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H∞ FEEDBACK CONTROLS BASED ON
DISCRETE-TIME STATE OBSERVATIONS FOR

SINGULAR HYBRID SYSTEMS WITH
NONHOMOGENEOUS MARKOVIAN JUMP

Zhiyong Ye1,†, Suying Pan1,2 and Jin Zhou2

Abstract In this paper, the H∞-control problem for singular Markovian
jump systems (SMJSs) with variable transition rates by feedback controls
based on discrete-time state observations is studied. The mode-dependent
time-varying character of transition rates is supposed to be piecewise-constant.
By designing a feedback controller based on discrete-time state observations,
employing a stochastic Lyapunov-Krasovskii functional, and combining with
the linear matrix inequalities (LMIs) technologies, sufficient conditions under
the case of nonhomogeneous transition rates are developed such that the con-
trolled system is regular, impulse free, and stochastically stable. Subsequently,
the upper bound on the duration τ between two consecutive state observations
and prescribed H∞ performance γ are derived. Moreover, the achieved results
can be easily checked by the Matlab LMI Tool Box. Finally, two numerical
examples are presented to show the effectiveness of the proposed methods.

Keywords Discrete-time state observation, stochastically stable, H∞feedback
control, nonhomogeneous Markovian jump, singular system.
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1. Introduction

Markovian jump systems serve as an important kind of stochastic hybrid systems
that have been attracting increasing attention. In the past few years, since this class
of systems is very appropriate to model some practical systems which are subject to
random abrupt changes, such as, unexpect events, uncontrolled configuration and
random faults, and so on. Therefore, a considerable research attention has been
devoted to the study on Markovian jump systems. The crucial issues in the inves-
tigation of systems are being placed on the analysis of stability [19, 20, 26, 36] or
the study of bifurcations for nonlinear systems [6,7,39]. Specifically, the problem of
stability of stochastic differential equation with Markovian jump was addressed [19],
and scholar in [20] studied the exponential stability of stochastic delay interval sys-
tems with Markovian jump. The issue of exponential stabilization for uncertain
linear systems with Markovian jump parameters and mode-dependent input delays

†the corresponding author. Email address: yezhiyong1966@163.com(Z. Ye)
1School of Science, Chongqing University of Technology, 400054 Chongqing,
China

2Shanghai Institute of Applied Mathematics and Mechanics and Shanghai Key
Laboratory of Mechanics in Energy Engineering, Shanghai University, 200072
Shanghai, China

http://jaac.ijournal.cn
http://dx.doi.org/10.11948/20180315


H∞ feedback controls for singular hybrid systems 1751

is considered in [28]. The works for stochastic hybris systems have been provided
in [1,10]. In particular, the literature [21] is the first book in this area of stochastic
differential equations with Markovian switching. For more details on the relevant
fruits, we can refer to the literatures [11,22,23,25,31,37]. In addition, switched sys-
tems are a kind of hybrid systems, which have already been studied by numerous
scholars [5, 27] due to its powerful potential in some practical applications. Com-
pared with the switched systems, Markovian jump systems not only have the merits
of switched systems, but also contain the statistical information of the switching
signal. Therefore, the considered system in our work maybe have wider range in
practice in some certain.

On the other hand, the researches of singular systems began at the end of 1970s,
although they were first mentioned in 1973 in [12]. According to the various area
of application, singular systems are known as generalized state space systems, de-
scriptor systems, differential-algebraic or implicit systems. Singular systems have
attracted a large number of researchers from the control and the mathematics com-
munities due to the fact that singular systems can describe the behavior of some
physical systems better than normal state-space ones can. For example, electrical
networks, power system, aerospace engineering, social economic systems, chemi-
cal processes, biological systems, network analysis, time-series analysis, and so on.
Thus, singular systems should be taken into account in order to simulate more
practical systems. The problem of reduced-order H∞ filter for singular systems has
been discussed in [38]. In [13], the H∞ optimal singular and normal filter design for
uncertain singular systems have been analyzed, and several conditions for the solv-
ability of this problem have been attained in terms of LMIs approaches. Because
singular system models are natural representation of dynamic systems and able to
describe wider range of systems than the normal linear ones. So, many filtering and
control problems based on singular systems have been extensively investigated in
recent years [2, 8, 24].

Some attention has been focused on LMIs conditions for controller design and
stability analysis of singular Markovian jump systems. Many important and fun-
damental results have been proposed for singular Markovian jump systems in these
literatures [3, 4, 16, 17, 29, 30, 34]. For instance, the stabilization problem was ad-
dressed for singular Markovian jump systems in [33] and the desired linear H∞
filter was designed that ensuring the considered system to be regular, impulse free
and stochastically stable. What’s more, time delays are frequently encountered in
many fields of science and engineering, including biology, economy, manufacturing
systems and communication network. Therefore, time-delay should be sufficiently
considered in order to better describe the real world. During the past two decades,
the problems of stochastic stability analysis and control for time-delay systems have
been considered, to see literatures [18, 32, 35, 41]. In [33], the problem of H∞ fil-
tering for singular Markovian jump continuous linear system with time delay has
been analyzed, in which by means of the LMIs techniques, bounded real lemma
of delay-dependent was given to discuss the problem of stochastically admissible
and the prescribed H∞ performance conditions also obtained. The mean-square
stabilization of continuous-time hybrid stochastic differential equations by feedback
control based on state observations has been addressed in [23]. Inspired by these
works, the problem of stochastically admissible for one class of stochastic hybrid
systems with singular Markovian jump by feedback controls based on discrete-time
state observations is discussed in this paper.
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The aim of this article is to design a feedback controller which is based on
discrete-time state observations that guarantees stochastic admissibility of the sin-
gular hybrid system with Markovian jump. Compared to traditional feedback con-
trollers, the discrete time state observations feedback controller has the advantages
of low cost and easy control. In addition, the involved time delays here are time
varying which are different from time-delay in literature [33] where the considered
time delays are time invariant. The remainder of this article is organized as follows.
Section 2 gives out the preliminaries that contain the notations will be used in this
paper and the basic model is established. The main results and the procedure of
proof are presented In Section 3. In Section 4, performance evaluations are illustrat-
ed and the experiment results have been exhibited. The paper ends with conclusion
shown in Section 5.

2. Preliminaries

2.1. Notation

In this section, some basic notations are presented that will be used in the rest
of this paper. Throughout this paper, unless otherwise specified, let Rn represent
the n-dimensional Euclidean space, Rm×n be the set of all m × n real matrices.
Given (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0
satisfying the usual conditions (it means it is right continuous and {F0} contains
all P−null sets). We defined E{·} be the expectation operator with respect to some
probability measure P. If A denotes a matrix, then AT stands for the transpose
of A, here ‖A‖ = max{|Ax| : |x| = 1} and |A| =

√
trace(ATA) are referred to as

the operator norm and its trace norm, respectively. Further, if the matrix A is a
symmetric matrix (i.e. AT=A), its largest and smallest eigenvalues are denoted by
λmax(A) and λmin(A) respectively, and the label ′∗′ indicates the term that can be
induced by the symmetry and I is an identity matrix. A < 0 (A ≤ 0) means that
A is a negative definite (negative semi-definite) matrix respectively. C is the set of
complex number.

2.2. Problem formulation

Fix a probability space (Ω,F ,P) , and the singular hybrid systems with Markovian
jump based on discrete-time state observations are considered as follows{
Eẋ(t)=A(r(t))x(t)+F (r(t))u(x(δ(t)), r(t))+B(r(t))ω(t)+f(r(t), x(t), ω(t)),

z(t)=C(r(t))x(t) + D̃(r(t))x(δ(t)),
(2.1)

where t ≥ 0, with initial value x(0) = x0 ∈ L2
F0

, x(t) ∈ Rn is the state variable of

the system, z(t) is the measure output, and ω(t) = (ω1(t), ω1(t), . . . , ωm(t))T is the
disturbance input that belongs to L2[0,∞).

In this paper, we are interested in the design of a stabilizing controller that has
the following form

u(x(δ(t)), r(t)) = K(r(t))x(δ(t)), (2.2)

that renders the closed-loop systems (2.1) regular, impulse-free and stochastical-
ly stable. Here, u(x(δ(t)), r(t)) is the control input based on discrete-time ob-
servations of the state x(t) at time 0, τ , 2τ , . . .. The matrix E ∈ Rn×n may
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be singular and it is assumed that rankE = r ≤ n. These matrices A(r(t)),
B(r(t)) = (B1(r(t)), B2(r(t)),. . ., Bm(r(t))), C(r(t)), D̃(r(t)) and F (r(t)) are all
known real constant matrices with appropriate dimensions for each r(t) ∈ S. The
function f(r(t), x(t), ω(t)) : S×Rn×Rm −→ Rn is the nonlinear part of the consid-
ered system. The parameter r(t) represents a continuous-time Markov chain with
right continuous trajectory that taking values in a finite set S = {1, 2, . . . s} with

generator
∏(σt+h) = {π(σt+h)

ij } given by

P{rt+h = j|rt = i} =

{
π
(σt+h)
ij h+ o(h), j 6= i,

1 + π
(σt+h)
ii h+ o(h), j = i,

(2.3)

where h > 0, the limit lim
h→0

o(h)/h = 0, and {π(σt+h)
ij } ≥ 0, for j 6= i, is the transition

rate from mode i at time t to mode j at time t+ h and

π
σt+h

ii = −
s∑

j=1,j 6=i

π
σt+h

ij . (2.4)

Similarly, the parameter σt, t ≥ 0 is also a continuous-time Markov chain with
right continuous trajectories and taking values in a finite set R = {1, 2, . . . , l} with
transition rate matrix Λ = {ρmn} given by

P{σt+h = n|σt = m} =

{
ρmnh+ o(h), n 6= m,

1 + ρmmh+ o(h), n = m,
(2.5)

where h > 0, the limit lim
h→0

o(h)/h = 0, and transition rate ρmn ≥ 0, for n 6= m, is

the transition rate from mode m at time t to mode n at time t+ h and

ρmm = −
l∑

n=1,n6=m

ρmn. (2.6)

Remark 2.1. If the finite set S = {1} or R = {1}, the nonhomegeneous singular
MJLS (2.1) is reduced to a general singular MJLS. In addition, the transition rates
play an important role in analysing the stability for the underlying system. Howev-
er, the most of the existing works assume that the transition rates of Markov chain
are time-invariant, the assumption is not realistic in practical engineering problem.
So, in order to reasonably describe the real world, it is significant and necessary to
research the nonhomogeneous Markov chain with variable transition rates. Subse-
quently, the relevant works have been reported [9,14]. The piecewise homogeneous
transition rates are taken into account in this paper.

The state feedback control gain K(r(t)) is a design matrix that is determined
for every r(t) ∈ S, and τ > 0

δ(t) = [t/τ ]τ, for t ≥ 0,

in which [t/τ ] is the integer part of t/τ . Indeed, if we define the bounded variable
delay ζ : [0,∞)→ [0, τ) by ζ(t) = t− ντ for ντ ≤ t < (ν + 1)τ and ν = 0, 1, 2, . . ..
Further x(δ(t)) can be written as x(δ(t)) = x(t− ζ(t)) = x(ντ). Then ζ(t) ∈ [0, τ)
and ζ̇(t) = 1 for t 6= ντ. At this moment, the system (2.1) can be rewritten as{
Eẋ(t) = A(r(t))x(t) +D(r(t))x(t− ζ(t)) +B(r(t))ω(t) + f(r(t), x(t), ω(t)),

z(t) = C(r(t))x(t) + D̃(r(t))x(t− ζ(t)),
(2.7)
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where t ∈ [ντ, (ν + 1)τ) and D(r(t)) = F (r(t))K(r(t)).

Assumption 2.1. For every r(t) ∈ S, there exist two positive numbers a and b
satisfying the following condition

fT (r(t), x(t), ω(t))f(r(t), x(t), ω(t)) ≤ a2|x(t)|2 + b2|ω(t)|2. (2.8)

Remark 2.2. In the special case when rankE = n, the state equation of the system
(2.7) is reduced to the following one

ẋ(t) =E−1[A(r(t))x(t) +D(r(t))x(t− ζ(t))] + E−1B(r(t))ω(t)

+ E−1f(r(t), x(t), ω(t)).

The relevant results of singular systems also can be extended to the case that E
is nonsingular, Therefore, the singular systems include the normal systems, which
means that the normal system is a special case of the singular system, and the
correspond results of singular system are the generalization of the normal one.

For the unforced singular system

Eẋ(t) = A(r(t))x(t), (2.9)

or the pair (E,A(r(t))), its generalized spectral abscissa is defined as follows [17]

α(E,A(r(t))) , max
λ∈{s|det(sE−A(r(t)))=0}

Re(λ).

Moreover, for convenience of narrative in the sequel, we write α(A(r(t))) =
α(I, A(r(t))) which is the usual spectral abscissa, and denote A(r(t)) = Ai. In
order to analyze the stability and the prescribed H∞ performance level for the
singular system with Markovian jump in this paper, firstly, let us introduce the
following definitions, which would be used to derive the main results of the stability
and the given H∞ performance.

Definition 2.1 ( [4, 17]). (1) For any given two matrices E,Ai ∈ Rn×n, the pair
(E,Ai) is called to be regular if there exists a constant s ∈ C such that det(sE−Ai)
is not identically zero.
(2) The pair (E,Ai) is called to be impulse free if deg(det(sE −Ai)) = rank(E).

Remark 2.3. In existing works, some revelent definitions of singular systems are
based on the definitions [4,17,33] that are presented. We have discussed not only the
singularity and impulse-free, but also the stochastic characteristic of the considered
singular Markovian jump systems in this paper. In order to further describe the
corresponding issues of the underlying systems, the following definitions of singular
Markovian jump systems are needed, which are extensions of the relevant concepts.

Definition 2.2. (1) The singular Markovian jump system

Eẋ(t) = [Aix(t) +Dix(t− ζ(t))] +Biω(t) + f(i, x(t), ω(t)), (2.10)

with ω(t) = 0 is said to be regular and impulse free, if the pairs (E,Ai) are regular
and impulse free for every i ∈ S.

(2) The singular Markovian jump system (2.7) with ω(t) = 0 is said to be
stochastically admissible, if it is regular, impulse free and stochastically stable.
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(3) The regular and impulse-free singular Markovian jump system (2.7) with
ω(t) = 0 is said to be stochastically stable, if there exists a scalar M(x0, r0), such
that the following inequality holds for any initial conditions (x0, r0)

E [

∫ ∞
0

‖x(t)‖2dt|x0, r0] ≤M(x0, r0),

and under the assumption of zero initial condition and any nonzero ω(t), and for a
prescribed scalar γ > 0, the controlled output z(t) satisfies

E [

∫ ∞
0

‖z(t)‖2dt] ≤ γ2
∫ ∞
0

‖ω(t)‖2dt,

then the system (2.7) is said to be stochastically admissible with H∞ performance
γ, where ω(t) ∈ L2[0,∞) is non-zero.

The following lemma gives an equivalent condition for regularity, which is im-
portant and necessary to obtain our results.

Lemma 2.1 ( [4, 17]). The pair (E,Ai) is regular if and only if there exist two
nonsingular matrices M and N which can satisfy

MEN = diag

 In1 0

0 N

 , MAiN = diag

Ai1 0

0 In2

 , (2.11)

where n1 + n2 = n,Ai1 ∈ Rn1×n1 , N ∈ Rn2×n2 is a nilpotent matrix.

Remark 2.4. From Lemma 2.1, it is worth mentioning that the regularity of pair
(E,Ai) guarantees the existence and uniqueness solution of the state equation of
system (2.7) for any given initial conditions, because the singular Markovian jump
system (2.7) can be transformed into the normal system which is equivalent to
the singular system with Markovian jump (2.7) based on Lemma 2.1. Moreover,
according to Definition 2.1, it can be deduced that the nonimpulsiveness of the pair
(E,Ai) implies that the pair (E,Ai) is regular.

If the regularity of the pair (E,Ai) is unknown, it is always possible to choose
two invertible matrices M1 and N1 such that matrices E and Ai can be decomposed
into the following form

M1EN1 =

 I 0

0 0

 , M1AiN1 =

Ai1 Ai2
Ai3 Ai4

 . (2.12)

Using the singular value decomposition on matrices E and Ai, and based on
formula (2.12), it is not difficult to acquire the following results.

Lemma 2.2 ( [4, 17]). The pair (E,Ai) is impulse-free if and only if Ai4 is non-
singular.

Lemma 2.2 provides a necessary and sufficient condition to prove that singular
systems are impulse-free.
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Lemma 2.3 ( [17]). Given any real square matrix X with appropriate dimensions.
The matrix measure µ(X ) is defined as

µ(X ) = lim
θ→0+

‖I + θX‖ − 1

θ
,

which has the following properties:
(1) −‖X‖ ≤ α(X ) ≤ µ(X ) ≤ ‖X‖,
(2) µ(X ) = 1

2λmax(X + X T ) = 1
2α(X + X T ).

Based on the above analysis, the considered system has been transformed into
an equivalent one. Due to rankE = r ≤ n, there exist two invertible matrices M
and N that can be choose such that

Ē = MEN =

 Ir 0

0 0

 , MAiN =

Ai1 Ai2
Ai3 Ai4

 .
Lemma 2.4. For any real matrix M > 0, scalars a1 and a2 with a1 < a2, vector
function x(α) such that the following integrals are well defined, we have

(a2 − a1)

∫ a2

a1

x(α)TMx(α)dα ≥ (

∫ a2

a1

x(α)dα)TM(

∫ a2

a1

x(α)dα).

3. Main results

Theorem 3.1. The closed-loop system (2.7) is stochastically admissible and has
the prescribed H∞ performance level γ, if there exist symmetric positive-definite
matrices Pi, U, U1, U2 and matrix Si such that the following inequalities hold

Ξ1i Ξ2i Ξ3i C
T
i

∗ Ξ4i Ξ5i D̃i
T

∗ ∗ Ξ6i 0

∗ ∗ ∗ −I

 < 0, (3.1)

Ξ7i = −(τ − ζ(t))TATi UAi + τETUE < 0, (3.2)

where R ∈ Rn×(n−r) is any matrix with full column satisfying ETR = 0, and

Ξ1i =2ATi Pi,σE − τETUE + λmax(Pi,σ)a2 + +ETPi,σE +
∑
n∈R

ρmnE
TPinE

+
∑
j∈S

πmijE
TPjmE + 2SiR

TAi + SiR
TBiB

T
i RS

T
i + aSiR

TRSTi + aI

+ bSiR
TRSTi + 2(τ − ζ(t))ATi UAi + (τ − ζ(t))4a2λmax(U),

Ξ2i =DT
i Pi,σE + SiR

TDi + τETUE + (τ − ζ(t))ATi UDi,

Ξ3i =ETPi,σBi + (τ − ζ(t))ATi UBi,

Ξ4i =− 2τETUE + 2(τ − ζ(t))DT
i UDi,

Ξ5i =(τ − ζ(t))DT
i UBi,
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Ξ6i =− γ2I + λmax(Pi,σ)b2I + (1 + b)I + 2(τ − ζ(t))BTi UBi

+ 4(τ − ζ(t))b2λmax(U)I.

Proof. Since rankE = r ≤ n, there exist two invertible matrices M and N such
that

Ē = MEN =

 Ir 0

0 0

 , R = MT

 0

I

H,
where H ∈ R(n−r)×(n−r) is an invertible matrix. Write

MAiN =

Ai1 Ai2
Ai3 Ai4

 , M−TPi,nM
−1 =

P 1
i,n P

2
i,n

∗ P 3
i,n

 ,
M−TPj,mM

−1 =

P 1
j,m P 2

j,m

∗ P 3
j,m

 , NTSi =

Si1
Si2

 ,
from (3.1) and (3.2), we can obtain Ξ1i + Ξ7i < 0 and pre-multiplying and post-
multiplying Ξ1i + Ξ7i < 0 respectively by NT and N for every i ∈ S, we have

NT (Ξ1i + Ξ7i)N =NT [2ATi Pi,σE + λmax(Pi,σ)a2 + +ETPi,σE +
∑
n∈R

ρmnE
TPinE

+
∑
j∈S

πmijE
TPjmE + 2SiR

TAi]N +NT [SiR
TBiB

T
i RS

T
i

+ aSiR
TRSTi + aI + bSiR

TRSTi + (τ − ζ(t))ATi UAi

+ (τ − ζ(t))4a2λmax(U)]N.

Because Pi,σ,U are symmetric positive-definite matrices, a, b are positive num-
bers and NT , N are nonsingular matrices, we obtain the following

NT (Ξ1i + Ξ7i)N −NT [λmax(Pi,σ)a2 + ETPi,σE + SiR
TBiB

T
i RS

T
i

+ aSiR
TRSTi + aI + bSiR

TRSTi + (τ − ζ(t))4a2λmax(U)]N

=
∑
n∈R

ρmnN
TETPinEN +

∑
q∈S

πmijN
TETPjmEN +NTETPi,σAiN

+NTSiR
TAiN +NTATi RS

T
i N +NTATi Pi,σEN < 0.

(3.3)

From the above inequality (3.3), it is not difficult to derive

Si2H
TAi4 +ATi4HS

T
i2 < 0. (3.4)

According to Lemma 2.3 and the inequality (3.4), it is not difficult to yield

α(Si2H
TAi4) ≤ µ(Si2H

TAi4) =
1

2
λmax(Si2H

TAi4 +ATi4HS
T
i2) < 0, (3.5)

which is reduced to the following formula

α(Si2H
TAi4) = maxRe(λ)

λ∈{s| det(sI−Si2HTAi4)=0}
< 0. (3.6)
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The formula (3.6) means that the real part of eigenvalues of Si2H
TAi4 is less

than zero. Further, the determinant of Si2H
TAi4 is not zero. That is to say,

|Si2HTAi4| 6= 0. The result of |Si2HTAi4| 6= 0 implies |Ai4| 6= 0, which means Ai4
is nonsingular matrix for each i ∈ S. By Lemma 2.2, we obtain the pair (E,Ai) is
regular and impulse-free for every i ∈ S.

According to (E,Ai) regular and impulse free for every j ∈ S, n ∈ R and Defi-
nition 2.2, we obtain that the unforced one of system (2.7) with ω(t) = 0 has the
regularity and the absence of impulse for every j ∈ S, n ∈ R .

In order to prove that the system (2.7) with ω(t) = 0 is stochastic stable and
establish the H∞ performance index of the system (2.7) with nonzero ω(t), we
choose the Lyapunov-Krasovkii functional V (x(t), r(t), σ(t)) that has the following
form

V (x(t), r(t), σ(t)) = V1(x(t), r(t), σ(t)) + V2(x(t), r(t), σ(t)),

V1(x(t), r(t), σ(t)) = x(t)TETP (r(t), σ(t))Ex(t), (3.7)

V2(x(t), r(t), σ(t)) = (τ − ζ(t))

∫ t

t−ζ(t)
ẋ(s)TETUEẋ(s)ds,

where Pi,σ and Uare symmetric and positive-definite matrices for every j ∈ S, n ∈ R.
Define the infinitesimal operator L acting on V (x(t), r(t), σ(t)) along the trajectory
for (2.7) with ω(t) = 0 as

LV = lim
h→0

1

h
{E{V (x(t+ h), r(t+ h), σ(t+ h))|x(t), r(t) = i, σ(t) = m}

− V (x(t), r(t) = i, σ(t) = m)},
(3.8)

on the basic of (2.3),(2.5) and (3.7),we can achieve that

LV =
∑
n∈R

ρmnV (xt, i, n) +
∑
j∈S

πmij V (xt, j,m) + V̇ (xt, i,m), (3.9)

the derivative of (3.7) along the solution of state equation for systems (2.7) is
obtained

LV =2x(t)TETPi,mEẋ(t) + x(t)TET [
∑
n∈R

ρmnPi,n +
∑
j∈S

πmijPj,m]

−
∫ t

t−ζ(t)
ẋ(s)TETUEẋ(s)ds+ (τ − ζ(t))ẋ(t)TETUEẋ(t) (3.10)

+ (τ − ζ(t))

∫ t

t−ζ(t)
ẋ(s)TET [

∑
n∈R

ρmnU +
∑
j∈S

πmijU ]Eẋ(s)ds.

Multiplying the both sides of the following identity by 2x(t)TSiR
T from the left

side, it gets

−Eẋ(t) + [A(r(t))x(t) +D(r(t))x(t− ζ(t))] +B(r(t))ω(t) + f(r(t), x(t), ω(t)) = 0,

and noting that SiR
TE = 0, one can have

−2x(t)TSiR
TEẋ(t) + 2x(t)TSiR

T [A(r(t))x(t) +D(r(t))x(t− ζ(t))]

+2x(t)TSiR
TB(r(t))ω(t) + 2x(t)TSiR

T f(r(t), x(t), ω(t)) = 0,
(3.11)
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and

ẋT (t)ETUEẋ(t) =[Aix(t) +Dix(t− ζ(t)) +Biω(t) + fi(x(t), ω(t))]TU [Aix(t)

+Dix(t− ζ(t)) +Biω(t) + fi(x(t), ω(t))]

=x(t)TATi UAix(t) + x(t)TATi UDix(t− ζ(t)) + x(t)TATi UBiω(t)

+ x(t)TATi Ufi(x(t), ω(t)) + x(t− ζ(t))TDT
i UAix(t)

+ x(t− ζ(t))TDT
i UDix(t− ζ(t)) + x(t− ζ(t))TDT

i UBiω(t)

+ x(t− ζ(t))TDT
i Ufi(x(t), ω(t)) + ω(t)TBTi UAix(t)

+ ω(t)TBTi UDix(t− ζ(t)) + ω(t)TBTi UBiω(t)

+ ω(t)TBTi Ufi(x(t), ω(t)) + fTi (x(t), ω(t))UAix(t)

+ fTi (x(t), ω(t))UDix(t− ζ(t)) + fTi (x(t), ω(t))UBiω(t)

+ fTi (x(t), ω(t))Ufi(x(t), ω(t)). (3.12)

By Assumption 2.1, the following inequalities hold

2x(t)TSiR
T f(r(t), x(t), ω(t)) ≤2‖x(t)TSiR

T ‖[‖f(r(t), x(t), ω(t))‖]
≤2‖x(t)TSiR

T ‖[‖a‖x(t)‖+ b‖ω(t)‖‖]
≤ax(t)TSiR

TRSTi x(t) + ax(t)Tx(t)

+ bx(t)TSiR
TRSTi x(t) + bω(t)Tω(t), (3.13)

2x(t)TATi Ufi(x(t), ω(t)) ≤x(t)TATi UAix(t) + λmax(U)[a2x(t)Tx(t)

+ b2ω(t)Tω(t)], (3.14)

2x(ντ)TDT
i Ufi(x(t), ω(t)) ≤x(ντ)TDT

i UDix(ντ) + λmax(U)[a2x(t)Tx(t)

+ b2ω(t)Tω(t)], (3.15)

2ω(t)TBTi Ufi(x(t), ω(t)) ≤ω(t)TBTi UBiω(t) + λmax(U)[a2x(t)Tx(t)

+ b2ω(t)Tω(t)], (3.16)

fi(x(t), ω(t))TUfi(x(t), ω(t)) ≤ λmax(U)[a2x(t)Tx(t) + b2ω(t)Tω(t)]. (3.17)

It follows from Lemma 2.4 that

−
∫ t

t−ζ(t)
ẋ(s)TETUEẋ(s)ds ≤ −τ(

∫ t

t−ζ(t)
Eẋ(s)ds)TU(

∫ t

t−ζ(t)
Eẋ(s)ds)

≤− τ [x(t)TET − xT (t− ζ(t))ET ]U [Ex(t)− Ex(t− ζ(t))]

≤− τ [x(t)TETUEx(t)− x(t)TETUEx(t− ζ(t))

− xT (t− ζ(t))ETUEx(t) + xT (t− ζ(t))ETUEx(t− ζ(t))], (3.18)

under the formulaes of (3.11)-(3.18), the LV can be reduced to the following one
when ω(t) = 0

LV <2ẋ(t)TETPi,σEx(t)− τx(t)TETUEx(t) + 2τx(t)TETUEx(t− ζ(t))

− 2τx(t− ζ(t))TETUEx(t− ζ(t)) + x(t)T [
∑
n∈R

ρmnPi,n +
∑
j∈S

πmijPj,m]x(t)

+ (τ − ζ(t))[x(t)TATi UAix(t) + x(t)TATi UDix(t− ζ(t))
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+ x(t− ζ(t))TDT
i UAix(t) + x(t− ζ(t))TDT

i UDix(t− ζ(t))]

+ 2x(t)TSiR
TAix(t) + 2x(t)TSiR

TDix(t− ζ(t)). (3.19)

The following inequality holds

LV ≤x(t)TΦ1ix(t) + x(t)TΦ2ix(t− ζ(t)) + x(t− ζ(t))TΦT2ix(t)

+ x(t− ζ(t))TΦ4ix(t− ζ(t))

≤φ(t)T

Φ1i Φ2i

ΦT2i Φ4i

φ(t),

(3.20)

where φT(t)=[xT (t) xT (t−ζ(t))] and Φ1i=2ATi Pi,σE−τETUE+
∑
n∈R ρmnE

TPinE+∑
j∈S π

m
ijE

TPjmE + 2SiR
TAi + (τ − ζ(t))ATi UAi, Φ2i = DT

i Pi,σE + SiR
TDi +

τETUE + (τ − ζ(t))ATi UDi,Φ4i = −2τETUE + (τ − ζ(t))DT
i UDi.

According to the condition (3.1), (3.2) and [33, Lemma 3], we can deriveΦ1i Φ2i

ΦT2i Φ4i

 < 0. (3.21)

Thereby, it is not difficult to obtain

Φ1i + Φ2i + ΦT2i + Φ4i < 0, (3.22)

combining (3.20) and (3.22) with V ≥ 0, we obtain LV < 0 , which means the
system (2.7) with ω(t) = 0 is stochastically stable. Now let us define a performance
index

Jzω(T ) = E{
∫ T

0

[zT (t)z(t)− γ2ωT (t)ω(t)]dt}. (3.23)

Based on zero initial condition, the following formula naturally holds

Jzω(T ) =E{
∫ T

0

[zT (t)z(t)− γ2ωT (t)ω(t) + LV (x(t), r(t), t)]dt}

− E
∫ T

0

LV (x(t), r(t), t)dt,

where

zT (t)z(t)− γ2ωT (t)ω(t)

=[xT (t)CTi + xT (t− ζ(t))D̃T
i ][Cix(t) + D̃ix(t− ζ(t))]

− γ2ωT (t)ω(t) (3.24)

=xT (t)CTi Cix(t)− γ2ωT (t)ω(t) + xT (t− ζ(t))D̃T
i Cix(t)

+ xT (t− ζ(t))D̃T
i D̃ix(t− ζ(t)) + xT (t)CTi D̃ix(t− ζ(t)),

and Li has the following expression

Li =(τ − ζ(t))ẋT (t)ETUEẋ(t)

=(τ − ζ(t))[Aix(t) +Dix(t− ζ(t)) +Biω(t) + fi(x(t), ω(t))]TU [Aix(t)
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+Dix(t− ζ(t)) +Biω(t)fi(x(t), ω(t))]

=xT (t)ATi UAix(t) + xT (t)ATi UDix(t− ζ(t)) + xT (t)ATi UBiω(t)

+ x(t)TATi Ufi(x(t), ω(t)) + xT (t− ζ(t))DT
i UAix(t)

+ xT (t− ζ(t))DT
i UDix(t− ζ(t)) + xT (t− ζ(t))DT

i UBiω(t)

+ xT (t−ζ(t))DT
i Ufi(x(t), ω(t))+ωT (t)BTi UAix(t)+ωT (t)BTi UDix(t−ζ(t))

+ ωT (t)BTi UBiω(t) + ω(t)TBTi Ufi(x(t), ω(t)) + fTi (x(t), ω(t))UAix(t)

+ fTi (x(t), ω(t))UDix(t− ζ(t)) + fTi (x(t), ω(t))UBiω(t)

+ fTi (x(t), ω(t))Ufi(x(t), ω(t)). (3.25)

Then, by Dynkin’s formula and (3.23)-(3.25) with the condition V ≥ 0, we have

Jzω(T ) =E{
∫ T

0

[zT (t)z(t)− γ2ωT (t)ω(t) + LV1(x(t), r(t), t)]dt}

− E
∫ T

0

LV1(x(t), r(t), t)dt

≤E{
∫ T

0

[zT (t)z(t)− γ2ωT (t)ω(t) + LV1(x(t), r(t), t)]dt}

=E{
∫ T

0

ξT (t)Θiξ(t)dt}, (3.26)

where

ξT (t) = [xT (t), xT (t− ζ(t)), ωT (t)], and Θi =


Ξ1i + CTi Ci Ξ2i + CTi D̃i Ξ3i

∗ Ξ4i + D̃T
i D̃i Ξ5i

∗ ∗ Ξ6i

 .
Therefore, by Schur complement in [3], we get from (3.1) and (3.2) that for all

t > 0, Jzw(T ) < 0. Thus, the proof has been accomplished.
Compared with the continuous time state feedback, the discrete-time state ob-

servations feedback control method has the advantages of saving cost and easily
controlling. In order to derive the time interval τ during the two adjacent discrete-
time state observations, the following corollary will be presented.

Remark 3.1. It is worth noting that the Lyapunov-Krasovkii functional in (3.7)
is quite general. In the following, on the basic of the obtained results in Theorem
3.1, a special case will be considered, which can present a constraint of time delay
τ in the special one of Pi,σ = U = I(i ∈ S, σ ∈ R).

Corollary 3.1. If there exist matrices Di, Si, R (i ∈ S) such that the inequalities
hold as follows

X1i < 0,

τ ≤ min{1

2
,
−λmin(X1i)

K1
},

(3.27)

then the system (2.7) is stochastically admissible, where K1 = λmax(ATi Ai) +
λmax(DT

i Di) + 2‖ATi Di‖ + ‖ETE‖, X1i = ETAi + SiR
TAi + ATi E + ATi RS

T
i +

2ETE + ETDi + SiR
TDi +DT

i E +DT
i RS

T
i .
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Proof. The prove of the corollary is accomplished under the special case Pi,σ =
U = I (i ∈ S, σ ∈ R). According to Φ1i + Φ2i + ΦT2i + Φ4i < 0 in Theorem 3.1, we
can derive that the system (2.7) with ω(t) = 0 is stochastically stable. At first,

Φ1i + Φ2i + ΦT2i + Φ4i =2ATi Pi,σE − τETUE +
∑
n∈R

ETPinE +
∑
j∈S

πmijE
TPjmE

+ 2SiR
TAi + (τ − ζ(t))ATi UAi + 2DT

i Pi,σE + 2SiR
TDi

+ 2τETUE + 2(τ − ζ(t))ATi UDi − 2τETUE

+ (τ − ζ(t))DT
i UDi.

According to

τ ≤ −λmin(X1i)

K1
(3.28)

and the condition ETAi +SiR
TAi +ATi E +ATi RS

T
i + 2ETE +ETDi +SiR

TDi +
DT
i E +DT

i RS
T
i < 0, we could obtain

2ATi Pi,σE − τETUE +
∑
n∈R

ETPinE +
∑
j∈S

πmijE
TPjmE + 2SiR

TAi

+ (τ − ζ(t))ATi UAi + 2DT
i Pi,σE + 2SiR

TDi + 2τETUE

+ 2(τ − ζ(t))ATi UDi − 2τETUE + (τ − ζ(t))DT
i UDi

≤ETAi + SiR
TAi +ATi E +ATi RS

T
i + (2− τ)ETE + τATi Ai + ETDi

+ SiR
TDi + 2τ‖ATi Di‖+DT

i E +DT
i RS

T
i + τDT

i Di < 0,

(3.29)

moreover,

2ATi Pi,σE − τETUE +
∑
n∈R

ETPinE +
∑
j∈S

πmijE
TPjmE + 2SiR

TAi

+ (τ − ζ(t))ATi UAi + 2DT
i Pi,σE + 2SiR

TDi + 2τETUE + 2(τ − ζ(t))ATi UDi

− 2τETUE + (τ − ζ(t))DT
i UDi ≤ 2ATi E + 2SiR

TAi + 2EDi + 2SiR
TDi

+ 2ETE + τ(λmax(ATi Ai) + λmax(DT
i Di) + 2‖ATi Di‖+ ‖ETE‖) < 0. (3.30)

Combining with (3.29), (3.30), we get Φ1i + Φ2i + ΦT2i + Φ4i < 0.
As a consequence, base on Pi,σ = U = I (i ∈ S, σ ∈ R), we have proved Corollary

1. That is to say, the system (2.7) is stochastically admissible in the special case of
Pi,σ = U = I (i ∈ S, σ ∈ R).

Remark 3.2. By the inequality (3.27), we can find the upper bound of time delay
τ , which is different from paper [33]. In [33], there has no the specific inequality
constraints of delay. In our work, we find the specific inequality restrictions of upper
bound on the duration τ from the theoretical aspect. It should be noted that the
conditions of delay are less conservative in our work than ones in papers [29,30,34].

Remark 3.3. On the one hand, it is worth noting that dealing with the stability
problem for singular systems with Markovian jump parameters, it is required to
consider not only stochastic stability, but also regularity and absence of impulsive-
ness (for continuous singular Markovian jump systems) or causality (for discrete
singular Markovian jump systems) simultaneously, whereas for normal state-space
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Markovian jump systems the latter two issues do not arise. As a result, the stability
problem of singular Markovian jump systems is much more complicated than that
for normal state-space Markovian jump systems. On the other hand, the corre-
sponding results of singular systems also can be applied to the case of E = I that E
is nonsingular. Hence, the singular systems are more extensively than the normal
systems in the range of application.

4. Numerical example

In this section, two examples are illustrated to verify the effectiveness of the designed
approach.

Example 4.1. As we known, singular systems can describe the behavior of some
physical systems better than the normal systems. Singular systems arise in some
practical systems like power systems, electrical circuits, networks, and so on. Ran-
dom abrupt changes in singular systems represent a kind of systems which has
stochastic behavior and can be appropriately described by the linear time-variant
model that is used extensively in the field of control. Some undesired results may
be caused by these abrupt changes, for example, the system turns to be unstable
or the poor performance emerges. Therefore, the problem of the stability and sta-
bilization analysis of this class of systems is very important and significant. Some
stabilization techniques have been considered and most of the results are obtained
in terms of LMIs techniques, which make the results easy to be verified by the
Matlab LMIs Tools. We can refer the more detail to [10, 12, 16]. We carry out the
simulations on system (2.1) to demonstrate results in Theorem 3.1. In particular,
the corresponding system parameters are presented as

In mode 1

E =

1 0

0 0

 , A1 =

 −1.5 0.5

−0.45 −0.832

 , B1 =

0.15

0.01

 ,
F1 =

−0.5 0.4

2 1

 , C1 =

0.21

0.25

 , D̃1 =

0.31

1.5

T .
In mode 2

E =

1 0

0 0

 , A2 =

 1 0.4

−0.36 0.79

 , B2 =

−0.1

1

 ,
F2 =

5 −1

2 1

 , C2 =

0.5

0.2

 , D̃2 =

0.1

0.5

T .
f(i, x, t) = [e−t sin(x1(t)−x2(t)), e−t sin(x1(t))]T for i = 1, 2. Here, we assume that
rt ∈ S = {1, 2} and σt ∈ R = {1, 2, 3}. The corresponding transition matrices are
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given by

Π1 =

−0.1 0.1

0.72 −0.72

 , Π2 =

−0.5 0.5

0.7 −0.7

 ,

Π3 =

−0.2 0.2

0.35 −0.35

 , Λ =


−0.4 0.1 0.3

0.2 −0.9 0.7

0.2 0.3 −0.5

 .
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Figure 1. (a) Random jump with two modes (b) Random jump with three modes

For the underlying system with above parameters and time-delay τ = 0.2, per-
formance index γ = 0.1, we will design a controller of form (2.2) and use LMI
toolbox solve inequalities (3.1), (3.2), which can find

D1 =

0.0031 −0.0821

0.0293 −0.5439

 , D2 =

−1.5391 −0.1541

−0.5496 −0.0556

 , U =

 2.3098 −0.4460

−0.4460 1.8516

 ,
P11 =

 4.9278 −0.0435

−0.0435 5.8002

 , P12=

 5.0115 −0.0090

−0.0090 5.7998

 , P13 =

 4.9384 −0.0323

−0.0323 5.800

 ,
P21 =

5.7598 0.7842

0.7842 5.8852

 , P22 =

5.7419 0.7832

0.7832 5.8850

 , P23 =

5.6489 0.7794

0.7794 5.8847

 .
According to the relationship of Di = FiKi, and the fact that Fi is given out,

further, the control gain parameters can be obtained

K1 =

 0.0066 −0.1042

0.0160 −0.3355

 ,K2 =

−0.2984 −0.0300

0.0472 0.0043

 .
A possible case for the switching signal is depicted in Figure 1. State re-

sponse for the open-loop system is plotted in Figure 2(a) under the initial values
x(0) = [0.7551 − 1.0522]T . Figure 2(b) shows the state response for the underlying
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Figure 2. (a) State response for open-loop system (b) State response for closed-loop system

system with the feedback controller based on discrete-time state observations, for
illustration, we let controller with x(0) = [0.7551 − 1.0522]T and the exogenous
disturbance signal ω(t) = sin(0.01t)e−0.001t. Based on Figure 2(a) and (b), we can
see that the open loop system is unstable, while the closed-loop systems can be
stabilized by the designed controller. This example shows our result is effective.

Example 4.2. Based on the inequality (3.27) and let E = I. These parameters
A1, A2, B1, B2, C1, C2, D̃1, D̃2, F1, F2 are the same as in Example 4.1. Let γ = 1 and
make sure that τ < 0.5, the solution of hybrid system (2.7) is stochastically stable.
It is noted that it is required for τ < 0.0000308 in [22] and τ < 0.0046 in [23], while
in our result the τ only satisfies τ ≤ 0.5. Therefore, it shows that our theory has
improved the existing result significantly.

5. Conclusion

The issue of stochastically admissible with H∞ performance for hybrid systems
with singular Markovian jump by state feedback based on discrete-time observa-
tions has been handled. The designed controller is more practical compared with
the continuous-time state feedback strategies, and has the merits of cost less and
save resource. By employing Lyapunov-Krasovskii functional and LMIs technolo-
gies, in terms of LMIs, our results can be readily testified using numerical software
MATLAB. Furthermore, the criteria are established which ensure the resulting sys-
tems are regular, impulse free, and stochastically stable. Two numerical examples
are supplied to manifest the effectiveness of the designed methods. In future work,
in order to well describe the practical systems, the more general systems shall be
considered, for instance, the semi-Markov jump systems [40] with sliding mode
control scheme [15] maybe an interesting approach.

Acknowledgements. The authors thank the editors and anonymous reviewers for
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been improved.
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