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Abstract This paper deals with a nonautonomous competitive system with
infinite delays and feedback control. Sufficient conditions for the permanence
of the system are first obtained. By constructing a suitable Lyapunov function,
we obtain the sufficient conditions which guarantee that one of the components
is driven to extinction. Our result shows that feedback control have an influ-
ence on the extinction of the system. Examples together with their numerical
simulations illustrate the feasibility of our main results.
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1. Introduction

In the real ecosystem, competition is everywhere. Mathematically, the dynamic
behaviors of competitive systems have been attracting much attention, see for ex-
ample [1, 4, 8, 10,14,15,19] and references therein.

In [14], Montes de Oca and Zeeman considered the following nonautonomous
Lotka-Volterra competitive system

ẋi(t) = xi(t)

{
bi(t)−

n∑
j=1

aij(t)xj(t)

}
, i = 1, 2, . . . , n, (1.1)

where xi(t) is the population density of the i−th species at time t, respectly. They
show that all but one of the species is driven to extinction if exhibiting simple
algebraic criteria on the parameters.

Ecologically, the impact of toxic substances on ecological communities is an im-
portant problem [10, 12, 15–17]. In addition to competition between two species,
each species produces a toxic substance to the other, but only when the other is
present. Chattopadhyay [3] studied the following two species autonomous compet-
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itive system with toxic substances

ẋ1(t) = x1(t)
{
r1 − a11x1(t)− a12x2(t)− b1x1(t)x2(t)

}
,

ẋ2(t) = x2(t)
{
r2 − a21x1(t)− a22x2(t)− b2x1(t)x2(t)

}
,

(1.2)

where x1(t) and x2(t) denote the population densities of two competitive species at
time t for a common pool of resources, r1, r2, a11, a12, a21, a22, b1 and b2 are positive
constants. The first three terms in the right side of (1.2) represent competitive
growth, and the last term denotes the effect of toxic substances. Chattopadhyay [3]
showed that toxic substances play an important role in stabilizing the system.

Many biological or environmental parameters do subject to fluctuate with time,
so considering the nonautonomous parameters, Li and Chen [11] studied the follow-
ing two species nonautonomous competitive system with toxic substances

ẋ1(t) = x1(t)
{
r1(t)− a11(t)x1(t)− a12(t)x2(t)− b1(t)x1(t)x2(t)

}
,

ẋ2(t) = x2(t)
{
r2(t)− a21(t)x1(t)− a22(t)x2(t)− b2(t)x1(t)x2(t)

}
.

(1.3)

They showed that if the coefficients of the system satisfy a series of conditions,
x2(t) will be driven to extinction while x1(t) will stabilize at a certain solution of a
logistic equation.

On the one hand, in the real world, the movement of most species is not affected
by the current state, but related to the past state. Therefore, in order to describe the
state of species more precisely or the operation of the system better, it is necessary
to introduce the part describing the influence of the past state on the system in
the differential system, namely delay, see some works [7, 18]. However, when the
time lag is quite large, we usually consider the infinite delay, see also some works
[2, 5, 9, 13, 20]. On the other hand, it is well known that the population in an
ecosystem is often affected by various factors from outside, which leads to changes
in various parameters of the ecosystem. The experiment shows that the feedback
controls have the ideal effect of eliminating the external interference. Therefore,
feedback control is of great significance for the protection of the species diversity
and the maintenance of the sustainable development of the ecological environment.

Chen et al. [2] and Hu et al. [9] studied the following two-species nonautonomous
Lotka-Volterra competitive system with infinite delays and feedback controls

ẋ1(t) = x1(t)

{
r1(t) − a11(t)x1(t) − a12(t)

∫ +∞

0

k1(s)x2(t− s)ds

−c1(t)

∫ +∞

0

k2(s)u1(t− s)ds

}
,

ẋ2(t) = x2(t)

{
r2(t) − a21(t)

∫ +∞

0

k3(s)x1(t− s)ds− a22(t)x2(t)

+c2(t)

∫ +∞

0

k4(s)u2(t− s)ds

}
,

u̇1(t) = −d1(t)u1(t) + e1(t)

∫ +∞

0

k5(s)x1(t− s)ds,

u̇2(t) = f(t) − d2(t)u2(t) − e2(t)

∫ +∞

0

k6(s)x2(t− s)ds,

(1.4)

Chen et al. [2] obtained sufficient conditions for the permanence of system (1.4)
and showed that controls can avoid the extinction of the species. Then Hu et al. [9]
improved and extended sufficient conditions given in [2].
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Stimulated by the works of [2, 11], we propose the following system

ẋ1(t) = x1(t)

{
r1(t) − a11(t)x1(t) − a12(t)

∫ +∞

0

k1(s)x2(t− s)ds

−b1(t)x1(t)

∫ +∞

0

k2(s)x2(t− s)ds− c1(t)

∫ +∞

0

k3(s)u1(t− s)ds

}
,

ẋ2(t) = x2(t)

{
r2(t) − a21(t)

∫ +∞

0

k4(s)x1(t− s)ds− a22(t)x2(t)

−b2(t)x2(t)

∫ +∞

0

k5(s)x1(t− s)ds− c2(t)

∫ +∞

0

k6(s)u2(t− s)ds

}
,

u̇1(t) = −d1(t)u1(t) + e1(t)

∫ +∞

0

k7(s)x1(t− s)ds,

u̇2(t) = −d2(t)u2(t) + e2(t)

∫ +∞

0

k8(s)x2(t− s)ds,

(1.5)

together with initial conditions

xi(t) = φi(t) ∈ BC+, t ∈ (−∞, 0];

ui(t) = ϕi(t) ∈ BC+, t ∈ (−∞, 0];
(1.6)

where φi, ψi ∈ BC+ and

BC+ = {φ ∈ C((−∞, 0], [0,+∞)) : φ(0) > 0 and φ is bounded}, i = 1, 2.

It is well known that by the fundamental theory of functional differential equa-
tions [6], problem (1.5) (1.6) admits a unique solution (x1(t), x2(t), u1(t), u2(t)).
Moreover, xi(t) > 0 and ui(t) > 0 for all i = 1, 2 in maximal interval of existence
of the solution.

The organization of the this paper is as follows. Section 2 deals with several
basic assumptions for problem (1.5) and four useful lemmas are given. Section 3 is
devoted to the sufficient conditions for the permanence of the system and section 4
is for the extinction of species x2. Examples are presented in section 5 to show the
feasibility of our main results.

2. Preliminaries

For convenience, we define fu = max
t∈R

f(t) and f l = inf
t∈R

f(t). Before we state the

main result of this paper, we first introduce some lemmas.

Lemma 2.1. (see [13]) Let x : R → R be a bounded nonnegative continuous func-

tion, and let k : [0,+∞)→ (0,+∞) be a continuous kernel such that
∫ +∞

0
k(s)ds =

1. Then

lim inf
t→+∞

x(t) ≤ lim inf
t→+∞

∫ +∞

0

k(s)x(t− s)ds

≤ lim sup
t→+∞

∫ +∞

0

k(s)x(t− s)ds ≤ lim sup
t→+∞

x(t).

We consider the following nonautonomous logistic equation

ẋ(t) = x(t)(a(t)− b(t)x(t)), (2.1)
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where function a(t) and b(t) are bounded continuous defined on R+ and b(t) ≥ 0
for all t ≥ 0. The following result is known.

Lemma 2.2. (see [21]) Suppose there are constants ω > 0 and λ > 0 such that

lim inf
t→∞

∫ t+ω

t

a(s)ds > 0 and lim inf
t→∞

∫ t+λ

t

b(s)ds > 0.

Then, there exist constants M ≥ m > 0 such that

m ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤M

for any positive solution x(t) of Eq. (2.1).

Further, considering the following nonautonomous linear equation

ẋ(t) = a(t)− b(t)x(t), (2.2)

where functions a(t) and b(t) are bounded continuous defined on R+. We have the
following results.

Lemma 2.3. (see [9]) Suppose a(t) ≥ 0 for all t ≥ 0 and there are constants ω > 0
and λ > 0 such that

lim inf
t→∞

∫ t+ω

t

a(s)ds > 0 and lim inf
t→∞

∫ t+λ

t

b(s)ds > 0.

Then, there exist constants M ≥ m > 0 such that

m ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤M

for any positive solution x(t) of Eq. (2.2).

Lemma 2.4. (see [8]) Suppose that there exists a constant ω > 0 such that

lim inf
t→∞

∫ t+ω

t

b(s)ds > 0.

Then, for any constants ε > 0 and M > 0 there exist constants δ = δ(ε) > 0 and
T0 = T0(M) > 0 such that for any t0 ∈ R+, x0 ∈ R and |x0| ≤ M , when |a(t)| < δ
for all t ≥ t0, one has

|x(t, t0, x0)| < ε for all t ≥ t0 + T0,

where x(t, t0, x0) is the solution of Eq. (2.2) with initial condition x(t0) = x0.

3. Permanence

In this section, we adopt the following assumptions.

(H1) ri(t), aij(t), bi(t), ci(t), di(t), ei(t)(i, j = 1, 2) are bounded and continuously
defined on [0,+∞). Furthermore, aij(t), bi(t), ci(t), di(t), ei(t) are nonnegative on
[0,+∞).
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(H2) ki : [0,+∞)→ [0,+∞)(i = 1, 2, . . . , 8) are piecewise continuous and satisfy∫ +∞

0

ki(s)ds = 1 and σi =

∫ +∞

0

ski(s)ds <∞.

(H3) There exists a positive constant ω such that for each i = 1, 2,

lim inf
t→∞

∫ t+ω

t

ri(s)ds > 0.

(H4) There exists a positive constant λi such that for each i = 1, 2,

lim inf
t→∞

∫ t+λi

t

aii(s)ds > 0.

(H5) There exists a positive constant βi such that for each i = 1, 2,

lim inf
t→∞

∫ t+βi

t

ei(s)ds > 0.

(H6) There exists a positive constant γi such that for each i = 1, 2,

lim inf
t→∞

∫ t+γi

t

di(s)ds > 0.

(H7) There exists a positive constant δ such that

lim inf
t→∞

∫ t+δ

t

(r1(s)− x2a12(s))ds > 0.

(H8) There exists a positive constant η such that

lim inf
t→∞

∫ t+η

t

(r2(s)− x1a21(s))ds > 0,

where x1 and x2 are defined in Theorem 3.1 (also, one can see Remark 3.1 for more
details).

Theorem 3.1. Suppose that assumptions (H1)−(H6) hold, for any positive solution
(x1(t), x2(t), u1(t), u2(t)) of system (1.5) (1.6), we have

(i) There exist positive constants xi and ui such that

lim sup
t→+∞

xi(t) ≤ xi and lim sup
t→+∞

ui(t) ≤ ui, i = 1, 2.

(ii) If (H7) holds, there exists a positive constant x1 such that

lim inf
t→+∞

x1(t) ≥ x1.

(iii) If (H8) holds, there exists a positive constant x2 such that

lim inf
t→+∞

x2(t) ≥ x2.
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Proof. The proof of Theorem 3.1 is similar to that of Theorems 3.1 and 3.2 of Hu
et al. [9], so we omit the detail here.

Remark 3.1. If in system (1.5) all parameters ri(t), aij(t), bi(t), ci(t), di(t),
ei(t)(i, j = 1, 2) have the positive lower and upper bound on R+, then it is not hard
to prove that in Theorem 3.1(i) we can choose

xi =
rui
alii

and ui =
eui r

u
i

dlia
l
ii

, i = 1, 2.

Theorem 3.2. Assume further that (H1)− (H8) hold, then the system (1.5) (1.6)
is permanent. That is, for every solution (x1(t), x2(t), u1(t), u2(t)) of system (1.5)
with initial condition (1.6), for every i = 1, 2, there exist positive constants xi, xi, ui
and ui such that

xi ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤ xi,

ui ≤ lim inf
t→+∞

ui(t) ≤ lim sup
t→+∞

ui(t) ≤ ui.

Proof. From Theorems 3.1, we only need prove that there exist constants ui > 0
such that

lim inf
t→+∞

ui(t) ≥ ui, i = 1, 2. (3.1)

From Lemma 2.1, Theorems 3.1(ii) and (iii), we can choose positive constants ε and
T0 such that for all t ≥ T0∫ +∞

0

k7(s)x1(t− s)ds ≥ x1 − ε and

∫ +∞

0

k8(s)x2(t− s)ds ≥ x2 − ε. (3.2)

From the third and fourth equation of system (1.5) and (3.2), for all t ≥ T0, we
have

u̇i(t) ≥ −di(t)ui(t) + ei(t)(xi − ε), i = 1, 2. (3.3)

Consider the following auxiliary problem

v̇i(t) = −di(t)vi(t) + ei(t)(xi − ε), i = 1, 2, t > T0,

vi(T0) = ui(T0).
(3.4)

By assumptions (H5) and (H6) and Lemma 2.3, we obtain that there is a positive
constant ui such that

lim inf
t→+∞

vi(t) ≥ ui, i = 1, 2.

It follows from the comparison theorem that

ui(t) ≥ vi(t) for all t ≥ T0, i = 1, 2.

Thus, we finally obtain

lim inf
t→+∞

ui(t) ≥ ui, i = 1, 2.

This completes the proof.
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4. Extinction

In this section, we discuss the extinction of species x2 of problem (1.5) (1.6). Let
us define the functions

A12(t) =

∫ +∞

0

k1(s)a12(t+ s)ds, A21(t) =

∫ +∞

0

k4(s)a21(t+ s)ds,

C1(t) =

∫ +∞

0

k3(s)c1(t+ s)ds, C2(t) =

∫ +∞

0

k6(s)c2(t+ s)ds,

E1(t) =

∫ +∞

0

k7(s)e1(t+ s)ds, E2(t) =

∫ +∞

0

k8(s)e2(t+ s)ds.

Theorem 4.1. Suppose that assumptions (H1)− (H4) hold, assume further that

lim sup
t→∞

∫ t+ω

t

r2(s)ds∫ t+ω

t

r1(s)ds

< lim inf
t→∞

b2(t)

b1(t)
, (H9)

lim sup
t→∞

C1(t)

d1(t)
< lim inf

t→∞

(
A21(t)

E1(t)
lim inf
t→∞

∫ t+ω

t

r1(s)ds∫ t+ω

t

r2(s)ds

− a11(t)

E1(t)

)
, (H10)

lim inf
t→∞

C2(t)

d2(t)
> lim sup

t→∞

(
A12(t)

E2(t)
lim sup
t→∞

∫ t+ω

t

r2(s)ds∫ t+ω

t

r1(s)ds

− a22(t)

E2(t)

)
. (H11)

Then, we have

lim
t→∞

x2(t) = 0, lim
t→∞

u2(t) = 0,

∫ +∞

0

x2(t)dt <∞,

for any positive solution (x1(t), x2(t), u1(t), u2(t)) of problem (1.5) (1.6).

Proof. From assumption (H3), we have that there exist positive constants η0 and
T0 such that ∫ t+ω

t

ri(s)ds ≥ η0 for all t ≥ T0, i = 1, 2.

From conditions (H9)−(H11), we can find positive constants α, β, ε, γ, δ and T1 ≥ T0

such that for all t ≥ T1,∫ t+ω

t

r2(s)ds∫ t+ω

t

r1(s)ds

<
α

β
− ε < α

β
<
b2(t)

b1(t)
, (4.1)

C1(t)

d1(t)
<
γ

α
<
βA21(t)− αa11(t)

αE1(t)
, (4.2)
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and
C2(t)

d2(t)
>
δ

β
>
αA12(t)− βa22(t)

βE2(t)
. (4.3)

Therefore, we have∫ t+ω

t

βr2(s)− αr1(s)ds < −εβ
∫ t+ω

t

r1(s)ds < −εβη0, (4.4)

αa11(t)− βA21(t) + γE1(t) < 0, (4.5)

αA12(t)− βa22(t)− δE2(t) < 0, (4.6)

αb1(t)− βb2(t) < 0, (4.7)

−γd1(t) + αC1(t) < 0, (4.8)

and

δd2(t)− βC2(t) < 0 (4.9)

for all t ≥ T1. Consider the following Lyapunov function

V (t) = x−α1 (t)xβ2 (t) exp

{
γu1(t)− δu2(t) + α

∫ +∞

0

∫ t

t−s
k1(s)a12(θ + s)x2(θ)dθds

+α

∫ +∞

0

∫ 0

t−s
k2(s)b1(θ + s)x1(θ + s)x2(θ)dθds

+α

∫ +∞

0

∫ t

0

k2(s)b1(θ)x1(θ)x2(θ)dθds

+α

∫ +∞

0

∫ t

t−s
k3(s)c1(θ+s)u1(θ)dθds−β

∫ +∞

0

∫ t

t−s
k4(s)a21(θ+s)x1(θ)dθds

−β
∫ +∞

0

∫ 0

t−s
k5(s)b2(θ + s)x1(θ)x2(θ + s)dθds

−β
∫ +∞

0

∫ t

0

k5(s)b2(θ)x1(θ)x2(θ)dθds

−β
∫ +∞

0

∫ t

t−s
k6(s)c2(θ + s)u2(θ)dθds+γ

∫ +∞

0

∫ t

t−s
k7(s)e1(θ + s)x1(θ)dθds

−δ
∫ +∞

0

∫ t

t−s
k8(s)e2(θ + s)x2(θ)dθds

}
.

Calculating the derivative of V (t) with respect to t yields

V̇ (t) =V (t)

{
− αr1(t) + αa11(t)x1(t) + αa12(t)

∫ +∞

0

k1(s)x2(t− s)ds

+ αb1(t)x1(t)

∫ +∞

0

k2(s)x2(t− s)ds+ αc1(t)

∫ +∞

0

k3(s)u1(t− s)ds

+ βr2(t)− βa22(t)x2(t)− βa21(t)

∫ +∞

0

k4(s)x1(t− s)ds

− βb2(t)x2(t)

∫ +∞

0

k5(s)x1(t− s)ds− βc2(t)

∫ +∞

0

k6(s)u2(t− s)ds
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− γd1(t)u1(t) + γe1(t)

∫ +∞

0

k7(s)x1(t− s)ds

+ δd2(t)u2(t)− δe2(t)

∫ +∞

0

k8(s)x2(t− s)ds

+ αx2(t)

∫ +∞

0

k1(s)a12(t+ s)ds− αa12(t)

∫ +∞

0

k1(s)x2(t− s)ds

− αb1(t)x1(t)

∫ +∞

0

k2(s)x2(t− s)ds+ αb1(t)x1(t)x2(t)

+ αu1(t)

∫ +∞

0

k3(s)c1(t+ s)ds− αc1(t)

∫ +∞

0

k3(s)u1(t− s)ds

− βx1(t)

∫ +∞

0

k4(s)a21(t+ s)ds+ βa21(t)

∫ +∞

0

k4(s)x1(t− s)ds

+ βb2(t)x2(t)

∫ +∞

0

k5(s)x1(t− s)ds− βb2(t)x1(t)x2(t)

− βu2(t)

∫ +∞

0

k6(s)c2(t+ s)ds+ βc2(t)

∫ +∞

0

k6(s)u2(t− s)ds

+ γx1(t)

∫ +∞

0

k7(s)e1(t+ s)ds− γe1(t)

∫ +∞

0

k7(s)x1(t− s)ds

− δx2(t)

∫ +∞

0

k8(s)e2(t+ s)ds+ δe2(t)

∫ +∞

0

k8(s)x2(t− s)ds
}

=V (t)

{(
− αr1(t) + βr2(t)

)
+
(
αa11(t)− βA21(t) + γE1(t)

)
x1(t)

+
(
− βa22(t) + αA12(t)− δE2(t)

)
x2(t) +

(
− γd1(t) + αC1(t)

)
u1(t)

+
(
δd2(t)− βC2(t)

)
u2(t) +

(
αb1(t)− βb2(t)

)
x1(t)x2(t)

}
.

From inequalities (4.5)-(4.9), we can obtain

V̇ (t) < V (t)
(
− αr1(t) + βr2(t)

)
, t ≥ T2. (4.10)

For any t ≥ T2, we choose an integer n ≥ 0 such that t ∈
[
T2 + nω, T2 + (n+ 1)ω

)
.

Integrating (4.10) from T2 to t and using (4.4) give

V (t) ≤ V (T2) exp

{∫ t

T2

(−αr1(s) + βr2(s))ds

}
= V (T2) exp

(∫ T2+nω

T2

+

∫ t

T2+nω

)
(−αr1(s) + βr2(s))ds

≤ V (T2) exp

{
− εβη0n+M1

}
< V (T2) exp

{
− εβη0

(
t− T2

ω
− 1

)
+M1

}
= V (T2) exp

{
− εβη0t

ω
+
εβη0T2

ω
+ εβη0 +M1

}
= V (T2) exp(−λt+M∗1 ),

(4.11)

where λ =
εβη0

ω
, M∗1 =

εβη0T2

ω
+ εβη0 +M1 and M1 = sup

t≥0

∣∣βr2(t)− αr1(t)
∣∣ω. On
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the other hand, from assumptions (H1) and (H2), for all t ≥ 0, we have

V (t) ≥x−α1 (t)xβ2 (t) exp

{
− δu2(t)− β

∫ +∞

0

∫ t

t−s
k4(s)a21(θ + s)x1(θ)dθds

− β
∫ +∞

0

∫ 0

t−s
k5(s)b2(θ + s)x1(θ)x2(θ + s)dθds

− β
∫ +∞

0

∫ t

0

k5(s)b2(θ)x1(θ)x2(θ)dθds

− β
∫ +∞

0

∫ t

t−s
k6(s)c2(θ+s)u2(θ)dθds−δ

∫ +∞

0

∫ t

t−s
k8(s)e2(θ+s)x2(θ)dθds

}
≥x−α1 (t)xβ2 (t) exp

{
− δ sup

t≥0
u2(t)− β sup

t≥0
a21(t) sup

t∈R
x1(t)

∫ +∞

0

sk4(s)ds

− β sup
t≥0

b2(t) sup
t≥0

x1(t) sup
t≥0

x2(t)

∫ +∞

0

sk5(s)ds

− β sup
t≥0

c2(t) sup
t∈R

u2(t)

∫ +∞

0

sk6(s)ds− δ sup
t≥0

e2(t) sup
t∈R

x2(t)

∫ +∞

0

sk8(s)ds

}
.

Therefore, we obtain that there exists a positive constant W > 0 such that for all
t ≥ 0

V (t) ≥Wx−α1 (t)xβ2 (t). (4.12)

By (4.11), (4.12), for all t ≥ T2, we have

x2(t) ≤
(
W−1xα1 (t)V (T2) exp(−λt+M∗1 )

)1/β ≤W ∗ exp(−λ∗t), (4.13)

where W ∗ =

(
W−1 sup

t≥0
xα1 (t)V (T2) expM∗1

)1/β

and λ∗ =
λ

β
. Hence, we finally

obtain that x2(t)→ 0 and

∫ +∞

0

k8(s)x2(t− s)ds→ 0 as t→∞.

Further, it follows from the forth equation of system (1.5) and Lemma 2.4 that
u2(t)→ 0 as t→∞.

Considering the following system without feedback control

ẋ1(t) = x1(t)

{
r1(t)− a11(t)x1(t)− a12(t)

∫ +∞

0

k1(s)x2(t− s)ds

−b1(t)x1(t)

∫ +∞

0

k2(s)x2(t− s)ds
}
,

ẋ2(t) = x2(t)

{
r2(t)− a21(t)

∫ +∞

0

k4(s)x1(t− s)ds− a22(t)x2(t)

−b2(t)x2(t)

∫ +∞

0

k5(s)x1(t− s)ds
}
,

(4.14)

together with initial conditions xi(t) = φi(t) ∈ BC+, t ∈ (−∞, 0], we have the
following corollary.
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Corollary 4.1. Suppose that assumptions (H1)− (H4) hold, assume further that

lim sup
t→∞

∫ t+ω

t

r2(s)ds∫ t+ω

t

r1(s)ds

< min

{
lim inf
t→∞

A21(t)

a11(t)
, lim inf

t→∞

a22(t)

A12(t)

}
. (H12)

Then, we have

lim
t→∞

x2(t) = 0

for any positive solutions (x1(t), x2(t)) of system (4.14).

5. Examples and discussions

In this section, we present some numerical to illustrate our theoretical analysis.
First, we present the permanence of system (1.5).

Example 5.1. We consider the following system

ẋ1(t) = x1(t)

{
(2.9 + 0.1 sin t)− 3x1(t)− 4

∫ +∞

0

e−sx2(t− s)ds

−4x1(t)

∫ +∞

0

e−sx2(t− s)ds− (6 + 0.2 cos t)

∫ +∞

0

e−su1(t− s)ds
}
,

ẋ2(t) = x2(t)

{
1.5−

∫ +∞

0

e−sx1(t− s)ds− 3x2(t)

−2x2(t)

∫ +∞

0

e−sx1(t− s)ds− (1 + 0.5 cos t)

∫ +∞

0

e−su2(t− s)ds
}
,

u̇1(t) = −2u1(t) +

∫ +∞

0

e−sx1(t− s)ds,

u̇2(t) = −2u2(t) + 4.5

∫ +∞

0

e−sx2(t− s)ds.

(5.1)
Here, corresponding to system (1.5), we set

r1(t) = 2.9 + 0.1 sin t, a11(t) = 3, a12(t) = 4, b1(t) = 4, c1(t) = 6 + 0.2 cos t,

r2(t) = 1.5, a21(t) = 1, a22(t) = 3, b2(t) = 2, c2(t) = 1 + 0.5 cos t,

d1(t) = 2, e1(t) = 1, d2(t) = 2, e2(t) = 4.5.

(5.2)

By simple computation, one could see that

x1 =
ru1
al11

= 1, x2 =
ru2
al22

=
1

2
,

lim inf
t→∞

∫ t+2π

t

(r1(s)− x2a12(s))ds ≈ 5.65 > 0. (5.3)

lim inf
t→∞

∫ t+2π

t

(r2(s)− x1a21(s))ds ≈ 3.14 > 0, (5.4)
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Figure 1. Dynamic behaviors of system (5.1). Here, we take the initial functions (x1(θ), x2(θ), u1(θ),
u2(θ))= (0.2, 0.4, 0.15, 0.1), (0.25, 0.15, 0.4, 0.45) and (0.3, 0.3, 0.3, 0.3) for all θ ∈ (−∞, 0].

which means that the conditions (H1)− (H8) hold. Therefore, by Theorem 3.2, the
system (5.1) is permanent, see Figure 1.

Next, an example is given to illustrate the feasibility of Theorem 4.1.

Example 5.2. Consider the following nonautonomous Lotka-Volterra competitive
system with infinite delays and feedback controls

ẋ1(t) = x1(t)

{
2 + sin(t)− 3x1(t)− 4

∫ +∞

0

e−sx2(t− s)ds

−x1(t)

∫ +∞

0

e−sx2(t− s)ds− 1

2

∫ +∞

0

e−su1(t− s)ds
}
,

ẋ2(t) = x2(t)

{
1 + cos(t)− 2

∫ +∞

0

e−sx1(t− s)ds− 3x2(t)

−2x2(t)

∫ +∞

0

e−sx1(t− s)ds−
∫ +∞

0

e−su2(t− s)ds
}
,

u̇1(t) = −(4 + sin(t))u1(t) + (2 + sin(t))

∫ +∞

0

e−sx1(t− s)ds,

u̇2(t) = −(1 + 2 sin(t))u2(t) + (2 + sin(t))

∫ +∞

0

e−sx2(t− s)ds,

(5.5)

where

r1(t) = 2 + sin(t), a11(t) = 3, a12(t) = 4, b1(t) = 1, c1(t) =
1

2
,

r2(t) = 1 + cos(t), a21(t) = 2, a22(t) = 3, b2(t) = 2, c2(t) = 1,

d1(t) = 4 + sin(t), e1(t) = 2 + sin(t),

d2(t) = 1 + 2 sin(t), e2(t) = 2 + sin(t).

Obviously, we have that the period of system (5.5) is ω = 2π. Simple computations
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show that

lim sup
t→∞

∫ t+ω

t

r2(s)ds∫ t+ω

t

r1(s)ds

=
1

2
< lim inf

t→∞

b2(t)

b1(t)
= 2,

lim sup
t→∞

C1(t)

d1(t)
=

1

6
< lim inf

t→∞

(
A21(t)

E1(t)
lim inf
t→∞

∫ t+ω

t

r1(s)ds∫ t+ω

t

r2(s)ds

− a11(t)

E1(t)

)
=

1

3
,

lim inf
t→∞

C2(t)

d2(t)
=

1

3
> lim sup

t→∞

(
A12(t)

E2(t)
lim sup
t→∞

∫ t+ω

t

r2(s)ds∫ t+ω

t

r1(s)ds

− a22(t)

E2(t)

)
= −1.

Therefore, the conditions (H9) − (H11) hold. It follows from Theorem 4.1 that
species x2 will be driven to extinction, see Figure 2.
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Figure 2. Dynamic behaviors of system (5.5). Here, we take the initial functions (x1(θ), x2(θ), u1(θ),
u2(θ))= (0.2, 0.05, 0.25, 0.1), (0.05, 0.02, 0.1, 1.19) and (0.3, 0.09, 0.3, 0.3) for all θ ∈ (−∞, 0].

Example 5.3. First, we consider the following system

ẋ1(t) = x1(t)

{
2 + 0.2 sin(t)− 3x1(t)− 4

∫ +∞

0

e−sx2(t− s)ds

−4x1(t)

∫ +∞

0

e−sx2(t− s)ds
}
,

ẋ2(t) = x2(t)

{
1 + 0.1 sin(t)− 2

∫ +∞

0

e−sx1(t− s)ds− 3x2(t)

−3x2(t)

∫ +∞

0

e−sx1(t− s)ds
}
,

(5.6)

where

r1(t) = 2 + 0.2 sin(t), a11(t) = 3, a12(t) = 4, b1(t) = 4,

r2(t) = 1 + 0.1 sin(t), a21(t) = 2, a22(t) = 3, b2(t) = 3.
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Obviously, we have that the period of system (5.6) is ω = 2π. Simple computations
show that

lim sup
t→∞

∫ t+ω

t

r2(s)ds∫ t+ω

t

r1(s)ds

=
1

2
< lim inf

t→∞

A21(t)

a11(t)
=

2

3
,

lim sup
t→∞

∫ t+ω

t

r2(s)ds∫ t+ω

t

r1(s)ds

=
1

2
< lim inf

t→∞

a22(t)

A12(t)
=

3

4
.

It is easy to check that species x2 is extinct, see Figure 3.
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Figure 3. Dynamic behaviors of system (5.6). Here, we take the initial functions (x1(θ), x2(θ), u1(θ),
u2(θ))= (0.3, 0.3), (0.5, 0.5) and (0.8, 0.8) for all θ ∈ (−∞, 0].

Now we consider the following system

ẋ1(t) = x1(t)

{
2 + 0.2 sin(t)− 3x1(t)− 4

∫ +∞

0

e−sx2(t− s)ds

−4x1(t)

∫ +∞

0

e−sx2(t− s)ds− c1(t)

∫ +∞

0

e−su1(t− s)ds
}
,

ẋ2(t) = x2(t)

{
1 + 0.1 sin(t)− 2

∫ +∞

0

e−sx1(t− s)ds− 3x2(t)

−3x2(t)

∫ +∞

0

e−sx1(t− s)ds− c2(t)

∫ +∞

0

e−su2(t− s)ds
}
,

u̇1(t) = −u1(t) +

∫ +∞

0

e−sx1(t− s)ds,

u̇2(t) = −u2(t) +

∫ +∞

0

e−sx2(t− s)ds.

(5.7)

For the initial functions (x1(θ), x2(θ), u1(θ), u2(θ)) = (0.3, 0.3, 0.3, 0.3), (0.5,
0.5, 0.5, 0.5) and (0.8, 0.8, 0.8, 0.8) for all θ ∈ (−∞, 0], let the feedback control vari-
able coefficients c1(t) = 8 and c2(t) = 1, from the numerical simulation, species x1

and species x2 in system (5.7) become permanent (see Figure 4).
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We now change the feedback control variable coefficients to c1(t) = 4 and c2(t) =
3 and in system (5.7), for the same initial conditions (x1(θ), x2(θ), u1(θ), u2(θ)) =
(0.3, 0.3, 0.3, 0.3), (0.5, 0.5, 0.5, 0.5) and (0.8, 0.8, 0.8, 0.8) for all θ ∈ (−∞, 0], the
population of species x1, however, is larger than that of species x2. Numerical
simulation also confirms our results (see Figure 5).
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Figure 4. Dynamic behaviors of system
(5.7). Here, we take the initial functions
(x1(θ), x2(θ), u1(θ), u2(θ)) = (0.3, 0.3, 0.3, 0.3),
(0.5, 0.5, 0.5, 0.5) and (0.8, 0.8, 0.8, 0.8) for all θ ∈
(−∞, 0] and the feedback control variable coeffi-
cients c1(t) = 8 and c2(t) = 1.
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Figure 5. Dynamic behaviors of system
(5.7). Here, we take the initial functions
(x1(θ), x2(θ), u1(θ), u2(θ)) = (0.3, 0.3, 0.3, 0.3),
(0.5, 0.5, 0.5, 0.5) and (0.8, 0.8, 0.8, 0.8) for all θ ∈
(−∞, 0] and the feedback control variable coeffi-
cients c1(t) = 4 and c2(t) = 3.

Dynamic of the competitive systems is an interesting topic which has attracted
a lot of attention. Most existing results were focused on the impact of model
parameters and delay on the long time behaviors of the solutions. In this paper,
a nonautonomous competitive systems with infinite delays and feedback control is
considered. We find that feedback control admits an influence on the extinction of
the original system. Example 5.3 shows that, if one of the original system is driven
to extinction, the system with feedback control is permanent and therefore feedback
control leads to changes in results. We believe that our results can be extended to
the reaction diffusion systems modelling two or more species models.
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