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FUNCTIONAL EXPANSIONS FOR FINDING
TRAVELING WAVE SOLUTIONS
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Abstract The paper proposes a generalized analytic approach which allows
to find traveling wave solutions for some nonlinear PDEs. The solutions are
expressed as functional expansions of the known solutions of an auxiliary equa-
tion. The proposed formalism integrates classical approaches as tanh method
or G′/G method, but it open the possibility of generating more complex solu-
tions. A general class of second order PDEs is analyzed from the perspective
of this formalism, and clear rules related to the balancing procedure are for-
mulated. The KdV equation is used as a toy model to prove how the results
obtained before through the G′/G approach can be recovered and extended,
in an unified and very natural way.
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1. Introduction
Finding solutions for various partial differential equations (PDEs) is a fundamental
issue and it presents a strong interest in many fields, where especially nonlinear
phenomena are described. Sometimes, analytic methods for solving the nonlinear
equations can be applied, otherwise numerical computations are considered, or,
if neither analytic nor numerical approaches do not work, the simple decision on
the equation’s integrability is the maximal information which can be formulated.
In this paper we will exclusively investigate analytic methods for finding solutions
of nonlinear PDEs. Such solutions allow a better understanding of the physical
phenomena and they bring researchers closer to the nature. There is not a clear
procedure to solve nonlinear PDEs, but, during the time, many analytic methods for
finding exact solutions were formulated. Cole and Hopf proposed a transformation
method [10], Hirota used a bilinearization procedure [16], Ablowitz and Clarkson
applied the inverse scattering formalism [2,7], etc. Adomian decomposition method
is also very efficient in finding solutions for equations which do not respond to
other solving methods [4,8,11]. A special situation is represented by the equations
describing the constrained dynamical systems. Non-physical degrees of freedom has
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to be introduced in this case and specific procedures are required in order to get
adequate reference frames where the dynamics is well defined [5, 6].

An important class of the PDE’s solutions is represented by the travelling waves.
Despite not all equations accept such solutions, they are very important and there
are many direct methods for finding them, as for example: the tanh method [21], the
tanh-coth method [1,28], the F-expansion method [26], the exp-function method [15],
the elliptic function method [20], imposing specific integrability conditions [14], the
extended trial equation method [9], etc.

This paper will mainly refer to another interesting approach from finding trav-
eling wave solutions, namely to the G′/G-method [27]. It supposes to look for
solutions of an equation as an expansion in terms of the ratio G′/G, where G rep-
resents a known solution of an auxiliary equation. Because it has proven to be
effective, the method was generalized and improved [3,22,30]. However, it is not at
all clear why the series are built in terms of this ratio. Why G′/G and not G′/G2

or any other expression can be considered? This is in fact the central aim of this
work: to investigate how the G′/G-method can be further generalized and how all
the mentioned methods for finding traveling wave solutions can be unified.

We will propose a new approach that is purely analytic. It will be called the
functional expansion and it will be based on the very common approach supposing
three main issues: (i) reduction of the PDE to an ODE; (ii) choice of an adequate
auxiliary equation; (iii) choice of a specific expression of the solutions for the in-
vestigated ODE in terms of those of the auxiliary equation. The novelty of our
approach is related to (iii) and it consists in looking for solutions in a general func-
tional form. There were previous proposals and results which pointed out solutions
having different form as the ratio (G′/G), but all of them were related to a pre-
established ”basis”, as, for example, (G′/G, 1/G) [19, 31], or w(G)/G [18, 25]. Our
approach includes and extends all these attempts, presenting the advantage that it
could solve equations for which the other approches do not work.

The first step, consisting in the reduction of the PDE to an ODE, is accomplished
by introducing the wave variable. The auxiliary equation which will be attached
to the resulting ODE is also an ODE but with well known solutions. There are
many choices of auxiliary equations which were proposed in literature, starting with
Riccati equation [29], till more complex, higher order linear or nonlinear equations
[22]. Depending on the choice of the auxiliary equation, the solutions of the studied
equation can be, them too, simpler or more complex.

The paper is structured as follows: in the next section, basic facts on the func-
tional expansion method are presented; in section three we shall focus on a general
form of second order differential equation which includes important examples as
Korteweg de Vries, Dodd-Boulogh-Mikhailov, nonlinear Schrodinger equation, non-
linear Klein-Gordon equation, Burger type equation, Fisher’s equation, etc. We will
see how the proposed method can be applied to this general equation when rational
functionals are considered in expansions and how general balancing rules can be es-
tablished. In the fourth section the method is explicitly applied to the very simple
case of the Korteweg de Vries equation. The solutions we are finding through our
approach are compared with the solutions previously presented in literature. Final
conclusions on the method will end the paper.
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2. Functional expansions
To be more specific, let us consider that the dependent variable u(x, t), defined in
a 2D space (x, t) satisfies the PDE:

F (u, ut, ux, uxx, utt, · · · ) = 0. (2.1)

Let us introduce the wave variable in the form:

ξ = x− V t. (2.2)

Here V is a constant, identified as the wave velocity. With this transformation, the
equation (2.1) becomes an ordinary differential equation:

∆(u, u′, u′′, · · · ) = 0, (2.3)

where u′ = du(ξ)/dξ. We will look for a special class of analytical solutions of (2.3)
which can be expressed as functions of the known solutions G(ξ) of an auxiliary
equation of the form:

Θ(G,G′, G′′, · · · ) = 0. (2.4)

2.1. Choice of the solution
Based on the main idea of the functional expansion method, we will consider now
a very general choice for the solutions of the equation (2.3). This choice is of the
form:

u(ξ) =

m∑
i=−m

Pi(G) Hi(G,G′, G′′, · · · ). (2.5)

Here Pi(G) are 2m+1 functionals depending on G(ξ) and that have to be determi-
nated. H(G,G′, G′′, · · · ) can be a very general expression containing G(ξ) and its
derivatives. Depending on the form of P and H, one can generate very complex so-
lutions. The choices covering almost all the approaches currently used in literature
are P as a rational expression, depending in fapt on 1/G, and H depending only
on G and G′. More strictly, H is usually considered as a formal serie expansion at
most linear in the two variables:

H(G,G′) = h0 + h1G+ h2G
′, h0, h1, h2 = const. (2.6)

For example, if we will consider h0 = h1 = 0 and h2 = 1, we get from (2.5) the
expression:

u(ξ) =

m∑
i=−m

Pi(G) (G′)
i
. (2.7)

The generalized and improved G′/G method [3], [22] corresponds to (2.10) with the
choice:

Pi(G) =
πi

Gi
≡ πiG

−i; πi = const., i = {−m, ..., 0, ...m}. (2.8)

The approach from [31] corresponds to (2.10) with Pi = πiG
−i + πi−1G

−i+1, while
the (w/g) method is recovered for P = 1/G and H = w(G), with an adequate choice
for the auxiliary equation. The reprezentation used in [13] is also included in (2.5),
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but it does not accept the condensate form (2.10). It also imposes an H(G,G′)
different from (2.6), namely:

H(G,G′) = G′

√√√√σ

(
1 +

1

µ

(
G′

G

)2
)
. (2.9)

For example, if we will consider h0 = h1 = 0 and h2 = 1, we get from (2.5) the
expression:

u(ξ) =

m∑
i=−m

Pi(G) (G′)
i
. (2.10)

The generalized and improved G′/G method [3, 22] corresponds to (2.10) with the
choice:

Pi(G) =
πi

Gi
≡ πiG

−i; πi = const., i = {−m, ..., 0, ...m}. (2.11)

The approach from [31] corresponds to (2.10) with Pi = πiG
−i + πi−1G

−i+1, while
the (w/g) method is recovered for P = 1/G and H = w(G), with an adequate choice
for the auxiliary equation. The reprezentation used in [?] is also included in (2.5),
but it does not accept the condensate form (2.10). It also imposes an H(G,G′)
different from (2.6), namely:

H(G,G′) = G′

√√√√σ

(
1 +

1

µ

(
G′

G

)2
)
. (2.12)

Coming back to the solutions of the form (2.10), the balancing procedure follow-
ing the different powers in G′ leads to a system of ODE in the functionals Pi(G).
For this system we are looking to solutions given as expansions in G, more pre-
cisely as rationals with polynomial numerators and denominators. The choice that
generalizes the previous expressions and that we will consider here is:

Pi(G) =

Ni1∑
α=0

πiαG
α

Ni2∑
β=0

ωiβGβ

. (2.13)

The numbers Ni1, Ni2 can be integers representing the degree in G of the numerator,
respectively of the denominator. They define the degree of the functional Pi as:

N(Pi) ≡ Ni1 −Ni2. (2.14)

The degree N(Pi) has to be determined each time, and, to do that, a second bal-
ancing procedure has to be applied upon the equations in Pi generated by the first
balancing procedure.

It is important to note that, in almost all of the cases, the first balancing require-
ment leads to negative degrees for Pi. This explain why in the other methods evoked
before, we find, as we already mentioned, a dependency of the form Pi ≡ Pi(

1
G ).

This is also why a simpler representation as (2.13) can be considered for Pi. Defining
Ni ≡ |N(Pi)|, we can choose the functionals Pi as a sum of monomials:

Pi(G) =

Ni∑
κ=0

πiκG
−κ. (2.15)
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This is a generalization of the expression (2.11) used in the (G′/G) approach, and
a particular case of (2.13).

With (2.15), the solution (2.10) can be written down as:

u(ξ) =

m∑
i=−m

(
Ni∑
κ=0

πiκG
−κ

)
(G′)i. (2.16)

In conclusion, the expansions of the type (2.5) are in fact the most general
possible form of solutions and they includes almost all the choices used in various
approaches to the direct finding of exact solutions of nonlinear differential equations.
The effective use of (2.16) imposes the finding of the coefficients πiκ,as well as of
the two sumation limits. The last task is asking, as we will see, for two different
balancing procedures: one following the powers of G′ and a second one following
the powers of G.

Another important remark is that (2.10) generalizes the form of the solutions
considered, without any supplementary explanation, in the (G′/G)-method. We will
see that, by considering our expansion (2.10), the ratio G′/G can appear in the most
natural way.

2.2. Remarks on the auxiliary equation
The specific form of our generalized representations (2.5) also depends on the choice
of the auxiliary equation (2.4). For example, when the tanh method is used, the
auxiliary equation is chosen of Riccati-type, a first order ODE [21]. In this case,
the functional H(G,G′, G′′, ...) has the form (2.6), that is it contains at most linear
terms. The value of the parameter m depends on the model and it is established
through a balancing procedure among the terms of higher order derivative, respec-
tively of the higher nonlinearity. Similar approaches have been done considering
other first order ODEs as auxiliary equations, as for example the equation (2.17)
in [10], or the equation (2.18) in [16]:

G′ =
A

G
+BG+ CG3, (2.17)

G′ = c2G
2 + c4G

4 + c6G
6. (2.18)

If a second order auxiliary equation is considered, the second order derivative,
G′′ can be expressed in terms of G and G′, so, again, H = H(G,G′). Examples of
second order auxiliary equations are [2]:

G′′ + λG′ + µG = 0, (2.19)
AGG′′ +B(G′)2 + CGG′ + EG2 = 0. (2.20)

If we look for solutions of differential equations with order higher than two,
auxiliary equations of higher orders could be considered. If, for example, we are
dealing with an auxiliary equation of third order, the third order derivative can be
in principle expressed in terms of the second and first orders, so it can be eliminated,
and (2.5) stops at terms at maximum second order, G′′.
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3. The functional expansion method for a general-
ized second order differential equation

3.1. A generalized second order differential equation
Let us come back to the general algorithm of finding traveling wave solutions, to the
moment when, introducing the wave variable, an ODE of the form (2.3) is generated.
Specifically, we will consider here that this ODE has a form that belongs to a large
class of second order ODEs:

A(u)u′′ +B(u)u′2 + C(u)u′ + E(u) = 0. (3.1)

Depending on the specific form of A(u), B(u), C(u), E(u), the equation (3.1) in-
cludes a lot of interesting equations, investigated in various scientific domains, as,
for example: the Dodd-Boulogh-Mikhailov equation describing fluid flows or QFT
systems, the Buckmaster equation describing thin viscous fluid sheet flow, the non-
linear Schrodinger and Klein-Gordon equations, the Benjamin-Bona-Mahony equa-
tion, the Burger type or Hunter-Saxton equations, and many others.

If, in particular, all the coefficients in (3.1) are constants, it takes the form (2.20),
an equation with already known solutions, which is sometime used as auxiliary
equation. In fact, many of these equations can be exactly solved and they could be
considered as auxiliary equations for other more complicated models with traveling
wave solutions.

Our interest in the equation (3.1) will be related here on two objectives: to show
how the functional expansion method can be effectively applied and to effectivelly
compute through our approach the solutions for a particular case of (3.1), namely
for the Korteweg de Vries equation. This last equation corresponds to the case when
A(u) = δ = const, B(u) = 0, C(u) = 0, and E(u) = −V u+ k. With these choices,
its specific form is:

δu′′ +
1

2
u2 − V u+ k = 0. (3.2)

The equation (3.2) will be investigated in details in the next section. Below, we will
focus on the balancing procedures that our approach imposes. To do that, we will
consider that all the coefficient functions from (3.1) have polynomial form. This
supposition covers all the specific examples of equations we mentioned above, as
included in (3.1). We will assume that the degrees of these polynomials, that is the
highest power of u(ξ) they are containing, are as follow:

Deg[A(u)] ≡ nA;Deg[B(u)] = nB ;Deg[C(u)] = nC ;Deg[E(u)] = nE . (3.3)

3.2. The balancing procedure for the generalized equation
We come now back to (3.1) and we look for solutions in the form (2.10), where G is
a known solution of an auxiliary equation. The functionals Pi(G) will be considered
of the form (2.15) and the solutions of (3.1) will take the form (2.16). As we already
mentioned, the main tasks consist in finding the two summation limits, that is the
values for the parameters m and Ni appearing in (2.16). These tasks can be achieved
following a combined balancing procedure, after G′ and, respectivelly, after G.
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In the first step, we will analyse the polynomial degrees in G′ of each term
appearing in (3.1), and we will balance the higher order derivative with the higher
nonlinear term. We will use the notations Ṗi ≡ dPi(G)

dG and P̈i ≡ d2Pi(G)
dG2 . The higher

order derivative is represented by A(u)u′′ and, taking into account (2.10), the term
of the maximum degree in G′ is proportional with:

P̈mPnA
m G′m(nA+1)+2. (3.4)

The highest nonlinearity can be generated by any of the other terms from (3.1):
B(u)u′2, or C(u)u′, or E(u). Using a similar evaluation reasoning as before, their
degrees will be, respectively:

ṖmPnA
m G′m(nB+2)+2, (3.5)

ṖmPnC
m G′m(nC+1)+1, (3.6)

PnE
m G′mnE . (3.7)

Depending on the value of these degrees, the following situations have to be con-
sidered:

1) If nE > nB and nE > nC , then the higher nonlinear term is E(u) and the
balancing should be done between (3.4) and (3.7). It will give:

m(nA + 1) + 2 = mnE . (3.8)

That is
m =

2

nE − nA − 1
. (3.9)

We impose m ∈ N, nE ∈ Z, nA ∈ Z. Then, m can have the values m = 2 (for
nE = nA + 2) or m = 1 (for nE = nA + 3). Independently if B or C vanish or not,
the equation for Pm with m given by (3.9) will contain exactly the two terms which
have to be balanced:

P̈m + αP
m+2
m

m = 0. (3.10)

Here, the quantity α =
enE

anA
is known for a given equation.

Remark. The equation (3.10) accepts as solution:

Pm(G) = (−)
m
2 m

m
2 (m+ 1)

m
2 a

m
2
nAG

−m (3.11)

It is something of the type Pm ∽ G−m, form that corresponds to the usual choice
in the (G′/G) approach. It is very important to mention that (3.11) reffers to the
maximal degree only, and, as we will see in the next section, it is not the most
general solution of (3.10).

Step by step, we can solve all the equations for the functionals {Pk, k ∈ (m −
1, ..., 0)} and, implicitly, we can get the final solution of (3.1).

2) If nB > nE and nB > nC then nB = nA−1, but m can take any value m = 1
or m = 2. In this case, no solutions of the form G′/G can be generated. It is for
example, the case of the Hunter-Saxton equation which have the form:

(u− V )u′′ +
1

2
u′2 = 0. (3.12)
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For m = 1 this equation leads to a P1 which satisfies the equation:

P1

..

P 1 +
1

2

.

P
2

1 = 0. (3.13)

It does not admit solutions of the form P1 = a−1G
−1.

3) If the higher nonlinearity corresponds to C(u)u′, the balancing with A(u)u′′

leads to:
m(nA + 1) + 2 = m(nC + 1) + 1.

We get:

m =
1

nC − nA
,

that is
nC = nA + 1

or
nC = nA − 1.

This case creates also problems in finding solutions of the G′/G type. To this
case belong models as Fisher’s and Chafee-Infante equations, particular cases of
(3.1), for B(u) = 0.

Conclusion. Finding a solution for (3.1) in the form (2.10) supposes, as a first step,
to evaluate the degrees in G′ of the terms appearing in the equation. The balancing
conditions generate some differential and algebraic equations for the functionals
Pi. To solve these equations, a new balancing procedure is required, following
this time the degrees in G. The results we just mentioned allow making a clear
distinction among the equations belonging to (3.1) type which can be solved with
G′/G method: equations of the form (3.1) with the dominant nonlinearity in E(u).
The other equations cannot be solved through G′/G approach and they could admit
more general solutions of the type (2.10).

4. The example of the KdV Equation
To prove that our approach generalizes other classical methods for solving nonlinear
PDEs, we will show how it allows recovering for the simpler case of KdV, the
solutions that can be generated through G′/G method. As we will see, our approch
also generates more general solutions.

4.1. Recovering the solutions given by the G′/G method
We shall consider the Korteweg de Vries equation in the form:

ut + uux + δuxxx = 0.

By passing to the wave variable ξ = x − V t, and by integrating once, we get the
ODE:

δu′′(ξ) +
1

2
u2(ξ)− V u(ξ) + k = 0. (4.1)
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Here δ, k, V are constants which will be used as parameters. The balancing proce-
dure between the terms δu′′(ξ) and 1

2u
2(ξ) leads to m = 2, so the solutions (2.10)

will have the form of the following expansion:

u(ξ) =

2∑
i=−2

Pi(G)(G′)i, (4.2)

where the function G(ξ) satisfy the auxiliary equation of the form:

G′′ + λG′ + µG = 0. (4.3)

With (4.2) and (4.3) in (4.1), by vanishing the coefficients of various powers of G′, we
get the following system of equations in the functionals {Pk(G), k = −2,−1, 0, 1, 2}:

2δ
..

P 2(G) + P 2
2 (G) = 0, (4.4)

δ
..

P 1(G)− 5δ
.

P 2(G) + P1(G)P2(G) = 0, (4.5)

δ
..

P 0(G)− 3δλ
.

P 1(G)− 5δµG
.

P 2(G) + 2δ(2λ2 − µ)P2(G)

+
1

2
P 2
1 (G) + P0(G)P2(G)− V P2(G) = 0,

(4.6)

− δA
.

P 0(G)− 3δµ
.

P 1(G)G+ δ(λ2 − µ)P1(G) + 6λµGP2(G)

+ P0(G)P1(G)− V P1(G) = 0,
(4.7)

− δµG
.

P 0(G) +
1

2
P 2
0 (G)− V P0(G) + δλµGP1(G) + 2δµ2G2P2(G)

+ k + δλ
.

P−1(G) + δ
..

P−2(G) + P1(G)P−1(G) + P2(G)P−2(G) = 0,

(4.8)

P−2(G)

(
1

2
P−2(G) + 6δµ2G2

)
= 0, (4.9)

10δλµGP−2(G) + 2δµ2G2P−1(G) + P−1(G)P−2(G) = 0, (4.10)

3δµG
.

P−2(G) + 3δλµGP−1(G) + (4δλ2 + 2δµ)P−2(G)

+ P0(G)P−2(G) +
1

2
P 2
−1(G)− V P−2(G) = 0,

(4.11)

3δλ
.

P−2(G) + δλ2P−1(G) + δµ(P−1(G) +G
.

P−1(G))

+ P0(G)P−1(G) + P1(G)P−2(G)− V P−1(G) = 0.
(4.12)

The system contains both differential and algebraic equations. The functionals
P−2, P−1, P0, P1, P2 have to be determinated and the solution will have the form:

u(ξ) = P−2 · (G′)−2 + P−1 · (G′)−1 + P0(G) + P1 · (G′) + P2 · (G′)2. (4.13)

This is the solution given by the generalized and improved (G′/G) method, if we
will simply consider that {Pi, i = −2,−1, 0, 1, 2} are of the form (2.11). However,
as we will see, a larger class of solutions is possible.

Let us prove for the moment that the choices (2.11) are compatible with the
system. We note that P2 and P1 can be determined from (4.4) and, respectively,
(4.5). These are differential equations which belong to the class of equations (3.1),
so they obey the general results related to the balancing procedure given in the
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previous subsection. For the equation (4.4) the corresponding relation is (3.9) with
nA = 0, nE = 2, so that m = 2.Following (2.15), the expression we are looking for
P2 will be:

P2(G) =

n(P2)∑
κ=−n(P2)

π2κG
−κ. (4.14)

Direct computations show that n(P2) = m = 2, and (4.4) accepts as particular
solution:

P2(G) = π22G
−2 = −12δG−2. (4.15)

If we impose, for simplicity, µ = 0 in the auxiliary equation, the balancing procedure
for the equation (4.5) leads to the specific solution:

P1(G) =

1∑
j=−1

π1jG
−j = π11G

−1 = −12δλG−1. (4.16)

The compatibility condition among the remaining equations from the system, (4.6)-
(4.12) leads to the following expressions:

P0 = V − δλ2 = const, (4.17)

P−2(G) = P−1(G) = 0, (4.18)

k =
1

2
(V 2 − δ2λ4). (4.19)

Coming back with all these results in (4.13), we arrive to a KdV solution of the
form:

u(ξ) = P0(G) + P1(G) · (G′) + P2(G) · (G′)2. (4.20)

So, we recover the general solution of the KdV equation (4.1) which, practically,
corresponds to the standard (G′/G) approach:

u(ξ) = V − δλ2 − 12δλ
G′

G
− 12δ

(
G′

G

)2

. (4.21)

The previous expression, generated without any initial requirement on the form
of the solution, contains practically all the particular solutions listed in literature,
when the G′/G method is applied to the KdV model.

Let us mention that in our case, when µ = 0 and ∆ ≡ λ2 > 0, the auxiliary
equation (4.3) has the solution:

G(ξ) = e−(λ/2)ξ

(
A1ch

λ

2
ξ +A2sh

λ

2
ξ

)
(4.22)

with A1, A2 arbitrary constants. Using (4.22), the KdV solution (4.21) takes the
form:

u(ξ) =V − δλ2 − 6δλ
A1sh

λ
2 ξ +A2ch

λ
2 ξ

A1ch
λ
2 ξ +A2sh

λ
2 ξ

− 6δλ(A2 −A1)
2

(
chλ

2 ξ − shλ
2 ξ

A1ch
λ
2 ξ +A2sh

λ
2 ξ

)2

.

(4.23)
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4.2. More than the (G′/G) solutions for the KdV equation
In the previous subsection, it was illustrated how the functional expansion method
we are proposing allows to recover the solution (4.21), the most general one men-
tioned in literature as being obtained using the standard G′/G method. The natural
question arising is if the new method could give more that the usual methods. We
already mentioned in subsection 3.2 specific examples of equations for which the
(G′/G) method fails. How these equations can be solved through our method will
be shown in a forthcoming paper. Here we will restrict ourselves to the KdV equa-
tion, and we will show that, even for this simple equation, the functional expansion
method gives more general solutions that (4.21). The key issue for proving that
is to consider the most general solution of the system (4.4)-(4.12). For example,
for recovering the results brought by the standard (G′/G) method, it was enough
behind to consider the functional P2(G) in the form (4.15). We already mentioned
that this form represents a particular solution of the equation (4.4), a most general
one having the form:

P2(G) =
π2

ω2G2 + ω1G+ ω0
, ωi = const. (4.24)

It belongs to (2.13) with N21 = 0, N22 = 2. A simple check leads to the following
relations among the parameters: π2 = −12ω2δ; (ω1)

2 = 4ω2ω0.
We can now use (4.24) for calculating the other functionals from the system

(4.5)-(4.12), and to get then the KdV solution. To compare the new solution with
(4.23), we will stay in the same case, considering µ = 0 in the auxiliary equation,
and P−2 = P−1 = 0, as solutions for (4.9)-(4.12). The KdV solution will have the
form (4.20), and the compatibility of (4.5)-(4.8) will ask for λ = {−2, 1}. We are
again in the case ∆ = λ2 > 0, so we can consider for G the solution (4.22). Direct
computations leads to:

P1 = − 24δω2

2ω2G+ ω1
,

P0 = V − δλ2,

k =
1

2
P 2
0 + δP0λ

2.

The KdV solution (4.21) will be now replaced by the most general one:

u(ξ) = V − δλ2 − 24δω2G
′

2ω2G+ ω1
− 12δ

(G′)2

ω2G2 + ω1G+ ω0
. (4.25)

By replacing here G(ξ) given by (4.22), we come to the KdV solution:

u(ξ) =V − δλ2 − 6δλ
(A2 −A1)

(
chλ

2 ξ − shλ
2 ξ
)(

A1ch
λ
2 ξ +A2sh

λ
2 ξ
)
+ ω1

2ω2
e(λ/2)ξ

−
3δλ2e−λξ(A2 −A1)

2
(
chλ

2 ξ − shλ
2 ξ
)2

ω2e−λξ
(
A1ch

λ
2 ξ +A2sh

λ
2 ξ
)2

+ ω1e−(λ/2)ξ
(
A1ch

λ
2 ξ +A2sh

λ
2 ξ
)
+ ω0

(4.26)
It is most general than (4.23) and it is different from the solutions listed in all
the other papers dealing with KdV. See for example [22], where the improved and
extended (G′/G) method is used, or [17], where the (G′/G, 1/G)- expansion is used.
The functional expansion brings a larger class of solutions.
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5. Conclusions
In this article, a generalized approach to the direct finding of the traveling wave
solutions of the nonlinear differential equations has been considered. It consists in
looking for solutions in the form of the functional expansions (2.10), in terms of
the solutions G(ξ) of an auxiliary equation. The approach includes all the classical
methods which have been previously used and it creates premises for generating
more complex solutions. The algorithm contains the standard steps: (i) transform-
ing the PDE into an ODE through the wave variable; (ii) choosing an adequate
auxiliary equation; (iii) representing the solution of the ODE as an expansion in
terms of the solutions of the auxiliary equation. The novelty we brought is related
to the third step. The procedure is purely analytic and it is very simple to be
applied for any type of equation admitting traveling wave solutions. It can be, for
example, applied to equations describing the dynamics in tokamaks [23,24], or even
to more complicated equations arrising from field theories [12].

In the present paper we considered the example of a generalized class of second
order PDEs, containing many equations with important practical applications. An
extensive study on the balancing procedure, limiting the form of the possible solu-
tions, has been done on this equation. As a specific example, the KdV equation was
considered in details and, particularly, the solutions generated through the G′/G
method have been recovered and extended. Here are few remarks summarizing the
results.
Remark 1. In general, our approach can generate a larger class of solutions as
(G′/G) method is doing. They can arise when more complicated or higher order
auxiliary equations are considered.
Remark 2. In our approach, two successive balancing procedures have been ap-
plied:

(i) A first balance between the higher derivative and the higher nonlinear terms
was done for determining the value of m in (2.10). It generated an ODE system in
the functionals P−m(G), ..., P0(G), ..., Pm(G).

(ii) The functionals Pq(G) are expressed, them too, as expansions of the form
(2.15) and, for determining their specific form, a second balancing procedure is
required.
Remark 3. By considering simple models, as KdV, we concluded that, in this case,
the functionals Pi(G) are rational functions of the form:

Pq(G) =
πq∑q

k=0 ωkGk
, (5.1)

where q = −m, ...,−1, 0, 1, ...,m. This result shows that, even for the simple KdV
model, the functional expansion method brings a reacher class of solutions as the
previous methods. Moreover, the new method we proposed allows to recover, in
a very natural way, the solutions of the form G′/G. A pre-supposition that the
solutions should have this form is not necessary. For other models or using other
auxiliary equations, more complicated functionals might be compatible, and more
general solutions, of the form G′pG−q might be possible. Let us just recall that, the
balancing evaluation of the Hunter-Saxton equation (3.12) leeds to a P1 given by
(3.13), and it seems that the solution u(ξ) has in this case a dominant term of the
form G′G−2/3.
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In conclusion, we proposed in this paper a method for finding the exact traveling
wave solutions of various nonlinear equations which: (i) generalizes all the previous
approaches; (ii) offers a richer class of solutions for the simpler equation as KdV, and
(iii) gives the line on how the solutions should look for more complicated equations.
Deeply investigations of this issue will be the challenge for future work.

Acknowledgements
Part of this research has been done in the frame of the ICTP-SEENET-MTP Project
NT03, “Cosmology - Classical and Quantum Challenges”, as well as in the H2020
Project “Dynamics”, 2017-RISE-777911.

References
[1] M. A. Abdelkawy, A. H. Bhrawy, E. Zerrad and A. Biswas, Application of

tanh method to complex coupled nonlinear evolution equations, Acta Physica
Polonica A, 2016, 129(3), 278–283.

[2] M. J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations
and Inverse Scattering, Cambridge University Press, Cambridge, 1991.

[3] M. A. Akbar, N. H. Ali and E. M. E. Zayed, A generalized and improved-
expansion method for nonlinear evolution equations, Mathematical Problems
in Engineering, 2012. DOI:10.1155/2012/459879.

[4] A. F. Aljohani, R. Rach and E. El-Zahar, A.M. Wazwaz and A. Ebaid, Solu-
tion of the hyperbolic Kepler equation by Adomian’s asymptotic decomposition
method, Romanian Reports in Physics, 2018, 70(2), 112–126.

[5] A. Babalean, R. Constantinescu and C. Ionescu, Non-minimal BRST terms for
Yang-Mills theory, Journal of Physics A: Mathematical and General, 1998, 31
(43), 8653–8659.

[6] A. Babalean, R. Constantinescu and C. Ionescu, The gauge fixing problem in
the sp(3) BRST canonical formalism, Journal of Physics A: Mathematical and
General, 1999, 32(16), 3005–3012.

[7] C. N. Babalic and A. S. Carstea, Coupled Ablowitz–Ladik equations with
branched dispersion, Journal of Physics A: Mathematical and Theoretical, 2017,
50(41), Article Number: 415201.

[8] S. Bhalekar and J. Patade, An analytical solution of Fisher’s equation us-
ing decomposition method, American Journal of Computational and Applied
Mathematics, 2016. DOI:10.5923/j.ajcam.20160603.01.

[9] R. Cimpoiasu and A. S Pauna, Complementary wave solutions for the long-
short wave resonance model via the extended trial equation method and the
generalized Kudryashov method, Open Physics, 2018, 16(1), 419–426.

[10] J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics,
Quarterly of Applied Mathematics, 1951, 9(3), 225–236.

[11] R. Constantinescu and C. Ionescu, Hot quark-gluon plasma and Chapline-
Manton model, Romanian Journal of Physics, 2011, 56(1–2), 53–61.



582 C. Ionescu, R. Constantinescu & M. Stoicescu

[12] R. Constantinescu and C. Ionescu, The Yang-Mills fields—from the gauge the-
ory to the mechanical model, Central European Journal of Physics, 2009, 7(4),
711–720.

[13] S. Guo and Y. Zhou, The extended (G’/G)-expansion method and its applica-
tions to the Whitham–Broer–Kaup–Like equations and coupled Hirota–Satsuma
KdV equations, Applied Mathematics and Computation, 2010, 215(9), 3214–
3221.

[14] T. Harko and M. K. Mak, Exact travelling wave solutions of non-linear reaction-
convection-diffusion equations—An Abel equation based approach, Journal of
Mathematical Physics, 2015. https://doi.org/10.1063/1.4935299.

[15] J. He and X. Wu, Exp-function method for nonlinear wave equations, Chaos
Solitons Fractals, 2006, 30(3), 700–708.

[16] R. Hirota, Exact solution of the Korteweg—de Vries equation for multiple col-
lisions of solitons, Physical Review Letters, 1971, 27(18), 1192–1194.

[17] Md. Azmol Huda, Md. Samsuzzoha and M. Ali Akbar, Searching soliton so-
lutions to the Burger Huxley and the Klein Gordon equations, Global Journal
of Advanced Research (Scholary Peer Review Publishing System), 2019, 6(2),
67–77.

[18] W. Li, H. Chen and G. Zhang, The (ω/g)-expansion method and its application
to Vakhnenko equation, Chinese Physics B, 2009, 18(2), 400–404.

[19] L. Li and M. Wang, The G’/G-expansion method and travelling wave solu-
tions for a higher-order nonlinear Schrödinger equation, Applied Mathematics
Computational, 2009, 208(2), 440–445.

[20] S. Liu, Z. Fu, S. Liu and Q. Zhao, Jacobi elliptic function expansion method
and periodic wave solutions of nonlinear wave equations, Physics Letters A,
2001, 289(1–2), 69–74.

[21] W. Malfliet, Solitary wave solutions of nonlinear wave equations, American
Journal of Physics, 1992, 60, 650–654.

[22] H. Naher and F. A. Abdullah, Further extension of the generalized and im-
proved (G’/G)-expansion method for nonlinear evolution equation, Journal of
the Association of Arab Universities for Basic and Applied Sciences, 2016, 19,
52–58.

[23] M. Negrea, I. Petrisor and D. Constantinescu, Aspects of the Diffusion of Elec-
trons and Ions in Tokamak Plasma, Romanian Journal of Physics, 2010, 55
(9–10), 1013–1023.

[24] I. Petrisor, Some statistical features of particle dynamics in tokamak plasma,
Romanian Journal of Physics, 2016, 61(1–2), 217–234.

[25] A. R. Shehata and Safaa Abu-Amra, Traveling wave solutions for some non-
linear partial differential equations by using modified (w/g)-expansion method,
European Journal of Mathematical Sciences, 2018, 4(2), 35–58.

[26] M. Wang and X. Li, Application of F-expansion to periodic wave solutions for
a new Hamiltonian amplitude equation, Chaos, Solitons and Fractals, 2005, 24,
1257–1268.



Functional expansions 583

[27] M. Wang, X. Li and J. Zhang, The (G’/G)-expansion method and travelling
wave solutions of nonlinear evolution equations in mathematical physics, Phys.
Lett. A, 2008, 372, 417–423.

[28] A. M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlin-
ear parabolic equations, Applied Mathematics and Computation, 2007, 188(2),
1467–1475.

[29] Z. Yan and H. Zhang, New explicit solitary wave solutions and periodic wave
solutions for Whitham–Broer–Kaup equation in shallow water, Physics Letters
A, 2001, 285(5–6), 355–362.

[30] J. Zhang, F. Jiang and X. Zhao, An improved (G’/G)-expansion method for
solving nonlinear evolution equations, International Journal of Computer Math-
ematics, 2010, 87(8), 1716–1725.

[31] S. Zhang, A generalized auxiliary equation method and its application to the
(2+1)-dimensional KdV equations, Applied Mathematics and Computation,
2007, 188(1), 1–6.


	Introduction
	Functional expansions
	Choice of the solution
	Remarks on the auxiliary equation

	The functional expansion method for a generalized second order differential equation
	A generalized second order differential equation
	The balancing procedure for the generalized equation

	The example of the KdV Equation
	Recovering the solutions given by the G/G method
	More than the (G/G) solutions for the KdV equation

	Conclusions

