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A BLOCK-BY-BLOCK METHOD FOR THE
IMPULSIVE FRACTIONAL ORDINARY
DIFFERENTIAL EQUATIONS*
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Abstract In this paper, a block-by-block numerical method is constructed
for the impulsive fractional ordinary differential equations (IFODEs). Firstly,
the stability and convergence analysis of the scheme are established. Secondly,
the numerical solution which converges to the exact solution with order 3 + ~
for 0 < v < 1 is proved, where ~ is the order of the fractional derivative.
Finally, a series of numerical examples are carried out to verify the correctness
of the theoretical analysis.
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1. Introduction

Many physical processes, which exhibit abnormal diffusion process, non-exponential
patterns, other non-local behaviors, can be described by fractional ODEs/PDEs [16].
Progress in the last two decades have demonstrated that many phenomena in various
fields of science, mathematics, engineering, bioengineering, and economics can be
more accurately described by using fractional derivatives [2,5].

The impulsive fractional ordinary differential equations have become important
in recent years as mathematical models of phenomena in both the physical and
the social sciences, such as physics, mechanics, viscoelasticity, electrochemistry,
control, porous media, electromagnetic [7,14], etc. Recently, there are some papers
[4,6,9,11,15] considering the existence of solutions to impulsive fractional differential
equations. However, the numerical research of this type equations are not too much
in the literature.

In this article, we will construct block-by-block method for the IFODEs. It
is well known that the p-block-by-block approach leads to a system of p coupling
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unknowns uP™t1 wP™+2 ... and uP™*P at each block step m + 1. Block-by-block
method, proposed by Linz for a kind of nonlinear Volterra integral equations with
nonsingular kernels [12], and then extended to initial value problems of fractional
differential equations (FDEs) [10,17]. It is a kind of linear multi-step methods for
the integral equations [13,19]. Our approach used in this paper is based on the idea
of [1] for the fractional differential equations which without impulses.

The plan of this paper is as follows. In the next section, we describe the detailed
construction of the block-by-block method for the impulsive fractional ordinary
differential equation. In Section 3, An estimate for the local truncation errors is
given. The convergence and stability analysis are obtained in Section 4. Finally
numerical experiments are presented in Section 5 which support the theoretical
error estimates. Some concluding remarks are given in the final section.

2. A block-by-block method

We consider the impulsive fractional ordinary differential equation as following;:
oD x(t) = f(t,x(t),t € J = I\{t1,t2, - tar—1},J = [0,T],

z(th) = a(ty) + Le(z(t,),k =1,2,--- , M — 1, (2.1)
z(0)

Zo,

where 0 < v < 1,29 € R, f : J Xx R — R is jointly continuous, I : R — R
and ty satisfy 0 =29 < t; < - <ty_1 <ty =T,2(t,) = lim z(tx + €) and
e—0—

z(t)) = €£%1+ x(ty + €) represent the left and right limits of z(¢) at ¢t = t. The

operator oD denotes the Caputo fractional derivative of order v(0 < v < 1) with
respect to t [16] and defined by

oDYa(t) = —— | /0 (t— ) (F)dr,0 < v < 1, (2.2)

(1 —~
where T'(+) is the Gamma special function.

It has been proved [18] that the initial value problem (2.1) is equivalent to the
following Volterra integral equation

1 Y1
To + F(V)/o (t—7)""" f(r,z(7))dr,t € [0,t1],

1 t
wo+ ) Li(t)) + w— | (t=7)" f(r,x(r))dr,
x(t) = ’ ; L'(v) /0
t e (ti,ti+1],i: 1,2,--- M —2,
1

M-1 t
s+ Y Tilalt)) + W/o (t = 7 f(r, 2())dr, t € (tag1, T,

(2.3)

For the sake of simplicity, we assume that the impulsive points are uniformly
distributed in [0, T7, i.e., h = % In order to construct a block-by-block scheme, we
divide the interval [t;, t;+1] into 2N equal sub-intervals with size At = % denoting
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ti =t +iAt = kh +iAt,k = 0,1,--- ,M — 1;i = 0,1,--- ,2N. The numerical
solution of (2.3) at the point ¢} is denoted by X}, and set fi = f(ti, X}).

The idea is as follows. When ¢ € (tx,tx41], K =1,2,--- , M —1, assuming that
X7,j=0,1,---,2m, are already known, then we will derive an approximation to
(3T and z(13"?). Firstly, we drive the z(3" ") as following:

t27n+1

(2T = g0 + i[(az(t._)) + L/ " (2t — ) (7, 2 (7))dT
K 2 Aty o UK ’
K ti
=+ Y et + ﬁ / (B4 — ) f(ry () )dr
*ﬁ /t: (B2 — ) f (o (r))dr

2m+1

1 '
T / (4 =) f(ra(m)dr
K
=20+ »_ Li(x(t;)) + R1 + Ry + Rs. (2.4)
=1

For R, we can directly obtain

K—1N—1 20+2

1 m _
=T 2 2 / (Bt — ) f (7)) dr
n=0 [=0
1 K—1N-1 4242 2
S =D DO MR VLT T
n=0 [=0 1=0
K—-1N-1
= (Wb DI p2l e Wi PUI g2 gy FLR p2i42] 5 (9. 5)
n=0 [=0
where
2m+1,K 1 tiH—Q 2m-41 ~—1,/,l .
Wz I,n T\ (tK - T) ’lpn’ (T)dT7 1= 07 ]-7 27 (26)

RGNS

with %! (t),i = 0,1,2 being quadratic Lagrange polynomials associated with the
points ¢20 #2141 421+2,
For Rs, we have

m—1 2L+2

1
Ry= / £ — ) f (. 2(r))dr
F('Y ; t2L
1 m—1 2 . .
T
2l ‘
=0 1=0
m—1
m+1,K m+1,K m K
= [021;1 f W1211-<H 2l+1 W221}<H ?{HQL (2.7)

Il
o
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where 9021([( t),1 =0,1,2;1 = 0,1,- — 1, are quadratic Lagrange polynomials
associated with the points t2, t2l+1 21+2 And

20+2
1 [
WEELE = — (0 — 1) e (r)dr,i = 0,1, 2. (2.8)
i, K F(’Y) til K
For R3, we have
1 t2m+1 2 ) ) s
Ry~ —— (t2m+t oyl (1) "2 ar
TR S
2 oo d
2m+1,K p2m+3
= Zwi,mJ,FK K (2.9)
i=0

1 1 1 1 ,
where ti(erz =12+ &t ?(m+2 = f(tigm+2,x(ti<m+2)), and <p’m( ) i=0,1,2, are

+ 3 t2m+1

quadratic interpolating functions, defined by the points 37 t % Here

ol =0, 1,2, are defined

i,m,K>
1 ti{m-{—l
e = ) /. (t2m+t M (Ydr, i =0,1,2,  (2.10)
t}(’!n

1
which can be exactly computed. The value of f?(m+2 is approximated by using the
interpolation

2m+1 3 m 1 m
fK 2~ 8 f2 +1 8 12( +2. (2.11>

Substituting (2.11) into (2.9), we obtain Rj

~ 2m+1,K p2m 2m+1 K 2m+1 2m+1,K 2m+2
Ry~ WEmHLE p2m 4y +WELE p2 (2.12)
where
2m+1,K 2m+1,K 3 _2m+1,K 2m+1,K 2m+1,K 2m+1,K
Womk =%mrk T3P mer Wimkx = 4w1 mK T @omK >
2m+1,K 1_2m+1,K
WQ,m,K = " ’8Wim,K

Substituting (2.5), (2.7) and (2.12) into (2.4), we obtain

=2

2
Z W_2m+l,Kf72Ll+i

K—
i,l,n
i=0

K
TS WELIEDY
2

-1 2
+ Z W2m+1 K 2l+z Z 12m+1 K 2m+z. (213)

i,
=0 i=

l

Il
=)
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Secondly, we compute the approximation of x(t%mﬁ) as following:

(E)
t2m+2

K
- 1 * 22 YL 2 (7))dr
=xo+i§_jlfi<x<ti>>+w/o £+ — 7)1 f (7))

K 1 ti
— 0+ 301Gl + s / (242 — 7)1 f(r, x(r))dr

2m—+42
tK

b [ G )

=ao+ Y Li(w(t;)) + Ry + Rs. (2.14)

i=1
For R4, R5, by following the same calculation as for Ry and R,, we have

K—1N=1 242

/t2z 32 — ) f (r2(7))dr

n=
K—1N—1 242 2

~ FL 3 / L D () 2

() n=0 1—0 7t i=0

2m+2,K 2] 2m+2,K p2]+1 2m+2,K 2]+2
= Woin F fa + W T+ Wt E R £ (215)

Z/ (R =) f (ra(r)dr
%

zz+2

2m+2 'y 1 2l+z
(% Z
/t2l w

m
_ 2m+2,K 2m+2,K 2l+1 2m—+2,K p21+2
- Z[WOIK WllK WQlK K ]’ (216)

Q

where

1 t2[+2
2m+2,K _ " 2m+2 -1,
i,Tn - F(,Y) p ( Km - T)’y ¢;L (T)dT

i=0,1,21=01,-,N—1,n=0,1,---,K—1,
(2.17)

2042
1 Uk B
l2lmi—(|-2 K 1—\( ) ( %{m—i—Z _ T)’Yil’(/);;-l (T)dT

1=0,1,2; 1=0,1,--- ,m,

with z/;i’(l (t) being quadratic Lagrange polynomials associated with the points ¢2t
214142042
K 'k -
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Substituting (2.15), (2.16) into (2.14), we obtain

K—-1N-1 2
2m—+2 2m+2,K 21414
Xy —wo+ZI YW
=1 n=0 (=0 =0
m
2m+2 K p21+1
+Z WEER K (2.18)

=0 =0

To summarize, that is by combining (2.13) and (2.18), we arrive at the following
overall scheme:

K K—-1N-1 2
2m+1 _ 2: 2N 2 : 2m+1,K p21+i
XK =X+ Il Xz 1 Wi,l,n fn
i=1 n=0 (=0 =0
m—1 2
2m+1,K 2[+z 2m~+1,K p2m-4i
+ Wz + Wi,mﬁK K ’
=0 i= =0
K K—-1N-1 2
2m—+2 2N 2m+2,K 2041 (2-19>
XKm —x0+§ Ilel +§:§:§: i,l,n fn '
i= n=0 [=0 =0
m 2
2m+2 K 2l+1
+ § : § : i, K ’
=0 i=
K=1,--- M-1,m=1,--- N —1.

Remark 2.1. If t € (tg, t1], i.e., K=0, we assume Z{:l S; = 0, with j < ¢, then the
scheme (2.19) is also correct for K = 0, at this time the scheme (2.19) is the same
as the scheme (2.8) of the [8].

In the next two sections, we will give a stability and convergence analysis for
the (2.19). We start with an analysis for the local truncation error estimation.

3. Estimation of the truncation errors
We hereafter denote by C' a generic constant which may not be the same at different

occurrences, but independent of all discretization parameters.

Now we turn to obtain an estimate for the truncation errors of the scheme (2.19).
We define the truncation error at the step n by

P (AL) =z (th) — i, K =0,1,--- ,M —1;n=1,2,--- ,2N, (3.1)

where Z is an approximation to z(t},), evaluated by using the scheme (2.13), (2.18)
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with exact previous solutions, i.e.,

2
F =g + Y L (t])) + S OWEELE pE 2 (2)

1=0 i=0
K K—1N-1 2
7 - 2m+2,K ; ;
T =wo + ) Lia(t;)) + D Wi R 2 ()
i=1 n=0 =0 i=0

m 2
P .
D WIS e (3),

1 =0
K=0,1,---,M—1m=0,---,N—1.

2
+ Z Wi?TIj-l,Kf(t%Jrz t2l+z +Z WZ2Tmn-;(1 Kf t2m+7, (tierl))’

(3.2)

Then we have the following estimate for r%(At),K = 0,1,--- ,M — I;n =

1,2 ,2N.

y 2,0

Lemma 3.1. Let r}(At), K =0,1,--- ,M —1;n=1,2,--- ,2N being the trunca-

tion error defined in (3.1). If f € PC4[O,T] and 0 <y < 1, then it holds

[P (At)] < CAE3T.

(3.3)

Proof. When K = 0, the scheme (2.19) is equality with the numerical scheme of

the [17]. The proof of (3.3) is the same as the Lemma 3.1 of the [17].

When K > 1,n = 2m + 1, By comparing (2.4), (2.13), and (3.2), we have

P (A = () - 3

K K—-1N-1 2
= 2t — {wo + Y Le(t)) + Y Y D W 2 (6
i=1 n=0 (=0 ¢=0
m—1 2 2
W2m+1,K t2l+i 2l+7, 2m+1K t2m+i (2mti
+ Z N LG el (; +Z im, K ("))}
=0 =0 =0
1 K—1N—1 ,2+2
-5 [ @ -t
n=0 1=0 *n

1 K
s [ -
=0 K
2t
i L = )
1 I?*lN*l 2 4 4 til+2 4
(57 & S s [T o
n=0 [=0 =0 n
1 =S 0 , ot
iy 2 O ) / (B — ) i ()]
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t2m,+1

1 m m K m — m
S F R 2 (%) (" = 7)o (r)dr
() t2m

3 m m 3 m m
HGER" 2 () + F T ()
$2m+1

1 K
—S B2 [ G =) e ()dr
tm

+f(t3<m“’x(t3<m“))/% (Gt — )R () dr]}
| KoIN-1 e " 2 , o
ave / (B = ) S () = S0 S ()i ()
n=0 3! i=0
1 m—1 ti{"“ 2
50 / (B = () = S () i () har
1=0 Ytk i=0
T a(r) = S AT e (0l ()

K %

+
—
Sk
—
x
%
3
=
[

Il
=]

FUEE ()

co
A~

By using Taylor theorem, it can be checked that for all 7 € [t #2+2]  there
exists &o(7) € [t2,t21%2], such that

ag(r) = L2 (50(72’!“50(7))) (=60 =6 (= 6. (3.4)

For all 7 € [t2,1272] | there exists & (7) € [t3, t272], such as

Ai(r) = /o (gl(Té’!x(gl () (1 —t2) (7 — 2 (r — 342, (3.5)

and that for all 7 € [t2%, 1371, there exist & (1), &(T) € [t22, 137 ], such that

®) T), Z\S2\T m 2m+1
ag(r) = THEOTEGDD (- oy 2ty gy

Ag(r) = S AP 6a(r), 2(6(7))

)

(3.6)
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Therefore, we have

2m+1 (At)

K—1N=1 ,21+2

1
=T 2

n=0 [=

(3) 2

2m—+1 —1f (50( 2l
[ ey S VT
0 Vtn i—0

t2l+2

m—1 K (3) ), 2(&1 (T 2 Slti
( ) Z \/t;l (ti(m—&-l 77_)771.}(‘ (gl( )37' (5 ( ))) H(Tft}é—‘rz)d,r

=0
2

A ®3) 7), z(&(T
/t (ti;;n+l _T)'y—lf (52( ?37' (g ( )))

2m
K

1
[y

L
I'(y)

1 1
+W . (ti{mﬂ — T)W_lﬁAtgf@)(gB(T%x(fg(T)))tp}ém(T)dT

= 81+ 82 + S5 + Su. (3.7)

+
_|_

=
3
(V]
3
k>

2m+1
tK

For S1, we get

K—1N—1 ,2+2 2

1 " f §43 54
S 2m+1 _ _\y—1 20+i d
SISy X3 [, @ -0 [T - e+
e 7,1f<3><5o<7>,x<so<7>>> — 1O (&4, 2(¢0))
HF(’)’) n=0 1=0 /tm SO 3!
(1 — 2 (7 = 2 (7 — 242)dr| = S5 + S, (3.8)

where &, = 2+, For S5, it holds

K—1N—1 .2+2

M n
|S5‘ S 1 Z Z |/ (t2m+1 ’y 1H t2l+z d7'|
I'(v) t
'y 1 H t2l+z
+/ n (t2m+1 'y 1H t21+z dT‘
2+

Il
oy
:2_/,_.
*h

=
l\)
ok

t

K-1N-1 2041 2

M, B n It
- o @ty [ [ - e
v n=0 [=0 2! i=0
til+2 2
2m+1 _ _x\y—1 42040
+(t 75) i H}(T t, " )dr|
4 K—-1N-1
_ MlAt ‘(t2m+1 - T*)’Y71 o (t2m+1 o T*)’yfl|
AT (9) K ! K 2
v n=0 [=0
M At KN ol )
- (= D@ = 725 — )
v n=0 [=0
K—1N—1 242
MlAt4 b _
-1 [ @i
4T (v) 2l
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M1At4 K-l /tiN S )
= v—1 2t = 2dr
ey I, |
MA# S - . )
< gy DM = e e = N, (3.9)
n=0

where My = sup,c  [f® (¢, 2(t))],t2 < 7 <2 <75 <242 7 <75 <75
The Sg, it can be bounded by

K—1N-1 ,420+2

|SG‘ MQAt Z Z/ 2m+1 »y 1|H t2l+z |d7’

n=0 =0

My At / 2m+1 -1
< ty" TTNdT|
oy L[, e
MyArt /tiN 2mt1 _
= ety lar
F(’)’) 7;) I t% ( K |
MyAtt 2m+1 2m+1 _ 2N
< s @R =) (T = )] (3.10)
Ly +1) &=
where My = sup, ;7 | f* (¢, z(t))|. In the above derivation we have used the fact
that
®3) _ 3
|f (50(7)7$(§0(7'?') f (547$(§4))| < MyAt, for & = tff“,VT c [tilatilﬂ}
Bringing (3.9)-(3.10) into (3.8) gives
MAE B B
111 < Trgy 2 IER = ) T+ I =)
n=0
MyAt* Kz_:l 2m+1 0 2m+1 2N
o D ETT =)+ (T = )] (3.11)
Ly +1) &=
For Sy, we have
m—1 $2i+2 2
1 K P&, 2(8)) 55, (&) 21
F(’Y) =0 % i= 0
m—1 2142
N wmﬁgwy4f®@mﬂ H(6(1) ~ [ (65, 2(65)
F(’y) —o 21 K 3!
(1 — ) (T — ) (r — 34%)| = S7 + Ss, (3.12)
where & = t%”.

The proof of S7, Sg are similar to the (3.9)-(3.10). Therefore, S satisfies
MlAt4 2m+1 0 \y—1 2 -
$2m — 9y tm+17t2m'y1
52l < Gyl G+ (- )

MyAt* o o Im+1
2T (el g0y (g2 g2my, 3.13
+r(7+1)[( k)7 + (R %) (3.13)
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For S3, Sy, we have

|55
1 t?g'“rl f(3)(€ (7-> -’I;(f (7_))) 2 ) B
< — 2m+1 y—1 2 5 2 B m+2
T T(M) Jun e = 31 g(T tie )l
My A3 P B M, At -
< 22r+l 1 lgr < 2m+l eyl 14
- T ./tggn (I 7) = I'(v) (% ) (3.14)
|54l
1 R 1
= F(7)/t%(m (B — 7)™ T6At f( )(53(7),x(§3(7)))%{’ (7)dr|
2m-+1
< MlAtg /tK (t27n+1 _ T)'Y—l _4(7— — t%(m)(T — t%(m+1) dT|
- K
161'(7) ' Jyzm A2
MAE [T M; At
< 2m+1 _ _\y—1 < 2mt1 _wyy—1 1
> P(’Y) /tf(m (tK 7') dr < 1_‘(7) (tK 7'4) , (3 5)

where 7} € (12, t2" ).
Combining (3.11), (3.13), (3.14) and (3.15), yields

)
MlAt4 I(il ) ) . . , ) _
= (@G — )+ [ = 2N )
Aartv) =
MzAt4 K-1 _— . - -
S ST = 0+ - 2N
T'(v+1) ngo K K
M, At*
+ 4;(7) [(t%{m-&-l N t(l)()vfl + (t%m+1 . t%{m)’y—l]
MyAtt m m " M, At N o
By = 07+ (R = ) + S e -
MlAt4 4 MgAt4 M1At4 B
< KA L 2T oK TY £ T2 9AY
4T(v) T(y+1) AT(7)
MyAt? IM, At -
[T + A+ AT
EETY TG
SEaE (3.16)

where C' only depends on M7, Ms,y, and T'.

Similar to the truncation error at the previous steps, we get

|r§(m+2(At)| < CALT, 0<~y < 1.

The proof of Lemma 3.1 is complete. O
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4. Convergence and stability analysis

In order to simplify the notations and without lose of generality, let us reformulate
the scheme (2.19) by introducing the following coefficients:

B;,Ozwg:gn7B:z,2j+l WZK 1=1,2,--- ,2N;5=0,1,---

1,5,m° 7N_17

i i, K i, K . i _ i, K
Bn,2j+2 - W2jn WO]Jrl noJ = 0,1,---,N -2, Bn,QN - W2,N—1,n'

2m+1,K 2m+1,K

o _ "V0,0,K 2j+1 _ "V1,45,K .
CK—iAﬂ , C% = An ,ij=0,1,--+ m.
W2mHLE | p2mt LK W2m+LK (4.1)
02j+2 _ 2,5,K 0,7+1,K i—0.1 1 02m+2 o 2m,K
K = ALY y J=U Ly ym— 1 e =T A
2m+2,K 2m+2,K
0o _ 00K 2j+1 1,5,K -
Pr=—ap P T A /70
2m—+2,K W2m+2 K 2m+2,K
2j+2 _ "V245,K 0j+1,K . 2m+2 _  2mK
By = ,J=0,1,--- . m—1, E} ==
Aty AtY

Then the numerical scheme (2.19) can be rewritten as follows:

K-12N 2m+2

XAl x0+ZI (X)) + D> Bt 4 A Z cifi,
n=0 0
K— 1]2N 2m+2 (42>
R NS S I S SV A
n=0 j=0
K=0,1,---,M—1;m=0,1,--- ,N —1.

Lemma 4.1. The coefficients an C’}; and E};, defined in (4.1), satisfy

K—12N
12KTY
ZZ'B ]|—1—w 17i:1727"'72N7 (43)
n=0 j=0 + )
Ckl<C@m+2—4)7", j=0,1,-- 2m+2, (4.4)
|El|<C@2m+3—4)7Y j=0,1,---,2m+2. (4.5)
Proof.
K—12N
1B
n=0 j=0
K-1 N-1
i, K i K
= [(Wolo.nl + Z |W ol Z W, ]n+WOj+17L|+|W2,N71,n|]
n=0 j=0
K—-1N-1
i, K i, K i, K
< WOjn|+|Wl7n|+|W27jn|)
n=0 j=0
| KNl t2J+2
- 75 (], (=rr=utiar

n=0 j5=0 ty
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tij-ﬂ tij+2
L A i P I A )
t) t3
| KZIN-1 e
S X [ (o= R i+ i ar
) 5= j=o
6 K—-1N-1 tij+2 6 K—1 t’iN
< — (the — ) ldr = —— / (th — ) tdr
It = ; a T(v) 2:% 0 K
K—1
6 . 12KT”
< the — 1) 4+ (#i — 2N < 8

This proves (4.3). The proof of the coefficients O, F for (4.4) and (4.5) are
similar as the Lemma 4.1 of the [1], we omitted them here. O

As for integer order differential equations, it is indicative to study the stability
property of the scheme (4.2) with

f(tﬂ :L'(t)) = /\I(t)a

(4.6)

where A is a real number, 6 = max{|d1], |02], -, |[0ar]}-

Theorem 4.1. Let My = |xo|, then the scheme (4.2) with f,I; given in (4.6) is
stable with respect to the initial values under the condition

IABZ ALY < 1, (4.7)
where
| BRH | = max{|CF |+ |CF 2L BR 4+ | BRI (4.8)
That is, if (4.7) is satisfied, then
|X§(|§C’M0,j:071,~-~,ZN;K:O,l,--',Mfl, (4.9)

where C' only depends on 0, \, K,~, and T'.
Proof. When K = 0, plugging f(¢,x(t)) = Az(¢) into (4.2) gives

2m+2 ] ]
XgmH =z + AAD > CIXG,
e (4.10)
X"t =mo + MAY Y EJX, m=0,1,--- N — 1.
§=0
Set
X3 = X2 = max{| X2, [ X3} i = 0,1, ,m. (4.11)
According to Lemma 4.1, then (4.10) can be unified as
X5 < Jwol + CIAALT Y (2m +2 — )| XG|
7=0

A ALY | B X 2L (4.12)
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And (4.12) can be rewritten as

2m
(1= [NAEBF™ ) XE™ Y < Jao| + CINAL Y (2m +2 — )71 X (4.13)
3=0
Under condition (4.7), (4.13) becomes
N 2m
| X3 < Clag| + CIAAL Y " (2m +2 — j) 71X (4.14)
3=0

When 0 < v < 1, it holds (2m +2 —j)Y"! < (2m + 1 — j)7~1, thus
~ 2m ~ .
| X5 < Clao| + CINAL Y (2m 41— )X (4.15)

Jj=0

Applying the discrete Gronwall Theorem 3.1 in [1] or Theorem 7.2 in [3] to (4.15)
gives

| XZmH| < Cao By (CIANT(4)T7) < C M, (4.16)

where C' depends on A,~, and T.
When K > 1, 29 satify

X?{ = X%(JL + IK(X%(JL) = XIQ(]\il + 5KX12(A£1 =1+ 5K)X§<A£1~ (4.17)
As K =1, according to (4.17) and (4.16), we have
1X9] = (14 6)X3Y| < OM,. (4.18)

Plugging (4.6) into (4.2) gives

2m—+2
X = g + 6, X3Y + )\ZBQ’”“XJ + AT Y Cad,
=0
2N ) 2m—+2 ) ) (4 19)
X7 = mg + 0. X3N + A BITTX 4+ AT Y E{XT, '
=0 =0
m=0,1,--- N — 1.
Similar to (4.10), we obtain
—2m-+1 i i >
| X < C|Mo| + |\ Z Bo: " ||IX3] + ClA ALY > @m+2— )X
=0 j=0
A ALY B X, (4.20)
where
B = By | = max{| B2, | B2
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By using (4.9) for K = 0, Lemma 4.1, we obtain

2m
12KTY S
| X2+ < OM, + cmeo +CINAD Y (2m+2—5) X
§=0
FIAAL [ BEmAL | X, 4.21
1 1
And (4.21) can be rewritten as flowing:
(L= [AJAET BEH )| X
2m
12KT7 =
<(1+ \/\|m)CM0 +CNAY Y “@m+2-5) 7 X (4.22)
§=0
Under condition (4.7), (4.22) becomes
2m
[ X7 < CMp + CIAAL S (2m +2 - §) 71X, (4.23)

7=0
When 0 < v < 1, it holds (2m +2 —j)Y~! < (2m +1 — j)771, thus
X7 < CM + CINAL Y (2m + 1 — )X, (4.24)
j=0
Applying the discrete Gronwall Theorem to (4.24) gives
[XT" ] < OMoE, (CIAT(1)T7) < OMy, (4.25)

where C' depends on A,~, and T.
Combining the above estimate with (4.18),(4.25) yields

|X7| < CMy,j=0,1,--- ,2N. (4.26)
We use mathematical induction method, If I = K — 1, we have
X% | < CMy, j=0,1,--- ,2N. (4.27)
Next, we prove
|XJ| < CM,, j=0,1,---,2N. (4.28)

Plugging (4.6) into (4.2), we get

K-12N 2m+2
X2m+1 = z0+ Z(; ‘X'EN1 + A Z ZB2m+1XJ + ALY Z C}(X%(a
0 j=0
Z 1 ij ‘ 2M+2 (4.29)
X222 gy Z(sixfﬁ +AD D BX) 4 AAY Y By X,
i=1 n=0 j=0 J=0
m=0,1,--- ,N — 1.
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Set
|j€}2{i+1|:|)??(i+2|:maX{IXIQ(i+1|a|X§(i+2|}7i:0717"' y T, ( )
4.30
—2m+1 —2m-+2 m m
B | =B, | =max{|By ™, [By 2]}
By using (4.27), we have
N K-12N
| XZH < CMo + CKOMy + N Y. S (B, 1X)
n=0 j=0
2m . " .
+CINAETY (2m+ 2 — )X | + AL B X (4.31)
j=0
The proof is similar to the X{ , we get
| X 2mHL < O M. (4.32)
According to (4.17), we obtain
Xk | = IXE) + I (XEL D) = (1 + 0x) XEY | < C M. (4.33)
Combining (4.32) with (4.33), then we obtain
| XJ| < CMp,j=0,1,--- ,2N. (4.34)
The proof of (4.9) is complete. O

In the error analysis, we consider the general f(¢,2) and Iy (z) which satisfying
the following Lipschitz condition with respect to the second variable: there exists a
constant Ly, Lo, such that

|Ik(l'1) — Ik(l‘g)‘ < L1|$1 — (,C2|7 le,xg S R7 (435)
\f(t, 1) — f(t,22)| < Lo|wy — s, Yoy, 20 € Ryt € J . (4.36)

Theorem 4.2. Let x be the exact solution of (2.1), {X}( ?i_VO,K =0,1,--- ,M—-1
be the numerical solution of (4.2). If the time step size At satisfies

|BEHH LAl < 1, (4.37)

where |§f<m+1\ is define in (4.8). If 0 < v < 1, then the following error estimates
hold:

lz(th) — X5 | < CALPHY, j=0,1,--- ,2N; K =0,1,--- ,M —1.  (4.38)

where C' only depends on f,~v, T, M, Ly and Ls.

Proof. Lete) =x(t)) — X/,j=0,1,--- ,2N;1=0,1,--- \M — 1. As | =0, it is
readily seen that e) = 0, according to [8,17], and €}, j > 1, satisfy

)| < CAPHT. (4.39)
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When [ > 1, e? satisfy

lef| = |o(t]) — XP| = [(x(t7™) + L(x(t7™))) — (XN + I(XPN)|
< Ja(t™) = XPN |+ (=) — I(XEY))
< €N + L1|e?N| = (1 + Ly)|e?N,). (4.40)

As [ =1, according to (4.40)
9] < (1+ Ly)[e2N] < C(1+ L) A3 < CABPT. (4.41)

According to I, f satisfy (4.35) and (4.36), we get

4 < L]+ Lo 1B -1

=0
2m+2j ‘ .
LA Y |G| lef| + [rf (A,
=0 (4.42)

|2m+2|<L|6N|+L2Z|BQm+2 j|

2m+2
HLoAET Y B ]| + [ (A,
7=0

Let

|€21+1| — |€21+2‘ _ max{|621+1\ ‘ 27—‘,—2|}7

(4.43)
|75 (A1)| = max{[rg" (A, [P (AY ) K = 0,1, M — 1.

According to (4.8), (4.30) and (4.43), then (4.42) becomes

2m
(1= LyAP|BY™ )| < LoCAET Y “(2m+2 — )]
7=0

2m+1 :
+L1|e2N | + Z By lled] + [ri(At)]. (4.44)
7=0
Under condition (4.37), and Lemma 3.1, Lemma 4.1, we get

2m
e < LoCA Y “(2m 42— j) el | + CALPT. (4.45)
j=0

When 0 < v < 1, it holds (2m +2 —j)Y~! < (2m +1 — j)?71, thus

2m
e < LoCAL Y “(2m+1— ) el | + CALST. (4.46)
j=0

Applying the discrete Gronwall Theorem to (4.46) gives
e < CEL(CLoT(7)TY)APTY < CAL3T. (4.47)
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Combining the above estimate with (4.41) and (4.47) yields
le¥] < CALHY, k> 0.

We use mathematical induction method, If [ = K — 1, we obtain

leh | < oA k> 0.

Next, we prove

ek | < CAB3TY, k> 0.
As | = K, according to (4.40), we have
le%] < (14 Ly)|eXY || < C(1 + L) A3 < CA3HY,

For e]k,j > 1, according to I;, f satisfy (4.35) and (4.36), we get

K—-12N
2m+1‘<L Z|e |+L2ZZ‘BMH J
n=0 j=0
2m—+2
FLoAE S O] - e+ [ (A,
7= K—-12N
22 < I Z|e VL2 Y > B el
n=0 j=0
2m—42
LA Y B - |efe| + [r T (A,
7=0

The proof of (4.52) is similar as the (4.42), we have
et < CAT.
Combining the above estimate with (4.51) and (4.53) yields
ek | < CAB3TY, k> 0.

The proof is then complete.

5. Numerical examples

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

We carry out in this section a series of numerical experiments and present some
results to confirm our theoretical statements. Our main purpose is to check the
convergence behavior of the numerical solution with respect to the step size At.

Example 5.1. We consider the problem (2.1) with Iy(z) = 1,k = 1,2, 3, and the
following right hand side function f(¢,z(t)) and the corresponding exact solution

a(t)

patt + 1T — 2(t), t € (to, t1], tA € (to, ta],

(
patt + 2+t —x(t
(

patt 1 T —a(t),t € (t1, o), (t L+t ¢ € (ty, 1),
X

), t € (ta, 3], 24+ 47t € (ta, t3],

)

pitt 4+ 3+t —2(t),t € (t3,T), 3+t t e (t3,T),
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where p, = F<5+’y) , the function f is linear with respect to x.

All the rebultb prebented in this example which corresponding to the numerical
solution captured at T' = 1. Figure 1 show the comparison of the exact solution and
the numerical solution with v = 0.5. From Figure 1, we find the numerical solution
are well coincident with the exact solution. In Tables 1 we list the maximum errors
max |z(t]) — X7 | as a function of At for several 7. Also shown are the corresponding

i

rates. From Table 1, it is observed that for all v smaller than 1, the convergence
rate is close to 3 4+ . This is in a good agreement with the theoretical prediction.

T T T T T T T T T
4r Exact solution for y=0.5
Numerical solution for y=0.5 %
35 | E

2t M

x(t)

[ i e — N N N N N N N E
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Figure 1. The exact solution and the numerical $olution with v = 0.5 for Example 5.1.

Table 1. Maximum errors and convergence order with v = 0.2,0.5 and 0.8 for Example 5.1.
At v=10.2 Order v=0.5 Order ~v=0.8 Order
1—10 3.4541E-006 - 3.6569E-006 - 1.7258E-006 -

> 3.9595E-007 3.1249 3.3517E-007 3.4476 1.2614E-007 3.7741
15 4.4898E-008 3.1406 3.0359E-008 3.4647 9.2788E-009 3.7650
55 D.0541E-009 3.1511 2.7287E-009 3.4758 6.7948E-010 3.7714
ﬁ 5.6595E-010 3.1587 2.4400E-010 3.4832 4.9594E-011 3.7762
ﬁ 6.3119E-011 3.1645 2.1741E-011 3.4883 3.6104E-012 3.7799

Example 5.2. We consider the problem (2.1) with I (z) = 0.8,k = 1,2, 3, and the
following right hand side function f(¢,z(t))

po + (15057 — )3 — [2(4)]15,¢ € (to, 1],

po + [0.8 + (1.5¢057 — )15 — [2()]15, ¢ € (t1,ta),
po + [1.6 + (1.5t057 — 42|15 — [2(4)]12, ¢ € (ta, 3],
po + [2.4 + (1.5t957 — ¢H)2)E5 — ()12, t € (t3, T,

where ps = 4(%322) 87 — 3% + %F(V + 1), and the corresponding exact
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solution xz(t) is given

8 — 34057 1 2.25¢7 ¢ € (to, 1],

0.8 + 18 — 3141057 + 29547t € (t,t2],
1.6 4 t& — 3t4057 12257 ¢ € (ta, 3],
2.4 + 18 — 3141057 + 22517t € (3, T).

Note that the function f is nonlinear with respect to x.

First we take T' = 1. Figure 2 show the comparison of the exact solution and the
numerical solution with v = 0.5. From Figure 2, we find the numerical solution can
be a good approximation of the exact solution. Tables 2 show the maximum errors
and convergence orders as a function of the time step size for several v = 0.3,0.5,0.7.
Once again these results confirm that the convergence of the numerical solution is
of order 3+~ for 0 < v < 1.

4 F T T Exact solution for y=0.5
Numerical solution for y=0.5 %

3r H"“*"’\\\H\:\

e

x(t)

0 o1 oz o3 oa o5 o5 o7 05 09 1
Figure 2. The exact solution and the numerical $olution with v = 0.5 for Example 5.2.

Table 2. Maximum errors and convergence order with v = 0.3,0.5 and 0.7 for Example 5.2.

At v=0.3 Order v=20.5 Order v =0.7 Order
75 3.6542E-005 - 3.8928E-005 - 2.6572E-005 -

75 4.2330E-006 3.1093 3.7957E-006 3.3583 2.1901E-006 3.6008
4% 4.7096E-007 3.1680 3.5688E-007 3.4108 1.7627E-007 3.6351
8—10 5.1135E-008 3.2032 3.2847E-008 3.4416 1.3995E-008 3.6548
&5 5.4645E-009 3.2261 2.9834E-009 3.4607 1.1017E-009 3.6671
735 D.T739E-010 3.2421 2.6865E-010 3.4731 8.6235E-011 3.6753

6. Conclusion

In this work, we have developed and analyzed efficient numerical methods for the
impulsive fractional differential equations. Firstly, the differential equation with
initial value problem (2.1) transform the equivalent to the Volterra integral equa-
tion (2.3). Secondly, we construct a block-by-block method (2.19) for the integral
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equation (2.3), and then we obtain an estimate for the truncation errors of the nu-
merical scheme. In Section 4, the convergence and the stability analysis are given.
The numerical solution converges to the exact solution with order 3+~ for0 < v < 1
is proved, where v is the order of the Caputo fractional derivative. Finally, we car-
ried out numerical tests confirmed the theoretical prediction. In the future, we will
follow this idea to construct higher order schemes to impulsive fractional partial
differential equations with stochastic or delay derivatives.
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