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A NON-RADIALLY SYMMETRIC SOLUTION
TO A CLASS OF ELLIPTIC EQUATION WITH

KIRCHHOFF TERM∗
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Abstract We consider the following equation with Kirchhoff term −(a +
b
∫
R3 |∇u|2dx) ∆u+u = |u|p−2u, u ∈ H1(R3), where a, b are positive constants

and 2 < p < 6. By deducing a variant variational identity and a constraint
set, we are able to prove the existence of a non-radially symmetric solution
u(x1, x2, x3) for the full range of p ∈ (2, 6). Moreover this solution u(x1, x2, x3)
is radially symmetric with respect to (x1, x2) and odd with respect to x3.
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variant variational identity.
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1. Introduction and main results

This paper is concerned with the existence of non-radially symmetric solutions to
the following equation with Kirchhoff term −

(
a+ b

∫
R3

|∇u|2dx
)

∆u+ u = |u|p−2u,

u := u(x), x ∈ R3, u ∈ H1(R3),

(1.1)

where a, b are positive constants and 2 < p < 6. Equation (1.1) is a model of the
following

−
(
a+ b

∫
R3

|∇u|2dx
)

∆u+ V (x)u = f(x, u), (1.2)

where a > 0, b ≥ 0, V : R3 ×R→ R and f ∈ C(R3 ×R,R). The
∫
R3 |∇u|2dx∆u is

usually called Kirchhoff term.
In the past ten years, many researchers have been devoted to finding solutions

to (1.2), see e. g. [11, 13, 14, 16, 23]. In these papers, critical point theorems are
applied to the functional

Φ(u) =
1

2

∫
R3

(
a|∇u|2 + V (x)|u|2

)
dx+

b

4

(∫
R3

|∇u|2dx
)2

−
∫
R3

F (x, u)dx
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defined on E := {u ∈ H1(R3) :
∫
R3 V (x)|u|2dx <∞} with F (x, u) =

∫ u
0
f(x, s)ds.

In the process of finding critical points of Φ, there are some difficulties. The first is
lack of compactness embedding from E into Lq(R3) for 2 < q < 6. To overcome this,
one may assume that both V (x) and f(x, u) are radially symmetric on x and then
restrict Φ on the subspace of E which contains only radially symmetric functions.
Or assume that V (x) ∈ C(R3,R) and satisfies suitable compactness condition such
that the embedding from E into Lq(R3) (2 < q < 6) is compact, see e.g. [9–11,15,22].

The second difficulty is the “geometry condition”. Comparing with the case of
b = 0, one usually assume that the growth of F (x, u) on u is faster than |u|4, see e.
g. [5, 8, 11,22], where the authors assume f(x, u) is 4−superlinear at infinity in the
sense that

lim
|u|→+∞

F (x, u)

|u|4
= +∞ uniformly in x ∈ R3.

Observing the results mentioned above, a typical case of nonlinear function
f(x, u) = |u|p−2u is not covered when 2 < p < 4. Recently, by using monotonicity
trick, the authors in [12] proved that the following equation

−
(
a+ b

∫
R3

|∇u|2dx
)

∆u+ V (x)u = |u|p−2u, (1.3)

has a positive ground state solution in E for any p ∈ (3, 6).

For (1.1), Wu [22] has essentially proven the existence of radially symmetric
solution when 4 < p < 6. Also for p ∈ (4, 6), Sun and Zhang [21] proved that the
positive ground state solution to (1.1) is unique and radially symmetric. Recently,
such kind of results has been extended to fractional Kirchhoff type equation or
p−Kirchhoff equations, see e. g. [1,3,6,17,18] as well as the references therein. But
we do not see any results about the existence of non-radial solutions to (1.1) for
2 < p < 4. The purpose of the present paper is to prove that (1.1) admits at least
one non-radially symmetric solution for the full range of p ∈ (2, 6). Our main result
is the following theorem.

Theorem 1.1. Assume that a, b > 0 and 2 < p < 6. Then (1.1) admits a non-
radially symmetric solution u ∈ H1(R3). Moreover if denoting x = (x1, x2, x3) and
u := u(x1, x2, x3), then u is radially symmetric with respect to (x1, x2) and odd with
respect to x3.

The proof of Theorem 1.1 is by variational methods. Our idea is inspired from
the paper of Ruiz [20] where the author constructed a kind of Nehari-Pohozaev
type identity and studied a class of Schrodinger-Poisson system. Our strategy is
to deduce a variant variational identity and define a subset M (see Section 3 ) of
H1(R3). On the set M we minimize the following functional

I(u) =
1

2

∫
R3

(
a|∇u|2 + u2

)
dx+

b

4

(∫
R3

|∇u|2dx
)2

− 1

p

∫
R3

|u|pdx

and prove that the minimum can be achieved.

This paper is organized as follows. In Section 2, we give some preliminaries
about group action on R3. In Section 3, we deduce a variant variational identity
and define a subset M; then we prove that a minimizer of I|M is a critical point of
I on H1(R3). We emphasize that with the help of this construction, we manage to
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prove the existence of solution for the full range of p ∈ (2, 6), which is a complement
of several previous works. In Section 4, we finish the proof of Theorem 1.1.

Notation. Throughout this paper, all integrals are taken over R3 unless specified.
Cn (n = 1, 2, · · · ) denotes a positive constant whose exact value is not important.
Lq(R3) (1 ≤ q < +∞) is the usual Lebesgue space with the standard norm |u|q. For
a > 0, we introduce an equivalent norm on H1(R3): ‖u‖2 :=

∫ (
a|∇u|2 + u2

)
dx

with the corresponding inner product (u, v) :=
∫

(a∇u∇v + uv) dx.

2. Preliminaries

In this section, we introduce a group action on R3 which is originated from [4]. For
every θ ∈ R/2πZ, we define a map on H1(R3) as

(Tθu)(x) := −u(gθx), where gθ :=


cos θ − sin θ 0

sin θ cos θ 0

0 0 −1

 .

Then, Tθ : u 7→ Tθu is a linear operator from H1(R3) to H1(R3). And Tθ satisfies
the following properties.

Proposition 2.1 ( [4]). For any θ1, θ2 ∈ R/2πZ and u, v ∈ H1(R3)

Tθ1Tθ2 = Tθ1+θ2T0 = T0Tθ1+θ2 = Tθ2Tθ1 , (2.1)

T0T0 = Id, (2.2)

(Tθu, Tθv) = (u, v). (2.3)

Next, we introduce a set of fixed points in H1(R3):

H̃ :=
{
u ∈ H1(R3) : for any θ ∈ R/2πZ, Tθu = u

}
.

Remark 2.1. (1). The H̃ is closed and weakly closed in H1(R3).

(2). For every u ∈ H̃, u is radially symmetric with respect to (x1, x2) and odd with
respect to x3. Indeed, for a. e. x := (x1, x2, x3) ∈ R3

u(x1, x2,−x3) = u(g0x) = −u(x1, x2, x3)

and

u(rθ(x1, x2), x3) = u(gθ(x1, x2,−x3)) = −u(x1, x2,−x3) = u(x1, x2, x3),

where

rθ =

 cos θ − sin θ

sin θ cos θ

 .

Lemma 2.1. If u ∈ H̃ is a critical point of I|H̃ , then u is a critical point of I.
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Proof. From (2.3), we get that for every θ ∈ R/2πZ and u, v ∈ H1(R3)

I(Tθu) =
1

2

∫ (
a|∇(Tθu)|2+|Tθu|2

)
dx+

b

4

(∫
|∇(Tθu)|2dx

)2

− 1

p

∫
(|Tθu|2)p/2dx

=
1

2

∫ (
a|∇u|2 + |u|2

)
dx+

b

4

(∫
|∇u|2dx

)2

− 1

p

∫
|u|pdx

= I(u),

and

〈I ′(u), Tθv〉 =
d

dλ
I(u+ λTθv)

∣∣∣
λ=0

=
d

dλ
I(Tθ(T−θu+ λv))

∣∣∣
λ=0

=
d

dλ
I(T−θu+ λv)

∣∣∣
λ=0

= 〈I ′(T−θu), v〉.

Since the gradient of I at u is defined by, for every v ∈ H1(R3),

(∇I(u), v) = 〈I ′(u), v〉,

we have that for every u ∈ H̃ and v ∈ H1(R3)

(Tθ(∇I(u)), v) = (Tθ(∇I(u)), TθT−θv) = (∇I(u), T−θv)

= 〈I ′(u), T−θv〉 = 〈I ′(Tθu), v〉
= (∇I(Tθu), v) = (∇I(u), v),

which implies that

∇I(u) ∈ H̃.

Since H̃ is closed in H1(R3), denoted with H̃⊥ its orthogonal, we write

H1(R3) = H̃ + H̃⊥.

If u ∈ H̃ is a critical point of I|H̃ , for every v ∈ H1(R3) as the sum of v1 ∈ H̃ and

v2 ∈ H̃⊥
〈I ′(u), v〉 = 〈I ′(u), v1〉+ 〈I ′(u), v2〉

= 〈(I|H̃)′(u), v1〉+ (∇I(u), v2)

= 0.

3. Variant variational identity and a constraint set

The aim of this section is to construct a suitable constraint set, on which we can
define a minimization problem. The construction is based on a variant variational
identity (G(u) = 0, see Remark 3.1). Keeping the definition of the functional I in
mind, we observe that due to the presence of Kirchhoff term, when p ∈ (2, 4), it is
not easy to see if the functional I is not bounded from below. We begin with the
following proposition.

Proposition 3.1. Let a > 0, b > 0 and p ∈ (2, 6). The functional I is not bounded
below on H̃.
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Proof. For any u ∈ H̃ and any t > 0, denote w(x) := t
1
4u(t−

1
2x). Then by direct

computations, we have that∫
|∇w|2dx = t

∫
|∇u|2dx,

∫
|w|2dx = t2

∫
|u|2dx,

∫
|w|pdx = t

p+6
4

∫
|u|pdx,

and therefore

I(w) =
1

2
t

∫
a|∇u|2dx+

1

2
t2
∫
|u|2dx+

b

4
t2
(∫
|∇u|2dx

)2

− 1

p
t
p+6
4

∫
|u|pdx.

Since p+6
4 > 2, we deduce that I(w)→ −∞ as t→ +∞.

Lemma 3.1. Let α, β, γ, δ be positive constants and p ∈ (2, 6). For t ≥ 0, we define

f(t) := αt+βt2 +γt2−δt
p+6
4 . Then f has a unique critical point which corresponds

to its maximum.

Proof. For t ≥ 0, we compute directly that

f ′(t) = α+ 2βt+ 2γt− p+ 6

4
δt

p+2
4 ,

f ′′(t) = 2β + 2γ − p+ 6

4

p+ 2

4
δt

p−2
4 .

Since f ′′ is strictly decreasing with respect to t > 0 and f ′′(0) = 2β+ 2γ > 0, there
exists t1 > 0 such that f ′′(t1) = 0 and f ′′(t)(t1 − t) > 0 for t 6= t2.

Since f ′(0) = α > 0 and f ′ is increasing for t < t1, f ′ takes positive values at
least for t ∈ [0, t1]. For t > t1, f ′ decreases, and goes to −∞. Then there exists
t0 > t1 such that f ′(t0) = 0 and f ′(t)(t0 − t) > 0 for t 6= t0.

Taking a conclusion, t0 is the unique critical point of f and corresponds to its
maximum as p+6

4 > 2.
We are now in a position to construct a manifold on which we can define a

minimization problem. Our idea is to establish a variant variational identity and
use this identity to construct a set. Then we prove that this set is a manifold and
share some properties similar to Nehari manifold. More precisely, we will construct
a manifold such that for any u 6= 0, there is a curve passing u and acrossing the
manifold only at one point. Moreover, along this curve the functional I achieves its
maximum at a unique point. To attain this goal, for w(x) := t

1
4u(t−

1
2x) defined as

above, we consider

I(w) =
1

2
t

∫
a|∇u|2dx+

1

2
t2
∫
|u|2dx+

b

4
t2
(∫
|∇u|2dx

)2

− 1

p
t
p+6
4

∫
|u|pdx.

Then for u fixed, I(w) is positive for small t and tends to −∞ as t→ +∞. Choosing
f(t) := I(w), from Lemma 3.1, we know that f(t) has a unique critical point,
corresponding to its maximum. Define the functional G : H̃ −→ R as

G(u) :=
1

2

∫
a|∇u|2dx+

∫
u2dx+

b

2

(∫
|∇u|2dx

)2

− p+ 6

4p

∫
|u|pdx

and set
M = {u ∈ H̃\{0} : G(u) = 0}.
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Proposition 3.2. Let p ∈ (2, 6). For any u ∈ H̃\{0}, there is a unique t0 :=

t0(u) > 0 such that t
1
4
0 u(t

− 1
2

0 x) ∈M. Moreover if G(u) < 0, then t0 ∈ (0, 1).

Proof. Firstly, for any u ∈ H̃\{0} and any t > 0, we choose f(t) := I(w) with

w(x) := t
1
4u(t−

1
2x). Then from the proof of Lemma 3.1, f(t) has a unique critical

point t0 := t0(u)( here t0(u) means t0 depends on u), corresponding to its maximum.
Therefore

f ′(t0) =
1

2

∫
a|∇u|2dx+t0

∫
|u|2dx+

b

2
t0

(∫
|∇u|2dx

)2

− p+ 6

4p
t
p+2
4

0

∫
|u|pdx = 0.

Denoting w0(x) := t
1
4
0 u(t

− 1
2

0 x), then w0 6= 0 and we have that

G(w0) =
1

2

∫
a|∇w0|2dx+

∫
|w0|2dx+

b

2

(∫
|∇w0|2dx

)2

− p+ 6

4p

∫
|w0|pdx

=
1

2
t0

∫
a|∇u|2dx+ t20

∫
|u|2dx+

b

2
t20

(∫
|∇u|2dx

)2

− p+ 6

4p
t
p+6
4

0

∫
|u|pdx

=t0f
′(t0) = 0.

Hence w0(x) := t
1
4
0 u(t

− 1
2

0 x) ∈M.

Secondly, if G(u) < 0, then from

G(u) =
1

2

∫
a|∇u|2dx+

∫
u|2dx+

b

2

(∫
|∇u|2dx

)2

− p+ 6

4p

∫
|u|pdx < 0

and

G(w0)=
1

2
t0

∫
a|∇u|2dx+t20

∫
|u|2dx+

b

2
t20

(∫
|∇u|2dx

)2

−p+ 6

4p
t
p+6
4

0

∫
|u|pdx=0,

we obtain that

1

2

(
t
p+6
4

0 −t0
)∫

a|∇u|2dx+
(
t
p+6
4

0 − t20
)∫
|u|2dx+

b

2

(
t
p+6
4

0 −t20
)(∫

|∇u|2dx
)2

<0,

which implies t0 < 1. Therefore t0 ∈ (0, 1).

Remark 3.1. If v 6= 0 is a weak solution of (1.1), then by the calculation of the
Pohozaev [19] identity of equation (1.1), P (v) = 0, where

P (v) :=
1

2

∫
a|∇v|2dx+

3

2

∫
|v|2dx+

b

2

(∫
|∇v|2dx

)2

− 3

p

∫
|v|pdx.

Moreover, for this v, according to the proof of Proposition 3.2, there is a unique

t0(v) > 0 such that (t0(v))
1
4 u((t0(v))

− 1
2 x) ∈ M. We claim that t0(v) = 1. To see

this, one only notices that 1
4 〈I
′(v), v〉 = 0, 1

4P (v) = 0 and G(v) = 1
4 〈I
′(v), v〉 +

1
2P (v) = 0.

Lemma 3.2. Let a > 0, b > 0 and p ∈ (2, 6). Then M is bounded away from zero.
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Proof. For any u ∈M, we deduce from G(u) = 0 and the Sobolev inequality that

1

2

∫
a|∇u|2dx+

∫
|u|2dx ≤ 1

2

∫
a|∇u|2dx+

∫
|u|2dx

+
b

2

(∫
|∇u|2dx

)2

=
p+ 6

4p

∫
|u|pdx ≤ C1‖u‖p.

Which implies that there is a C2 > 0 such that ‖u‖p−2 ≥ C2.

Lemma 3.3. Let a, b > 0 and p ∈ (2, 6). Then M is a nature C1-constraint in
the sense that a critical point of I|M is also a critical point of I in H̃.

Proof. The proof can be sketched as following 2 steps.

Step 1. We prove that for every u ∈M, G′(u) 6= 0. Then M is a C1-manifold.

Suppose that there is u ∈M such that G′(u) = 0. We denote

i :=

∫
|∇u|2dx, j :=

∫
|u|2dx and k :=

∫
|u|pdx.

Next, in a weak sense, the equation G′(u) = 0 can be written as

−
(
a+ 2b

∫
|∇u|2dx

)
∆u+ 2u =

p+ 6

4
|u|p−2u. (3.1)

Then we have the following relations:

ai+ 2j + bi2 − p+ 6

2p
k = 0,

ai+ 2j + 2bi2 − p+ 6

4
k = 0,

1

2
ai+ 3j + bi2 − 3(p+ 6)

4p
k = 0,

1

4
ai+

p− 2

8p
k = I(u),

where the first one is from 2G(u) = 0; the second one comes from multiplying (3.1)
by u and integrating by parts; the third one is the Pohozaev equality of (3.1) and
the fourth one is due to the definition of I(u) and G(u) = 0.

Now solving these equations as the following: combining the second one with
the third one and the first one respectively, we obtain that

4j =
(p+ 6)(6− p)

4p
k,

ai+ 2j =
(p+ 6)(4− p)

4p
k.

(3.2)

From (3.2) and p ∈ (2, 6), we deduce that

ai =
(p+ 6)(2− p)

8p
k < 0,

which is a contradiction. This proves the Step 1.
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Step 2. We will prove: if u is a critical point of I|M, then I ′(u) = 0.

If u is a critical point of I restricted on the manifoldM, then there exists a Lagrange
multiplier λ ∈ R such that I ′(u) = λG′(u). Denote I0 := I(u). Our aim is to prove
λ = 0.

Firstly, from I ′(u) = λG′(u), in a weak sense, we have that

−
(
a+ b

∫
|∇u|2dx

)
∆u+ u− |u|p−2u

=λ

(
−
(
a+ 2b

∫
|∇u|2dx

)
∆u+ 2u− p+ 6

4
|u|p−2u

)
.

Rewrite the above equation as

−
(

(λ− 1)a+ (2λ− 1)b

∫
|∇u|2dx

)
∆u+ (2λ− 1)u =

(
p+ 6

4
λ− 1

)
|u|p−2u.

(3.3)
Secondly, using the notations i, j and k as in the previous step, we obtain that

1

4
ai+

p− 2

8p
k = I0, (3.4)

ai+ 2j + bi2 − p+ 6

2p
k = 0, (3.5)

(λ− 1)ai+ (2λ− 1)j + (2λ− 1)bi2 −
(
p+ 6

4
λ− 1

)
k = 0 (3.6)

and

1

2
(λ− 1)ai+

3

2
(2λ− 1)j +

1

2
(2λ− 1)bi2 − 3

p

(
p+ 6

4
λ− 1

)
k = 0, (3.7)

where (3.4) is from I0 := I(u) and G(u) = 0; (3.5) is due to G(u) = 0; (3.6) comes
from multiplying (3.3) by u and integrating by parts; (3.7) is the Pohozaev identity
of (3.3).

For the linear system (3.4)-(3.7), taking elementary transformation to the coef-
ficient matrix A

A =



1
4 0 0 p−2

8p

1 2 1 −p+6
2p

λ− 1 2λ− 1 2λ− 1 1− p+6
4 λ

1
2 (λ− 1) 3

2 (2λ− 1) 1
2 (2λ− 1) 3

p

(
1− p+6

4 λ
)


and computing its determinant, we obtain that

detA =
(p+ 2)(2− p)

32p
λ(2λ− 1).

If detA 6= 0, then by Cramer rule, we know the linear system (3.4)–(3.7) has a
unique solution and

k =
I0

detA
λ(2λ− 1) =

32pI0
(p+ 2)(2− p)

. (3.8)
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Notice that I0 := I(u). Then we deduce from G(u) = 0 that

I0 := I(u) =
1

2
(ai+ j) +

b

4
i2 − k

p

=
1

2
(ai+ j) +

b

4
i2 − 4

p+ 6

(
1

2
ai+ j +

b

2
i2
)

=
p+ 2

2(p+ 6)
ai+

p− 2

2(p+ 6)
j +

(p− 2)b

4(p+ 6)
i2 > 0.

Combining this with p > 2, we know that the right hand side of (3.8) is negative.
This contradicts to the definition of k.

Therefore detA = 0. This means that

λ = 0 or λ =
1

2
.

Suppose that λ = 1
2 . Then (3.6) becomes

−1

2
ai− p− 2

8
k = 0,

which is also a contradiction since p > 2, a > 0, i > 0 and k > 0. Therefore λ = 0.
Hence we deduce that I ′(u) = 0.

In sum, we finish the proof of Lemma 3.3.

4. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. Our strategy is to prove the following
minimization problem

h := inf{I(u) : u ∈M} (4.1)

is achieved by an element in H̃ which is a non-radially symmetric solution as re-
quired. We start with proving the following lemma.

Lemma 4.1. Let {un} ⊂ M be such that un ⇀ u weakly in H̃. Denote vn := un−u.
Then for n large enough,

o(1) +G(u) +G(vn) ≤ 0.

Proof. By Brézis-Lieb Lemma [2], for n large enough,

|un|pp = |u|pp + |vn|pp + o(1)

and
‖un‖2 = ‖u‖2 + ‖vn‖2 + o(1).

As un ∈M, we obtain that

0 =G(un) =
a

2
|∇un|22 + |un|22 +

b

2
|∇un|42 −

p+ 6

4p
|un|pp

=
a

2
|∇u|22 +

a

2
|∇vn|22 + |u|22 + |vn|22 +

b

2
|∇u|42 +

b

2
|∇vn|42

+ b|∇u|22|∇vn|22 −
p+ 6

4p
|u|pp −

p+ 6

4p
|vn|pp + o(1)

≥ G(u) +G(vn) + o(1).
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This proves the lemma.

Proof of Theorem 1.1. Firstly, from Lemma 3.2 we know that the h defined by
(4.1) satisfies h > 0. Let {un} ⊂ M be a minimizing sequence of I on M, i.e.

lim
n→∞

I(un) = h and G(un) = 0.

Define

in :=

∫
|∇un|2, jn :=

∫
u2ndx, kn :=

∫
|un|pdx.

Obviously, in, jn, kn are positive and
1

2
ain +

1

2
jn +

1

4
bi2n −

1

p
kn = h+ o(1),

1

2
ain + jn +

1

2
bi2n −

p+ 6

4p
kn = 0.

Combining the two equations, one has that

p+ 2

8
ain +

p− 2

8
jn +

p− 2

16
bi2n =

p+ 6

4
h+ o(1),

which implies that, for n large enough,

ain + jn <
2(p+ 6)

p− 2
h+ 1.

Therefore, {un} is bounded in H̃.
In the following, we will prove that {un} contains a convergent subsequence

which converges to a minimizer of the minimum h defined in (4.1). We manage to
do this by three steps.

Step (i). Up to a subsequence, still denoted by {un}, we may assume un ⇀ u0
in H̃. The G(un) = 0 and Lemma 3.2 imply that there is d0 > 0 such that∫
R3 |un|pdx ≥ d0 > 0. We set Dm := R2 × (m,m+ 1) for every m ∈ Z. Then

d0 ≤
∫
R2×R

|un|pdx =
∑
m∈Z

∫
Dm

|un|p−2|un|2dx

≤
∑
m∈Z

(∫
Dm

|un|pdx
) p−2

p
(∫

Dm

|un|pdx
) 2

p

≤ sup
m∈Z

(∫
Dm

|un|pdx
) p−2

p ∑
m∈Z

(∫
Dm

|un|pdx
) 2

p

≤ C3 sup
m∈Z

(∫
Dm

|un|pdx
) p−2

p ∑
m∈Z
‖un‖2H1(Dm)

≤ C4 sup
m∈Z

(∫
Dm

|un|pdx
) p−2

p

.

Then supm∈Z

(∫
Dm
|un|pdx

) p−2
p

is bounded away from zero uniformly with respect

to n. By Esteban and Lions’ Theorem [7, P.381, Theorem 1], we have that u0 6= 0.
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Step (ii). We will prove that G(u0) = 0.
Arguing by a contradiction, we firstly assume that G(u0) < 0. Then by Propo-

sition 3.2, there exists t0 := t0(u0) ∈ (0, 1) such that w(x) := t
1
4
0 u(t

− 1
2

0 x) ∈ M. As
{un} is a minimizing sequence, we find that

h+ o(1) =I(un) =
1

4

∫
a|∇un|2dx+

p− 2

8p

∫
|un|pdx

≥1

4

∫
a|∇u0|2dx+

p− 2

8p

∫
|u0|pdx

>
1

4
t

∫
a|∇u0|2dx+

p− 2

8p
t
p+6
4

∫
|u0|pdx

=
1

4

∫
a|∇w|2dx+

p− 2

8p

∫
|w|pdx = I(w),

which is a contradiction as w ∈M.
If G(u0) > 0, then by Lemma 4.1, we deduce that lim sup

n→∞
G(vn) < 0. By

Proposition 3.2, there exists tn := tn(vn) ∈ (0, 1) such that wn(x) := t
1
4
nvn(t

− 1
2

n x) ∈
M. Furthermore, we have that lim sup

n→∞
tn < 1. In fact, up to a subsequence,

assuming that tn → 1, then

G(vn) =
1

2

∫
a|∇vn|2dx+

∫
v2ndx+

b

2

(∫
|∇vn|2dx

)2

− p+ 6

4p

∫
|vn|pdx

=
1

2
tn

∫
a|∇vn|2dx+ t2n

∫
v2ndx+

b

2
t2n

(∫
|∇vn|2dx

)2

− p+ 6

4p
t
p+6
4

n

∫
|vn|pdx+ o(1)

=G(wn) + o(1) = o(1),

which is a contradiction. With a similar argument, we find that

h+ o(1) = I(un) =
1

4

∫
a|∇un|2dx+

p− 2

8p

∫
|un|pdx

≥ 1

4

∫
a|∇vn|2dx+

p− 2

8p

∫
|vn|pdx+

1

4

∫
a|∇u0|2dx+

p− 2

8p

∫
|u0|pdx

>
1

4
tn

∫
a|∇vn|2dx+

p− 2

8p
t
p+6
4

n

∫
|vn|pdx+

1

4

∫
a|∇u0|2dx+

p− 2

8p

∫
|u0|pdx

= I(wn) +
1

4

∫
a|∇u0|2dx+

p− 2

8p

∫
|u0|pdx,

which is a contradiction as wn ∈M.
Hence we have proven that G(u0) = 0. Therefore u0 ∈M.

Step 3. We prove that lim
n→∞

‖vn‖ = 0.

From G(un) = 0, for n large enough, we deduce that

h+ o(1)=I(un)=
1

2

∫
a|∇un|2dx+

1

2

∫
u2ndx+

b

4

(∫
|∇un|2dx

)2

− 1

p

∫
|un|pdx
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=
p+ 2

2(p+ 6)

∫
a|∇un|2dx+

p− 2

2(p+ 6)

∫
u2ndx+

(p− 2)b

4(p+ 6)

(∫
|∇un|2dx

)2

≥ p+ 2

2(p+ 6)

∫
a|∇vn|2dx+

p− 2

2(p+ 6)

∫
v2ndx+

(p− 2)b

4(p+ 6)

(∫
|∇vn|2dx

)2

+
p+ 2

2(p+ 6)

∫
a|∇u0|2dx+

p− 2

2(p+ 6)

∫
u20dx+

(p− 2)b

4(p+ 6)

(∫
|∇u0|2dx

)2

+ o(1)

≥ I(u0) +
p+ 2

2(p+ 6)

∫
a|∇vn|2dx+

p− 2

2(p+ 6)

∫
v2ndx+ 0(1)

≥ h+
p+ 2

2(p+ 6)

∫
a|∇vn|2dx+

p− 2

2(p+ 6)

∫
v2ndx, (since u0 ∈M)

which implies that lim
n→∞

‖vn‖ = 0.

Hence we have proven that un → u0 strongly in H̃. Therefore, inf I|M is
achieved at u0. By Lemma 3.3, u0 is a critical point of I. Combining the defi-
nition of H̃, we know that u0 is non-radially symmetric and satisfies the properties
as required. The proof of Theorem 1.1 is complete.

Acknowledgements. The authors sincerely thank the unknown referees for valu-
able comments.

References

[1] G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving
a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 2015,
125, 699–714.

[2] H. Brezis and E. Lieb, A relation betweenn pointwise convergence of functions
and convergence of functionals, Proc. AMS., 1983, 88, 486–490.

[3] M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary
Kirchhoff fractional p−Laplacian equations, Ann. Mat. Pura Appl., 2016, 195,
2099–2129.

[4] P. d’Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equa-
tion coupled with Maxwell equations, Advanced Nonlinear Studies, 2002, 2,
177–192.

[5] Y. B. Deng, S.J. Peng and W. Shuai, Existence and asymptotic behavior of
nodal solutions for the Kirchhoff-type problems in R3, J. Funct. Anal., 2015,
269, 3500–3527.

[6] L. DOnofrio, A. Fiscella and G. Molica Bisci, Perturbation methods for nonlocal
Kirchhoff type problems, Fractional Calculus and Applied Analysis, 2017, 20,
829–853.

[7] M. J. Esteban and P. L. Lions, A compactness Lemma, Nonlinear Anal., 1983,
7, 381–385.

[8] G. M. Figueiredo, N. Ikoma and J. R. S. Júnior, Existence and concentra-
tion result for the Kirchhoff type equations with general nonlinearities, Arch.
Rational Mech. Anal., 2014, 213, 931–979.

[9] Z. Guo, Ground states for Kirchhoff equations without compact condition, J.
Differential Equations, 2015, 259, 2884–2902.



1570 J. Chen & X. Tang

[10] X. He and W. Zou, Existence and concentration behavior of positive solutions
for a Kirchhoff equation in R3, J. Differential Equations, 2012, 252, 1813–1834.

[11] J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff type prob-
lems in RN , J. Math. Anal. Appl., 2010, 369, 564–574.

[12] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear
Kirchhoff type equations in R3, J. Differential Equations, 2014, 257, 566–600.

[13] Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff
type problems without compactness conditions, J. Differential Equations, 2012,
253, 2285–2294.

[14] Z. P. Liang, F. Y. Li and J. P. Shi, Positive solutions to Kirchhoff type equa-
tions with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H.
Poincare? Anal. Non Line?aire, 2014, 31, 155–167.

[15] W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff
equations, J. Appl. Math. Comput., 2012, 39, 473–487.

[16] Z. Liu and S. Guo, Existence of positive ground state solutions for Kirchhoff
type problems, Nonlinear Anal., 2015, 120, 1–13.

[17] A. Ourraoui, On a p− Kirchhoff problem involving a critical nonlinearity, C.
R. Math. Acad. Sci. Paris Ser. I., 2014, 352, 295–298.

[18] P. Piersanti and P. Pucci, Entire solutions for critical p−fractional Hardy
Schrödinger Kirchhoff equations, Publ. Mat., 2018, 62, 3–36.

[19] S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb.
(N.S.), 1975, 96(138), 152–166.

[20] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local
term, J. Funct. Anal., 2006, 237, 655–674.

[21] D. Sun and Z. Zhang, Uniqueness, existence and concentration of positive
ground state solutions for Kirchhoff type problems in R3, J. Math. Anal. Appl.,
2018, 461, 128–149.

[22] X. Wu, Existence of nontrivial solutions and high energy solutions for
Schrödinger-Kirchhoff-type equations in R3, Nonlinear Anal. Real World Appl.,
2011, 12, 1278–1287.

[23] Q. Xie, S. Ma and X. Zhang, Bound state solutions of Kirchhoff type problems
with critical exponent, J. Differential Equations, 2016, 261, 890–924.


	Introduction and main results
	Preliminaries
	Variant variational identity and a constraint set
	Proof of Theorem 1.1

