} \in \tilde{H}$ and $v_{2} \in \tilde{H}^{\perp}$

$$
\begin{aligned}
\left\langle I^{\prime}(u), v\right\rangle & =\left\langle I^{\prime}(u), v_{1}\right\rangle+\left\langle I^{\prime}(u), v_{2}\right\rangle \\
& =\left\langle\left(\left.I\right|_{\tilde{H}}\right)^{\prime}(u), v_{1}\right\rangle+\left(\nabla I(u), v_{2}\right) \\
& =0
\end{aligned}
$$

3. Variant variational identity and a constraint set

The aim of this section is to construct a suitable constraint set, on which we can define a minimization problem. The construction is based on a variant variational identity $(G(u)=0$, see Remark 3.1). Keeping the definition of the functional I in mind, we observe that due to the presence of Kirchhoff term, when $p \in(2,4)$, it is not easy to see if the functional I is not bounded from below. We begin with the following proposition.

Proposition 3.1. Let $a>0, b>0$ and $p \in(2,6)$. The functional I is not bounded below on \tilde{H}.

Proof. For any $u \in \tilde{H}$ and any $t>0$, denote $w(x):=t^{\frac{1}{4}} u\left(t^{-\frac{1}{2}} x\right)$. Then by direct computations, we have that
$\int|\nabla w|^{2} d x=t \int|\nabla u|^{2} d x, \quad \int|w|^{2} d x=t^{2} \int|u|^{2} d x, \quad \int|w|^{p} d x=t^{\frac{p+6}{4}} \int|u|^{p} d x$,
and therefore

$$
I(w)=\frac{1}{2} t \int a|\nabla u|^{2} d x+\frac{1}{2} t^{2} \int|u|^{2} d x+\frac{b}{4} t^{2}\left(\int|\nabla u|^{2} d x\right)^{2}-\frac{1}{p} t^{\frac{p+6}{4}} \int|u|^{p} d x .
$$

Since $\frac{p+6}{4}>2$, we deduce that $I(w) \rightarrow-\infty$ as $t \rightarrow+\infty$.
Lemma 3.1. Let $\alpha, \beta, \gamma, \delta$ be positive constants and $p \in(2,6)$. For $t \geq 0$, we define $f(t):=\alpha t+\beta t^{2}+\gamma t^{2}-\delta t^{\frac{p+6}{4}}$. Then f has a unique critical point which corresponds to its maximum.

Proof. For $t \geq 0$, we compute directly that

$$
\begin{aligned}
& f^{\prime}(t)=\alpha+2 \beta t+2 \gamma t-\frac{p+6}{4} \delta t^{\frac{p+2}{4}} \\
& f^{\prime \prime}(t)=2 \beta+2 \gamma-\frac{p+6}{4} \frac{p+2}{4} \delta t^{\frac{p-2}{4}}
\end{aligned}
$$

Since $f^{\prime \prime}$ is strictly decreasing with respect to $t>0$ and $f^{\prime \prime}(0)=2 \beta+2 \gamma>0$, there exists $t_{1}>0$ such that $f^{\prime \prime}\left(t_{1}\right)=0$ and $f^{\prime \prime}(t)\left(t_{1}-t\right)>0$ for $t \neq t_{2}$.

Since $f^{\prime}(0)=\alpha>0$ and f^{\prime} is increasing for $t<t_{1}, f^{\prime}$ takes positive values at least for $t \in\left[0, t_{1}\right]$. For $t>t_{1}, f^{\prime}$ decreases, and goes to $-\infty$. Then there exists $t_{0}>t_{1}$ such that $f^{\prime}\left(t_{0}\right)=0$ and $f^{\prime}(t)\left(t_{0}-t\right)>0$ for $t \neq t_{0}$.

Taking a conclusion, t_{0} is the unique critical point of f and corresponds to its maximum as $\frac{p+6}{4}>2$.

We are now in a position to construct a manifold on which we can define a minimization problem. Our idea is to establish a variant variational identity and use this identity to construct a set. Then we prove that this set is a manifold and share some properties similar to Nehari manifold. More precisely, we will construct a manifold such that for any $u \neq 0$, there is a curve passing u and acrossing the manifold only at one point. Moreover, along this curve the functional I achieves its maximum at a unique point. To attain this goal, for $w(x):=t^{\frac{1}{4}} u\left(t^{-\frac{1}{2}} x\right)$ defined as above, we consider

$$
I(w)=\frac{1}{2} t \int a|\nabla u|^{2} d x+\frac{1}{2} t^{2} \int|u|^{2} d x+\frac{b}{4} t^{2}\left(\int|\nabla u|^{2} d x\right)^{2}-\frac{1}{p} t^{\frac{p+6}{4}} \int|u|^{p} d x
$$

Then for u fixed, $I(w)$ is positive for small t and tends to $-\infty$ as $t \rightarrow+\infty$. Choosing $f(t):=I(w)$, from Lemma 3.1, we know that $f(t)$ has a unique critical point, corresponding to its maximum. Define the functional $G: \tilde{H} \longrightarrow \mathbb{R}$ as

$$
G(u):=\frac{1}{2} \int a|\nabla u|^{2} d x+\int u^{2} d x+\frac{b}{2}\left(\int|\nabla u|^{2} d x\right)^{2}-\frac{p+6}{4 p} \int|u|^{p} d x
$$

and set

$$
\mathcal{M}=\{u \in \tilde{H} \backslash\{0\}: G(u)=0\}
$$

Proposition 3.2. Let $p \in(2,6)$. For any $u \in \tilde{H} \backslash\{0\}$, there is a unique $t_{0}:=$ $t_{0}(u)>0$ such that $t_{0}^{\frac{1}{4}} u\left(t_{0}^{-\frac{1}{2}} x\right) \in \mathcal{M}$. Moreover if $G(u)<0$, then $t_{0} \in(0,1)$.
Proof. Firstly, for any $u \in \tilde{H} \backslash\{0\}$ and any $t>0$, we choose $f(t):=I(w)$ with $w(x):=t^{\frac{1}{4}} u\left(t^{-\frac{1}{2}} x\right)$. Then from the proof of Lemma 3.1, $f(t)$ has a unique critical point $t_{0}:=t_{0}(u)$ (here $t_{0}(u)$ means t_{0} depends on $\left.u\right)$, corresponding to its maximum. Therefore
$f^{\prime}\left(t_{0}\right)=\frac{1}{2} \int a|\nabla u|^{2} d x+t_{0} \int|u|^{2} d x+\frac{b}{2} t_{0}\left(\int|\nabla u|^{2} d x\right)^{2}-\frac{p+6}{4 p} t_{0}^{\frac{p+2}{4}} \int|u|^{p} d x=0$.
Denoting $w_{0}(x):=t_{0}^{\frac{1}{4}} u\left(t_{0}^{-\frac{1}{2}} x\right)$, then $w_{0} \neq 0$ and we have that

$$
\begin{aligned}
G\left(w_{0}\right) & =\frac{1}{2} \int a\left|\nabla w_{0}\right|^{2} d x+\int\left|w_{0}\right|^{2} d x+\frac{b}{2}\left(\int\left|\nabla w_{0}\right|^{2} d x\right)^{2}-\frac{p+6}{4 p} \int\left|w_{0}\right|^{p} d x \\
& =\frac{1}{2} t_{0} \int a|\nabla u|^{2} d x+t_{0}^{2} \int|u|^{2} d x+\frac{b}{2} t_{0}^{2}\left(\int|\nabla u|^{2} d x\right)^{2}-\frac{p+6}{4 p} t_{0}^{\frac{p+6}{4}} \int|u|^{p} d x \\
& =t_{0} f^{\prime}\left(t_{0}\right)=0
\end{aligned}
$$

Hence $w_{0}(x):=t_{0}^{\frac{1}{4}} u\left(t_{0}^{-\frac{1}{2}} x\right) \in \mathcal{M}$.
Secondly, if $G(u)<0$, then from

$$
G(u)=\frac{1}{2} \int a|\nabla u|^{2} d x+\left.\int u\right|^{2} d x+\frac{b}{2}\left(\int|\nabla u|^{2} d x\right)^{2}-\frac{p+6}{4 p} \int|u|^{p} d x<0
$$

and
$G\left(w_{0}\right)=\frac{1}{2} t_{0} \int a|\nabla u|^{2} d x+t_{0}^{2} \int|u|^{2} d x+\frac{b}{2} t_{0}^{2}\left(\int|\nabla u|^{2} d x\right)^{2}-\frac{p+6}{4 p} t_{0}^{\frac{p+6}{4}} \int|u|^{p} d x=0$, we obtain that
$\frac{1}{2}\left(t_{0}^{\frac{p+6}{4}}-t_{0}\right) \int a|\nabla u|^{2} d x+\left(t_{0}^{\frac{p+6}{4}}-t_{0}^{2}\right) \int|u|^{2} d x+\frac{b}{2}\left(t_{0}^{\frac{p+6}{4}}-t_{0}^{2}\right)\left(\int|\nabla u|^{2} d x\right)^{2}<0$,
which implies $t_{0}<1$. Therefore $t_{0} \in(0,1)$.
Remark 3.1. If $v \neq 0$ is a weak solution of (1.1), then by the calculation of the Pohozaev [19] identity of equation (1.1), $P(v)=0$, where

$$
P(v):=\frac{1}{2} \int a|\nabla v|^{2} d x+\frac{3}{2} \int|v|^{2} d x+\frac{b}{2}\left(\int|\nabla v|^{2} d x\right)^{2}-\frac{3}{p} \int|v|^{p} d x
$$

Moreover, for this v, according to the proof of Proposition 3.2, there is a unique $t_{0}(v)>0$ such that $\left(t_{0}(v)\right)^{\frac{1}{4}} u\left(\left(t_{0}(v)\right)^{-\frac{1}{2}} x\right) \in \mathcal{M}$. We claim that $t_{0}(v)=1$. To see this, one only notices that $\frac{1}{4}\left\langle I^{\prime}(v), v\right\rangle=0, \frac{1}{4} P(v)=0$ and $G(v)=\frac{1}{4}\left\langle I^{\prime}(v), v\right\rangle+$ $\frac{1}{2} P(v)=0$.
Lemma 3.2. Let $a>0, b>0$ and $p \in(2,6)$. Then \mathcal{M} is bounded away from zero.

Proof. For any $u \in \mathcal{M}$, we deduce from $G(u)=0$ and the Sobolev inequality that

$$
\begin{gathered}
\frac{1}{2} \int a|\nabla u|^{2} d x+\int|u|^{2} d x \leq \frac{1}{2} \int a|\nabla u|^{2} d x+\int|u|^{2} d x \\
\quad+\frac{b}{2}\left(\int|\nabla u|^{2} d x\right)^{2}=\frac{p+6}{4 p} \int|u|^{p} d x \leq C_{1}\|u\|^{p}
\end{gathered}
$$

Which implies that there is a $C_{2}>0$ such that $\|u\|^{p-2} \geq C_{2}$.
Lemma 3.3. Let $a, b>0$ and $p \in(2,6)$. Then \mathcal{M} is a nature C^{1}-constraint in the sense that a critical point of $\left.I\right|_{\mathcal{M}}$ is also a critical point of I in \tilde{H}.

Proof. The proof can be sketched as following 2 steps.
Step 1. We prove that for every $u \in \mathcal{M}, G^{\prime}(u) \neq 0$. Then \mathcal{M} is a C^{1}-manifold.
Suppose that there is $u \in \mathcal{M}$ such that $G^{\prime}(u)=0$. We denote

$$
i:=\int|\nabla u|^{2} d x, \quad j:=\int|u|^{2} d x \text { and } k:=\int|u|^{p} d x .
$$

Next, in a weak sense, the equation $G^{\prime}(u)=0$ can be written as

$$
\begin{equation*}
-\left(a+2 b \int|\nabla u|^{2} d x\right) \Delta u+2 u=\frac{p+6}{4}|u|^{p-2} u \tag{3.1}
\end{equation*}
$$

Then we have the following relations:

$$
\left\{\begin{array}{l}
a i+2 j+b i^{2}-\frac{p+6}{2 p} k=0 \\
a i+2 j+2 b i^{2}-\frac{p+6}{4} k=0 \\
\frac{1}{2} a i+3 j+b i^{2}-\frac{3(p+6)}{4 p} k=0 \\
\frac{1}{4} a i+\frac{p-2}{8 p} k=I(u)
\end{array}\right.
$$

where the first one is from $2 G(u)=0$; the second one comes from multiplying (3.1) by u and integrating by parts; the third one is the Pohozaev equality of (3.1) and the fourth one is due to the definition of $I(u)$ and $G(u)=0$.

Now solving these equations as the following: combining the second one with the third one and the first one respectively, we obtain that

$$
\left\{\begin{array}{l}
4 j=\frac{(p+6)(6-p)}{4 p} k \tag{3.2}\\
a i+2 j=\frac{(p+6)(4-p)}{4 p} k
\end{array}\right.
$$

From (3.2) and $p \in(2,6)$, we deduce that

$$
a i=\frac{(p+6)(2-p)}{8 p} k<0
$$

which is a contradiction. This proves the Step 1.

Step 2. We will prove: if u is a critical point of $\left.I\right|_{\mathcal{M}}$, then $I^{\prime}(u)=0$.
If u is a critical point of I restricted on the manifold \mathcal{M}, then there exists a Lagrange multiplier $\lambda \in \mathbb{R}$ such that $I^{\prime}(u)=\lambda G^{\prime}(u)$. Denote $I_{0}:=I(u)$. Our aim is to prove $\lambda=0$.

Firstly, from $I^{\prime}(u)=\lambda G^{\prime}(u)$, in a weak sense, we have that

$$
\begin{aligned}
& -\left(a+b \int|\nabla u|^{2} d x\right) \Delta u+u-|u|^{p-2} u \\
= & \lambda\left(-\left(a+2 b \int|\nabla u|^{2} d x\right) \Delta u+2 u-\frac{p+6}{4}|u|^{p-2} u\right) .
\end{aligned}
$$

Rewrite the above equation as

$$
\begin{equation*}
-\left((\lambda-1) a+(2 \lambda-1) b \int|\nabla u|^{2} d x\right) \Delta u+(2 \lambda-1) u=\left(\frac{p+6}{4} \lambda-1\right)|u|^{p-2} u . \tag{3.3}
\end{equation*}
$$

Secondly, using the notations i, j and k as in the previous step, we obtain that

$$
\begin{gather*}
\frac{1}{4} a i+\frac{p-2}{8 p} k=I_{0}, \tag{3.4}\\
a i+2 j+b i^{2}-\frac{p+6}{2 p} k=0 \tag{3.5}\\
(\lambda-1) a i+(2 \lambda-1) j+(2 \lambda-1) b i^{2}-\left(\frac{p+6}{4} \lambda-1\right) k=0 \tag{3.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{1}{2}(\lambda-1) a i+\frac{3}{2}(2 \lambda-1) j+\frac{1}{2}(2 \lambda-1) b i^{2}-\frac{3}{p}\left(\frac{p+6}{4} \lambda-1\right) k=0 \tag{3.7}
\end{equation*}
$$

where (3.4) is from $I_{0}:=I(u)$ and $G(u)=0 ;(3.5)$ is due to $G(u)=0 ;(3.6)$ comes from multiplying (3.3) by u and integrating by parts; (3.7) is the Pohozaev identity of (3.3).

For the linear system (3.4)-(3.7), taking elementary transformation to the coefficient matrix A

$$
A=\left(\begin{array}{cccc}
\frac{1}{4} & 0 & 0 & \frac{p-2}{8 p} \\
1 & 2 & 1 & -\frac{p+6}{2 p} \\
\lambda-1 & 2 \lambda-1 & 2 \lambda-1 & 1-\frac{p+6}{4} \lambda \\
\frac{1}{2}(\lambda-1) & \frac{3}{2}(2 \lambda-1) & \frac{1}{2}(2 \lambda-1) & \frac{3}{p}\left(1-\frac{p+6}{4} \lambda\right)
\end{array}\right)
$$

and computing its determinant, we obtain that

$$
\operatorname{det} A=\frac{(p+2)(2-p)}{32 p} \lambda(2 \lambda-1)
$$

If $\operatorname{det} A \neq 0$, then by Cramer rule, we know the linear system (3.4)-(3.7) has a unique solution and

$$
\begin{equation*}
k=\frac{I_{0}}{\operatorname{det} A} \lambda(2 \lambda-1)=\frac{32 p I_{0}}{(p+2)(2-p)} \tag{3.8}
\end{equation*}
$$

Notice that $I_{0}:=I(u)$. Then we deduce from $G(u)=0$ that

$$
\begin{aligned}
I_{0}:=I(u) & =\frac{1}{2}(a i+j)+\frac{b}{4} i^{2}-\frac{k}{p} \\
& =\frac{1}{2}(a i+j)+\frac{b}{4} i^{2}-\frac{4}{p+6}\left(\frac{1}{2} a i+j+\frac{b}{2} i^{2}\right) \\
& =\frac{p+2}{2(p+6)} a i+\frac{p-2}{2(p+6)} j+\frac{(p-2) b}{4(p+6)} i^{2}>0 .
\end{aligned}
$$

Combining this with $p>2$, we know that the right hand side of (3.8) is negative. This contradicts to the definition of k.

Therefore $\operatorname{det} A=0$. This means that

$$
\lambda=0 \quad \text { or } \quad \lambda=\frac{1}{2} .
$$

Suppose that $\lambda=\frac{1}{2}$. Then (3.6) becomes

$$
-\frac{1}{2} a i-\frac{p-2}{8} k=0
$$

which is also a contradiction since $p>2, a>0, i>0$ and $k>0$. Therefore $\lambda=0$.
Hence we deduce that $I^{\prime}(u)=0$.
In sum, we finish the proof of Lemma 3.3.

4. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. Our strategy is to prove the following minimization problem

$$
\begin{equation*}
h:=\inf \{I(u): u \in \mathcal{M}\} \tag{4.1}
\end{equation*}
$$

is achieved by an element in \tilde{H} which is a non-radially symmetric solution as required. We start with proving the following lemma.
Lemma 4.1. Let $\left\{u_{n}\right\} \subset \mathcal{M}$ be such that $u_{n} \rightharpoonup u$ weakly in \tilde{H}. Denote $v_{n}:=u_{n}-u$. Then for n large enough,

$$
o(1)+G(u)+G\left(v_{n}\right) \leq 0 .
$$

Proof. By Brézis-Lieb Lemma [2], for n large enough,

$$
\left|u_{n}\right|_{p}^{p}=|u|_{p}^{p}+\left|v_{n}\right|_{p}^{p}+o(1)
$$

and

$$
\left\|u_{n}\right\|^{2}=\|u\|^{2}+\left\|v_{n}\right\|^{2}+o(1)
$$

As $u_{n} \in \mathcal{M}$, we obtain that

$$
\begin{aligned}
0= & G\left(u_{n}\right)=\frac{a}{2}\left|\nabla u_{n}\right|_{2}^{2}+\left|u_{n}\right|_{2}^{2}+\frac{b}{2}\left|\nabla u_{n}\right|_{2}^{4}-\frac{p+6}{4 p}\left|u_{n}\right|_{p}^{p} \\
= & \frac{a}{2}|\nabla u|_{2}^{2}+\frac{a}{2}\left|\nabla v_{n}\right|_{2}^{2}+|u|_{2}^{2}+\left|v_{n}\right|_{2}^{2}+\frac{b}{2}|\nabla u|_{2}^{4}+\frac{b}{2}\left|\nabla v_{n}\right|_{2}^{4} \\
& +b|\nabla u|_{2}^{2}\left|\nabla v_{n}\right|_{2}^{2}-\frac{p+6}{4 p}|u|_{p}^{p}-\frac{p+6}{4 p}\left|v_{n}\right|_{p}^{p}+o(1) \\
\geq & G(u)+G\left(v_{n}\right)+o(1) .
\end{aligned}
$$

This proves the lemma.
Proof of Theorem 1.1. Firstly, from Lemma 3.2 we know that the h defined by (4.1) satisfies $h>0$. Let $\left\{u_{n}\right\} \subset \mathcal{M}$ be a minimizing sequence of I on \mathcal{M}, i.e.

$$
\lim _{n \rightarrow \infty} I\left(u_{n}\right)=h \quad \text { and } \quad G\left(u_{n}\right)=0
$$

Define

$$
i_{n}:=\int\left|\nabla u_{n}\right|^{2}, \quad j_{n}:=\int u_{n}^{2} d x, \quad k_{n}:=\int\left|u_{n}\right|^{p} d x
$$

Obviously, i_{n}, j_{n}, k_{n} are positive and

$$
\left\{\begin{array}{l}
\frac{1}{2} a i_{n}+\frac{1}{2} j_{n}+\frac{1}{4} b i_{n}^{2}-\frac{1}{p} k_{n}=h+o(1) \\
\frac{1}{2} a i_{n}+j_{n}+\frac{1}{2} b i_{n}^{2}-\frac{p+6}{4 p} k_{n}=0
\end{array}\right.
$$

Combining the two equations, one has that

$$
\frac{p+2}{8} a i_{n}+\frac{p-2}{8} j_{n}+\frac{p-2}{16} b i_{n}^{2}=\frac{p+6}{4} h+o(1)
$$

which implies that, for n large enough,

$$
a i_{n}+j_{n}<\frac{2(p+6)}{p-2} h+1
$$

Therefore, $\left\{u_{n}\right\}$ is bounded in \tilde{H}.
In the following, we will prove that $\left\{u_{n}\right\}$ contains a convergent subsequence which converges to a minimizer of the minimum h defined in (4.1). We manage to do this by three steps.

Step (i). Up to a subsequence, still denoted by $\left\{u_{n}\right\}$, we may assume $u_{n} \rightharpoonup u_{0}$ in \tilde{H}. The $G\left(u_{n}\right)=0$ and Lemma 3.2 imply that there is $d_{0}>0$ such that $\int_{\mathbb{R}^{3}}\left|u_{n}\right|^{p} d x \geq d_{0}>0$. We set $D_{m}:=\mathbb{R}^{2} \times(m, m+1)$ for every $m \in \mathbb{Z}$. Then

$$
\begin{aligned}
d_{0} & \leq \int_{\mathbb{R}^{2} \times \mathbb{R}}\left|u_{n}\right|^{p} d x=\sum_{m \in \mathbb{Z}} \int_{D_{m}}\left|u_{n}\right|^{p-2}\left|u_{n}\right|^{2} d x \\
& \leq \sum_{m \in \mathbb{Z}}\left(\int_{D_{m}}\left|u_{n}\right|^{p} d x\right)^{\frac{p-2}{p}}\left(\int_{D_{m}}\left|u_{n}\right|^{p} d x\right)^{\frac{2}{p}} \\
& \leq \sup _{m \in \mathbb{Z}}\left(\int_{D_{m}}\left|u_{n}\right|^{p} d x\right)^{\frac{p-2}{p}} \sum_{m \in \mathbb{Z}}\left(\int_{D_{m}}\left|u_{n}\right|^{p} d x\right)^{\frac{2}{p}} \\
& \leq C_{3} \sup _{m \in \mathbb{Z}}\left(\int_{D_{m}}\left|u_{n}\right|^{p} d x\right)^{\frac{p-2}{p}} \sum_{m \in \mathbb{Z}}\left\|u_{n}\right\|_{H^{1}\left(D_{m}\right)}^{2} \\
& \leq C_{4} \sup _{m \in \mathbb{Z}}\left(\int_{D_{m}}\left|u_{n}\right|^{p} d x\right)^{\frac{p-2}{p}} .
\end{aligned}
$$

Then $\sup _{m \in \mathbb{Z}}\left(\int_{D_{m}}\left|u_{n}\right|^{p} d x\right)^{\frac{p-2}{p}}$ is bounded away from zero uniformly with respect to n. By Esteban and Lions' Theorem [7, P.381, Theorem 1], we have that $u_{0} \neq 0$.

Step (ii). We will prove that $G\left(u_{0}\right)=0$.
Arguing by a contradiction, we firstly assume that $G\left(u_{0}\right)<0$. Then by Proposition 3.2, there exists $t_{0}:=t_{0}\left(u_{0}\right) \in(0,1)$ such that $w(x):=t_{0}^{\frac{1}{4}} u\left(t_{0}^{-\frac{1}{2}} x\right) \in \mathcal{M}$. As $\left\{u_{n}\right\}$ is a minimizing sequence, we find that

$$
\begin{aligned}
h+o(1) & =I\left(u_{n}\right)=\frac{1}{4} \int a\left|\nabla u_{n}\right|^{2} d x+\frac{p-2}{8 p} \int\left|u_{n}\right|^{p} d x \\
& \geq \frac{1}{4} \int a\left|\nabla u_{0}\right|^{2} d x+\frac{p-2}{8 p} \int\left|u_{0}\right|^{p} d x \\
& >\frac{1}{4} t \int a\left|\nabla u_{0}\right|^{2} d x+\frac{p-2}{8 p} t^{\frac{p+6}{4}} \int\left|u_{0}\right|^{p} d x \\
& =\frac{1}{4} \int a|\nabla w|^{2} d x+\frac{p-2}{8 p} \int|w|^{p} d x=I(w),
\end{aligned}
$$

which is a contradiction as $w \in \mathcal{M}$.
If $G\left(u_{0}\right)>0$, then by Lemma 4.1, we deduce that $\limsup _{n \rightarrow \infty} G\left(v_{n}\right)<0$. By Proposition 3.2, there exists $t_{n}:=t_{n}\left(v_{n}\right) \in(0,1)$ such that $w_{n}(x):=t_{n}^{\frac{1}{4}} v_{n}\left(t_{n}^{-\frac{1}{2}} x\right) \in$ \mathcal{M}. Furthermore, we have that $\limsup _{n \rightarrow \infty} t_{n}<1$. In fact, up to a subsequence, assuming that $t_{n} \rightarrow 1$, then

$$
\begin{aligned}
G\left(v_{n}\right)= & \frac{1}{2} \int a\left|\nabla v_{n}\right|^{2} d x+\int v_{n}^{2} d x+\frac{b}{2}\left(\int\left|\nabla v_{n}\right|^{2} d x\right)^{2}-\frac{p+6}{4 p} \int\left|v_{n}\right|^{p} d x \\
= & \frac{1}{2} t_{n} \int a\left|\nabla v_{n}\right|^{2} d x+t_{n}^{2} \int v_{n}^{2} d x+\frac{b}{2} t_{n}^{2}\left(\int\left|\nabla v_{n}\right|^{2} d x\right)^{2} \\
& \quad-\frac{p+6}{4 p} t_{n}^{\frac{p+6}{4}} \int\left|v_{n}\right|^{p} d x+o(1) \\
= & G\left(w_{n}\right)+o(1)=o(1),
\end{aligned}
$$

which is a contradiction. With a similar argument, we find that

$$
\begin{aligned}
& h+o(1)=I\left(u_{n}\right)=\frac{1}{4} \int a\left|\nabla u_{n}\right|^{2} d x+\frac{p-2}{8 p} \int\left|u_{n}\right|^{p} d x \\
& \geq \frac{1}{4} \int a\left|\nabla v_{n}\right|^{2} d x+\frac{p-2}{8 p} \int\left|v_{n}\right|^{p} d x+\frac{1}{4} \int a\left|\nabla u_{0}\right|^{2} d x+\frac{p-2}{8 p} \int\left|u_{0}\right|^{p} d x \\
& >\frac{1}{4} t_{n} \int a\left|\nabla v_{n}\right|^{2} d x+\frac{p-2}{8 p} t_{n}^{\frac{p+6}{4}} \int\left|v_{n}\right|^{p} d x+\frac{1}{4} \int a\left|\nabla u_{0}\right|^{2} d x+\frac{p-2}{8 p} \int\left|u_{0}\right|^{p} d x \\
& =I\left(w_{n}\right)+\frac{1}{4} \int a\left|\nabla u_{0}\right|^{2} d x+\frac{p-2}{8 p} \int\left|u_{0}\right|^{p} d x
\end{aligned}
$$

which is a contradiction as $w_{n} \in \mathcal{M}$.
Hence we have proven that $G\left(u_{0}\right)=0$. Therefore $u_{0} \in \mathcal{M}$.
Step 3. We prove that $\lim _{n \rightarrow \infty}\left\|v_{n}\right\|=0$.
From $G\left(u_{n}\right)=0$, for n large enough, we deduce that

$$
h+o(1)=I\left(u_{n}\right)=\frac{1}{2} \int a\left|\nabla u_{n}\right|^{2} d x+\frac{1}{2} \int u_{n}^{2} d x+\frac{b}{4}\left(\int\left|\nabla u_{n}\right|^{2} d x\right)^{2}-\frac{1}{p} \int\left|u_{n}\right|^{p} d x
$$

$$
\begin{aligned}
= & \frac{p+2}{2(p+6)} \int a\left|\nabla u_{n}\right|^{2} d x+\frac{p-2}{2(p+6)} \int u_{n}^{2} d x+\frac{(p-2) b}{4(p+6)}\left(\int\left|\nabla u_{n}\right|^{2} d x\right)^{2} \\
\geq & \frac{p+2}{2(p+6)} \int a\left|\nabla v_{n}\right|^{2} d x+\frac{p-2}{2(p+6)} \int v_{n}^{2} d x+\frac{(p-2) b}{4(p+6)}\left(\int\left|\nabla v_{n}\right|^{2} d x\right)^{2} \\
& +\frac{p+2}{2(p+6)} \int a\left|\nabla u_{0}\right|^{2} d x+\frac{p-2}{2(p+6)} \int u_{0}^{2} d x+\frac{(p-2) b}{4(p+6)}\left(\int\left|\nabla u_{0}\right|^{2} d x\right)^{2}+o(1) \\
\geq & I\left(u_{0}\right)+\frac{p+2}{2(p+6)} \int a\left|\nabla v_{n}\right|^{2} d x+\frac{p-2}{2(p+6)} \int v_{n}^{2} d x+0(1) \\
\geq & h+\frac{p+2}{2(p+6)} \int a\left|\nabla v_{n}\right|^{2} d x+\frac{p-2}{2(p+6)} \int v_{n}^{2} d x,\left(\text { since } u_{0} \in \mathcal{M}\right)
\end{aligned}
$$

which implies that $\lim _{n \rightarrow \infty}\left\|v_{n}\right\|=0$.
Hence we have proven that $u_{n} \rightarrow u_{0}$ strongly in \tilde{H}. Therefore, $\left.\inf I\right|_{\mathcal{M}}$ is achieved at u_{0}. By Lemma 3.3, u_{0} is a critical point of I. Combining the definition of \tilde{H}, we know that u_{0} is non-radially symmetric and satisfies the properties as required. The proof of Theorem 1.1 is complete.
Acknowledgements. The authors sincerely thank the unknown referees for valuable comments.

References

[1] G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 2015, 125, 699-714.
[2] H. Brezis and E. Lieb, A relation betweenn pointwise convergence of functions and convergence of functionals, Proc. AMS., 1983, 88, 486-490.
[3] M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 2016, 195, 2099-2129.
[4] P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Advanced Nonlinear Studies, 2002, 2, 177-192.
[5] Y. B. Deng, S.J. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \mathbb{R}^{3}, J. Funct. Anal., 2015, 269, 3500-3527.
[6] L. DOnofrio, A. Fiscella and G. Molica Bisci, Perturbation methods for nonlocal Kirchhoff type problems, Fractional Calculus and Applied Analysis, 2017, 20, 829-853.
[7] M. J. Esteban and P. L. Lions, A compactness Lemma, Nonlinear Anal., 1983, 7, 381-385.
[8] G. M. Figueiredo, N. Ikoma and J. R. S. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational Mech. Anal., 2014, 213, 931-979.
[9] Z. Guo, Ground states for Kirchhoff equations without compact condition, J. Differential Equations, 2015, 259, 2884-2902.
[10] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in \mathbb{R}^{3}, J. Differential Equations, 2012, 252, 1813-1834.
[11] J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff type problems in \mathbb{R}^{N}, J. Math. Anal. Appl., 2010, 369, 564-574.
[12] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^{3}, J. Differential Equations, 2014, 257, 566-600.
[13] Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 2012, 253, 2285-2294.
[14] Z. P. Liang, F. Y. Li and J. P. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincare? Anal. Non Line?aire, 2014, 31, 155-167.
[15] W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput., 2012, 39, 473-487.
[16] Z. Liu and S. Guo, Existence of positive ground state solutions for Kirchhoff type problems, Nonlinear Anal., 2015, 120, 1-13.
[17] A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity, C. R. Math. Acad. Sci. Paris Ser. I., 2014, 352, 295-298.
[18] P. Piersanti and P. Pucci, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat., 2018, 62, 3-36.
[19] S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.), 1975, 96(138), 152-166.
[20] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237, 655-674.
[21] D. Sun and Z. Zhang, Uniqueness, existence and concentration of positive ground state solutions for Kirchhoff type problems in \mathbb{R}^{3}, J. Math. Anal. Appl., 2018, 461, 128-149.
[22] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \mathbb{R}^{3}, Nonlinear Anal. Real World Appl., 2011, 12, 1278-1287.
[23] Q. Xie, S. Ma and X. Zhang, Bound state solutions of Kirchhoff type problems with critical exponent, J. Differential Equations, 2016, 261, 890-924.

[^0]: ${ }^{\dagger}$ the corresponding author. Email address: jqchen@fjnu.edu.cn(J. Chen)
 ${ }^{1}$ College of Mathematics and Informatics \& FJKLMAA, Fujian Normal University, Fuzhou, 350117, China
 *The authors were supported by National Natural Science Foundation of China (Nos. 11871152, 11671085 and 11501107).

