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GLOBAL DYNAMICS OF A CHOLERA MODEL
WITH AGE-OF-IMMUNITY STRUCTURE

AND REINFECTION∗

Liming Cai1,2,†, Jinliang Liu1, Gaoxu Fan1 and Huidong Chen3

Abstract To understand Vibrio cholerae transmission dynamics, in this pa-
per, a mathematical model for the dynamics of cholera with reinfection is
formulated, where we incorporate the duration time of the recovery individ-
uals (age-of-immunity). The basic reproduction number <0 for the proposed
model is identified and the threshold property of <0 is established. By apply-
ing the persistence theory for infinite-dimensional systems, we show that the
disease is uniformly persistent if the basic reproductive number <0 > 1. By
constructing suitable Lyapunov functions, the global stability of the infection-
free equilibrium in the system is obtained for <0 < 1; the unique endemic
equilibrium of the system is globally asymptotically stable for <0 > 1.

Keywords Cholera model, duration time of immunity, Lyapunov functional,
global stability.
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1. Introduction

Cholera is a water-borne disease caused by the bacterium Vibrio cholerae. It is
typically transmitted through lack of safe water supply, poor sanitation conditions
and the rainy season. Although infection is mostly mild, in some cases it may
develop into severe diarrhea and vomiting, where the untreated population may
lead to death within a few hours due to dehydration and electrolyte imbalance.
The World Health Organization has estimated that each year there are 1.3 million
to 4.0 million cases of cholera, and 21 000 to 143 000 deaths worldwide due to
cholera [36]. In the past 200 years, seven cholera pandemics have occurred, with
the seventh pandemic originating in Indonesia in 1961 [2]. In recent years, cholera
outbreaks in Haiti, Zimbabwe have always led to a large number of infections and
received worldwide attention [11, 24]. In particular, in October 2016, a cholera
outbreak started in Yemen. It is surprising that the outbreak was apparently in
decline by March 2017, however in April 2017, an outbreak resurged in Yemen [38].
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It is difficult to gauge the exact morbidity and mortality of cholera due to the
surveillance systems in many developing countries are rudimentary. Many countries
are hesitant to report cholera cases to the WHO because of the potential negative
economic impact of the disease on trade and tourism [26].

Mathematical models have been developed to understand the dynamics of c-
holera and design and analyze control strategies. The earliest cholera mathematical
model can be traced to the model formulated by Capasso in 1973 [4], where cholera
epidemic occurred in the European Mediterranean region. Since then, the mathe-
matical study of cholera transmission dynamics is continued. In 2001, Codeco [7]
extended Capasso’s model by describing the interaction between concentrations of
cholera bacteria in water reservoirs and human hosts who consumed contaminated
water. Codeco’s model can be described by the following differential equations

dS(t)

dt
= µ(H − S(t))− βS(t)

B(t)

κ+B(t)
,

dI(t)

dt
= βS(t)

B(t)

κ+B(t)
− γI(t),

dB(t)

dt
= ξI(t)−mB(t),

(1.1)

where, S(t) and I(t) refer to the population size of susceptible, infectious persons at
time t, respectively. H is the total human population. B(t) refers to the concentra-
tion of Vibrio cholerae in the water reservoir or supply at time t. µ is the new birth

or natural death rate. β is the rate of contaminated water consumption; B(t)
κ+B(t)

reflects the probability that a person drinking the contaminated water will be in-
fected by V. cholera, where κ is the half saturation concentration of environmental
vibrio. γ is recovery rate of infected people. ξ is the rate at which infectious people
contribute Vibrio cholerae to the water reservoir; m is the rate at which Vibrio
cholerae are removed from the water reservoir. In paper [7], the obtained results
show that the reproduction rate of cholera is a function of social and environmental
factors, and seasonal variations of contact rates force a cyclical pattern of cholera
outbreaks.

Model (1.1) has been extended by King [17] to assess the impact of “inappar-
ent infections” in Bengal and concluded that these undiagnosed cholera cases could
amplify the transmission and mortality caused by cholera epidemics. By further
extending the basic model adapted from Codeco [7], Fung [12] formulated cholera
transmission dynamics incorporating different hypotheses, including the importance
of asymptomatic or inapparent infections, and hyperinfectious Vibrio cholerae and
human-to-human transmission. The obtained results highlight important challenges
of cholera modeling. More recently, many other modeling attempts have been made
to describe and to predict the transmission dynamics of cholera and design future
prevention strategies in the literature( e.g., [1, 5, 13, 16, 26, 33]). However, recovery
from a primary infection with cholera does not imply fully protectively immunity
against reinfection. In paper [34], some instances of reinfection with clinical cholera
have been described almost a century ago. It is estimated that the length of im-
munity in the literature [17, 18] ranges widely from several months to three to ten
years. The loss of immunity to cholera is poorly understood. Recently, Pasetti
and Levine [28] pointed out that the acquired immunity of Cholera may depend on
both the duration and the intensity of past exposure to infection. Authors [8, 27]
have investigated the vaccine-derived immunity in the case of ongoing oral cholera
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vaccine campaigns worldwide in Haiti, and Thailand. However, the mechanisms of
immunity to cholera are not fully understood.

Our aim, in this paper, is to better understand cholera epidemiology and to
predict the impact of age-of-immunity structure and reinfection on cholera trans-
mission. In section 2, we formulate a dynamical system with an age-structured
partial differential equations (PDEs), which is described the duration of immunity.
The impact of reinfection in population due to loss of immunity is also included in
our model. In section 3, with the fundamental mathematical analysis for the model,
we determine the existence of all possible equilibria and the explicit formula for the
reproductive number of system, which determines the stability of the all possible
equilibria. In section 4, we investigate global dynamics of the proposed model.
By applying the persistence theory for infinite-dimensional systems, we show that
Cholera in population is uniformly persistent if the reproductive number <0 > 1.
The global stability of the infection-free equilibrium and the endemic equilibrium
of the system is established by constructing Lyapunov functions. In Section 5 we
summarize our results and give our conclusions.

2. Formulation of the Model

We assume that the size of the population at time t are divided into susceptible
individuals S(t), infected individuals I(t) , and recovered individuals R(t). Let
B(t) be the concentration of Vibrio cholerae in the contaminated environment at
time t. Due to the recovered individuals are not necessary completely immune
to the disease, we here assume that their susceptibility depends on the time that
has elapsed since their recovery. Similar to the work in paper [32], we stratify the
recovered part of the population along recovery age, i.e., the time τ that has passed
since the recovered individuals from the infectious disease. Let

R(t) =

∫ ∞
0

r(t, τ)dτ,

where, r(t, τ) is the density of the recovered part of the human population at time
t that is recovered at time t− τ ( i.e., τ is duration time of immunity.)

It is assumed that the susceptible population are recruited at a constant rate
Λ and individuals die at constant rate µ. Infected individuals are treated and
subsequently enter the recovered class at a rate γ, and appear in the recovered
class with a boundary condition r(t, 0) = γI(t). µ is the natural mortality rate
of human population. For the disease incidence, we employ a saturation incidence

[7,29] in the form of βB(t)
B(t)+κ to describe the force of infection from the environment.

Transmission of cholera usually stems from the waterborne bacteria Vibrio cholerae,
and therefore the infection occurs as a result of an effective contact between a
susceptible individual and the pathogenic Vibrio cholerae, reflected by the contact
rate β. Infected individuals contribute to Vibrio cholerae in the aquatic environment
at a constant rate α and Vibrio cholerae have a reduction ratem0, which includes the
natural death and other means of the removal of the pathogen in the environment.
Since the fatality rates for cholera generally are very low (at or below 1%) [39], we
assume that the cholera-induced mortality can be neglected in this study.

Based on the above assumptions, the dynamics of the disease transmission are
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described by the following equations

dS(t)

dt
= Λ− βB(t)S(t)

B(t) + κ
− µS(t),

dI(t)

dt
=
βB(t)S(t)

B(t) + κ
+

∫ +∞

0

θ(τ)r(t, τ)dτ − (γ + µ)I(t),

∂r(t, τ)

∂τ
+
∂r(t, τ)

∂t
= −(µ+ θ(τ))r(t, τ),

r(t, 0) = γI(t),

dB(t)

dt
= αI(t)−m0B(t),

(2.1)

where, θ(τ) stands for the rate that the waning immunity individuals revert to the
infective individuals. System (2.1) is equipped with the following initial conditions:

S(0) = S0, I(0) = I0, r(0, τ) = ψ(τ), B(0) = B0.

We assume that all the parameters take positive values. Moreover, the parame-
ters satisfy the following assumption.

Assumption 2.1. The parameter functions satisfy

(1) The function θ(τ) ∈ L∞(0,∞).

(2) The function ψ(τ) is nonnegative and integrable.

If the total human population size is denoted by N(t), we have

N(t) = S(t) + I(t) +

∫ ∞
0

r(t, τ)dτ.

From system (2.1), we have

dN(t)

dt
≤ Λ− µN(t).

Thus, we have

lim sup
t→∞

N(t) ≤ Λ

µ
.

It follows from the last equation of system (2.1) that

lim sup
t→∞

B(t) ≤ αΛ

µ0m0
.

Define the set Ω as

{(S(t), I(t), r(t, .), B(t)) ∈ R+ × R+ × L1(0,∞)× R+|N(t) ≤ Λ

µ
,B(t) ≤ αΛ

µ0m0
}.

Define the space of functions X = R+ ×R+ × L1
+(0,∞)×R+. The model (2.1)

with assumption 2.1 is a well posed system of differential equations in the positive
cone. Using semigroup theory and methods applied in paper [6, 19, 20], the well-
posed of system (2.1) can be justified.
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3. Equilibria and their local stability

In this section, we shall analyze the existence of equilibria and the reproduction
number associated with system (2.1). For simplicity, we let κ = 1 (through a
normalization).

It is easy to see that there always exists the equilibrium of infection-free E0(Λ
µ
,0,0,0)

in system (2.1). Let E∗(S∗, I∗, r∗(τ), B∗) be any endemic equilibrium in system
(2.1). Thus, we have

Λ− βB∗S∗

B∗ + 1
− µS∗ = 0,

βB∗S∗

B∗ + 1
+

∫ +∞

0

θ(τ)r∗(τ)dτ − (γ + µ)I∗ = 0,

dr∗(τ)

dτ
= −(µ+ θ(τ))r∗(τ),

r∗(0) = γI∗,

αI∗ −m0B
∗ = 0.

(3.1)

From equation (3.1), by direct computing, the equilibrium satisfies the following
equation

S∗ =
Λ(αI∗ +m0)

(βα+ µα)I∗ + µm0
, I∗ =

µm0

α(β + µ)
(<0 − 1),

r∗(τ) = γI∗e−
∫ τ
0

(µ+θ(s))ds, B∗ =
αI∗

m0
,

(3.2)

where,

<0 =
Λβα

µm0(γ(1−K) + µ)
, K =

∫ +∞

0

θ(τ)ρ(τ)dτ, ρ(τ) = e−
∫ τ
0

(µ+θ(s))ds.

It is easy to verify that K ≤
∫ +∞

0
de−

∫ τ
0
θ(s)ds = 1. <0 is positive and can be regard-

ed as the control reproduction number of system (2.1), which has been introduced
by paper [9]. Therefore, we have the following results

Theorem 3.1. If <0<1, system (2.1)has always infection-free equilibrium E0(Λ
µ
,0,0,0);

If <0 > 1, there are two equilibria, infection-free equilibrium E0(
Λ

µ
, 0, 0, 0) and en-

demic equilibrium E∗(S∗, I∗, r∗(τ), B∗), where S∗, I∗, r∗(τ), B∗ can be determined
by the expressions in (3.2).

Now we investigate the stability of the equilibria in system (2.1). We notice that
for the structured model with unbounded domain, i.e., a ∈ [0,∞), its linear stability
analysis of the equilibrium is different from those of the models in ODEs, where the
characteristic equation has only roots with negative real part, which directly leads
to the conclusion that the corresponding equilibrium point is locally stable. Some
analytical techniques in recent years have been established for the local stability of
equilibrium solutions with the structured models (see, [6, 20]).

First, we consider the local stability of the infection free equilibrium E0(S0,0,0,0),

S0 =
Λ

µ
. Let S(t) = S0 + S1(t), I(t) = I1(t), r(t, τ) = r1(t, τ), B(t) = B1(t), and



1736 L. Cai, J. Liu, G. Fan & H. Chen

linearizing system (2.1) about E0, we obtain the following system:

dS1(t)

dt
= −µS1(t)− βS0B1(t),

dI1(t)

dt
= −(µ+ γ)I1(t) +

∫ ∞
0

θ(a)r1(t, τ)dτ + βS0B1(t)

∂r1(t, τ)

∂t
+
∂r1(t, τ)

∂τ
= −(µ+ θ(τ))r1(t, τ),

dB1(t)

dt
= αI1(t)−m0B1(t),

r1(t, 0) = γI1(t).

To analyze the asymptotic behavior of E0, we look for solutions of the form S1(t) =
x̄eλt, I1(t) = ȳeλt, r1(t, τ) = r̄1(τ)eλt and B1(t) = B̄eλt. Thus, we can consider
the following eigenvalue problems:

x̄λ = −µx̄− βS0B̄,

ȳλ = −(γ + µ)ȳ +

∫ ∞
0

θ(τ)r̄1(τ)dτ + βS0B̄,

r̄1(τ)λ+
dr̄1(τ)

dτ
= −(µ+ θ(τ))r̄1(τ),

B̄λ = αȳ −m0B̄,

r̄1(0) = γȳ.

By directly computing, we obtain the following characteristic equation

λ = −(γ + µ) +Kγe−λa + βS0 α

λ+m0
. (3.3)

Let

H(λ) = −λ− (γ + µ) +Kγe−λa + βS0 α

λ+m0
.

It is easy to obtain for the expression H(λ) that

H(+∞) = −∞, H(0) = −(γ+µ)+Kγ+
βΛα

µm0
= (γ+µ−Kγ)(<0−1), H ′(λ) < 0.

Thus, if <0 < 1, there are not any real roots for Eq.H(λ) = 0. That is, we
have not any positive the characteristic values for λ. Therefore, every solution of
Eq.H(λ) = 0 must have a negative real part. This implies that the infection-free
equilibrium E0 is locally asymptotically stable for <0 < 1. From the above, we
know that if <0 > 1 , H(λ) = 0 has at least a root with positive parts. Therefore,
the infection-free equilibrium E0 is unstable.

Summing up the above discussions, we have the following result:

Theorem 3.2. The disease-free equilibrium E0 of system (2.1) is locally asymptot-
ically stable when <0 < 1, and unstable when <0 > 1.

Now we investigate the stability of the endemic equilibrium E∗(S∗, I∗, r∗(τ), B∗)
of system (2.1). We establish the following result
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Theorem 3.3. The endemic equilibrium E∗(S∗, I∗, r∗(τ), B∗) of of system (2.1) is
locally asymptotically stable when it exists

Proof. Let

S(t) = S2(t) + S∗, I(t) = I2(t) + I∗, r(t, τ) = r2(t, τ) + r∗(τ), B(t) = B2(t) +B∗.

By linearizing system (2.1) about E∗(S∗, I∗, r∗(τ), B∗), we obtain the following
system:

dS2(t)

dt
= −µS2 −

βB∗

B∗ + 1
S2(t)− βS∗

(B∗ + 1)2
B2(t),

dI2(t)

dt
=

βB∗

B∗ + 1
S2(t)− (γ + µ)I2(t) +

∫ ∞
0

θ(τ)r2(t, τ)dτ +
βS∗

(B∗ + 1)2
B2(t),

∂r2(t, τ)

∂t
+
∂r2(t, τ)

∂τ
= −(µ+ θ(τ))r2(t, τ),

dB2(t)

dt
= αI2(t)−m0B2(t),

r2(t, 0) = γI2(t).

(3.4)

We look for solutions of the following form in system (3.4).

S2(t) = S̄2e
λt, I2(t) = Ī2e

λt, r2(t, τ) = r̄2(τ)eλt, B2(t) = B̄2e
λt.

Substituting the above expressions into system(3.4), we have

S̄2λ = −µS̄2 −
βB∗

B∗ + 1
S̄2 −

βS∗

(B∗ + 1)2
B̄2,

Ī2λ =
βB∗

B∗ + 1
S̄2 − (γ + µ)Ī2 +

∫ ∞
0

θ(τ)r̄2(τ)dτ +
βS∗

(B∗ + 1)2
B̄2,

r̄2(τ)λ+
dr̄2(τ)

dτ
= −(µ+ θ(τ))r̄2(τ),

B̄2λ = αĪ2 −m0B̄2,

r̄2(0) = γĪ2.

(3.5)

By directly computing, from system (3.5), we obtain the following characteristic
equation

λ+
βB∗

B∗ + 1

βS∗

(B∗ + 1)2

λ+ µ+
βB∗

B∗ + 1

α

λ+m0
+ (γ + µ) =

∫ ∞
0

θ(τ)γρ(τ)e−λτdτ

+
βS∗

(B∗ + 1)2

α

λ+m0
.

(3.6)

Let

LHS
def
= λ+

βB∗

B∗ + 1

βS∗

(B∗ + 1)2

λ+ µ+
βB∗

B∗ + 1

α

λ+m0
+ (γ + µ),

RHS
def
=

∫ ∞
0

θ(τ)γρ(τ)e−λτdτ +
βS∗

(B∗ + 1)2

α

λ+m0
.
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If we assume that there is one eigenvalue λ with Re(λ) ≥ 0, it is easy to obtain that

|LHS| ≥ γ + µ,

|RHS| ≤|
∫ ∞

0

θ(τ)γρ(τ)e−λτdτ | + | βS∗

(B∗ + 1)2

α

λ+m0
|

≤ βS∗

B∗ + 1

α

m0
+

∫ ∞
0

θ(τ)γρ(τ)dτ = γ + µ.

Thus, we obtain that |LHS| > |RHS|. This leads to a contradiction. From
the above discussion, we can determine that the existing endemic equilibrium E∗ is
locally asymptotically stable. This concludes the proof.

4. Global dynamics

Now we are in position to show the global stability of the equilibria in system
(2.1). Inspired by recent works of Magal et al [19], McCluskey [22], Shuai and van
den Driessche [31], and Martcheva and Li [21], we construct a suitable Lyapunov
functional to establish the global stability of the equilibrium in system (2.1). One
difficulty with the constructing Lyapunov functional is that it is not defined when
the variables in system may be zero (see, [19]). To show that the constructing
Lyapunov functionals of the system are valid, we need to show that the system
is persistent. Thus, we first investigate the disease persistence for system (2.1).
Integrating the third equation in system (2.1) along the characteristic lines, it its
easy to obtain that

r(t, τ) =


γI(t− τ)ρ(τ), 0 < τ ≤ t,

r0(τ − t) ρ(τ)

ρ(τ − t)
, 0 < t ≤ τ.

(4.1)

Applying the methods of paper [23] and using the expression (4.1), we restrict
our attention to the following limiting system, which preserves the same dynamics
of the model (2.1).

dS(t)

dt
= Λ− βB(t)S(t)

B(t) + 1
− µS(t),

dI(t)

dt
=
βB(t)S(t)

B(t) + 1
+ γ

∫ ∞
0

θ(τ)I(t− τ)ρ(τ)dτ − (γ + µ)I(t),

dB(t)

dt
= αI(t)−m0B(t),

(4.2)

with the initial conditions to (4.2) take the form S(0) = S0, I(0) = φ(s), B(0) = B0.
Notice that model(4.2) contains terms with infinite delay. Here following the

standard procedure in paper [30], we denote the space UCg of fading memory type
with the norm C∆

‖φ‖ = sup
s≤0
‖φ(s)eδs‖.

Now we shall prove the uniform persistence and the existence of compact attractor
by using results of Hale and Waltman [15]. Let (X; d) be a complete metric space
with metric d. We need to partition X as X = X0

⋃
X0, where X0 is an open subset
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of X. Let τ̄ = sup{τ ∈ (0,∞) : θ(τ) > 0}. Note that, possibly, τ̄ = +∞. Let X0 =

{(S(t), I(t), B(t)) : S(t) > 0, I(t) > 0, B(t) > 0, θ(τ) ∈ L1
+(0,∞) :

∫ τ̄
0
θ(τ)dτ > 0}.

Set X0 := X/ X0. Clearly, X0 is a closed subset of X. Denote by T (t), t ≥ 0
the family of solution operators corresponding to system (4.2). We introduce some
notations and terminology: the positive orbit γ+(x) through x ∈ X is defined as
γ+(x) =

⋃
t≥0{T (t)x}. The ω-limit set ω(x) of x consists of y ∈ X such that there

is a sequence tn →∞ as n→∞ with T (tn)x→ y as n→∞. The semigroup T (t)
is said to be asymptotically smooth, if for any bounded subset U of X, for which
T (t)U ⊂ U for any t ≥ 0, there exists a compact set X0 such that d(T (t)U,X0)→ 0
as t→∞. The following result is taken from ( [15], Theorem 4.2):

Theorem 4.1. Suppose that we have the following:

(i) X0 is open and dense in X with X0
⋃
X0 = X and X0

⋂
X0 = φ;

(ii) the solution operators T (t) satisfy

T (t) : X0 → X0; T (t) : X0 → X0;

(iii) T (t) is point dissipative in X;

(iv) γ+(U) is bounded in X if U is bounded in X;

(v) T (t) is asymptotically smooth;

(vi) A =
⋃
x∈Ab ω(x) is isolated and has an acyclic covering N , where Ab is the

global attractor of T (t) restricted to X0 and N =
⋃k
i=1Ni;

(vii) for each Ni ∈ N , W s(Ni)
⋂
X0 = φ, where W s refers to the stable set. Then

T (t) is a uniform repeller with respect to X0, i.e. there is an η > 0 such that
for any x ∈ X0, lim inft→∞ d(T (t)x;X0) ≥ η.

Theorem 4.2. If <0 > 1, then the disease is endemic; more precisely, there exists
an η > 0 such that

lim inf
t→∞

I(t) ≥ η.

Proof. Now we check all the conditions of the permanence theorem. It is straight-
forward to see that (i) is satisfied. The point dissipativity has been discussed in
section 2. So we have (iii). In the following, we first show the conclusions (ii) hold.
In fact, for X0, suppose by way of contradiction that there exists x ∈ X0 and t1 > 0
such that T (t1)x ∈ X0. Let τ = inf{t > 0 : T (t)x ∈ X0}. Since X0 is an open set
in X and by the continuity of the semigroup T (t), we have T (τ)x /∈ X0 and, hence,

T (τ)x ∈ X0. Then İ(τ) =
βB(τ)S(τ)

B(τ) + 1
+
∫ ā

0
θ(a)r(a, τ)da − (γ + µ)I(τ) = 0 and

r(τ, a) = γρ(a)I(τ−a)1{τ>a}+r0(0, a−τ)
ρ(a)

ρ(a− τ)
1{a>τ} ∈ X0. and Ḃ(τ) = αI(τ)−

m0B(τ). For t ≥ 0, define x2 = 0, x3(t, a) = r0(0, a− t) ρ(a)

ρ(a− t)
1{a>τ+t}, x4 = 0.

Then, f(t) := (S(t + τ), x2(t), x3(t, a), x4) is a solution to (4.2) with initial condi-
tion f(0) = T (τ)x and ξ(t) ∈ X0,∀t ≥ 0. Then, by forward uniqueness of solutions,
T (t)x ∈ X0,∀t ≥ 0, which contradicts our assumption that T (t1)x ∈ X0. Thus X0

is forward invariant. That is, T (t) : X0 → X0. Now we show that X0 also is forward
invariant. Notice that İ(t) ≥ −(γ+µ)I(t). Hence, I(t) ≥ I(0)e−(γ+µ)t for all t ≥ 0.
If I(0) > 0, the result obvious holds. If I(0) = 0, then

∫∞
0
θ(τ)r(0, τ)dτ > 0 (since
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x(0) ∈ X0) Then İ(0) > 0, so that ∃τ ′ such that ∀t ∈ (0, τ ′], we have I(t) > 0. In
this case, we choose τ ′ such that

∫∞
0
θ(τ ′)r(t, τ ′)dτ ′ > 0 for all t ∈ [0, τ ′]. Then,

similar to above arguments, we have I(t) ≥ I(τ ′)e−(γ+µ)t for t ≥ τ ′. Hence we have
I(t) > 0,∀t > 0. Similarly, we have B(t) > 0,∀t > 0 and from the expression of
r(t, τ) ≥ γρ(τ)I(t − τ), we can obtain r(t, τ) > 0 for all t > 0. Therefore, we have
T (t) : X0 → X0. Thus we confirmed (iii). From the last discussed part in section
2, we can directly obtain (iv).

Now we show T (t) is asymptotically smooth in (v). Let K > Λ/d , 0 < δ < γ+µ
and

D := {φ ∈ C∆ : sup
s≤0

φ(s)eδs ≤ K}.

From Lemma 3.2 of [3], we have D is compact in C∆. Consider an arbitrary bounded
set U ⊂ X, and let It(s)(It(s) := I(t+ s), s ≤ 0) be the segment of a solution with
I0 ∈ U. By the above discussion, we know that there exists a T > 0 such that
I(T ) ≤ K for t ≥ T and I(T ) = K or I(t) < K for all t. It is easy to follow our
results for the case I(t) < K for all t. Now we consider the first case. Let M be the
maximum of I(t) on [0, T ] and define for t > T the function ϕt(s) such that

ϕt(s) :=

 I(t+ s)e−δ/2s, if T − t ≤ s ≤ 0,

Ke−δ/2s if s ≤ T − t.

Obviously, ϕt(s) ∈ D, and d(It,D) ≤ d(It, ϕ
t(s)) = sups≤0 |It(s) − ϕt(s)|eδs. By

separating the interval (−∞, 0) into [T − t, 0], [−t, T − t], (−∞,−t], we have

sup
T−t≤s≤0

|It(s)− ϕt(s)|eδs = 0,

sup
−t≤s≤T−t

|It(s)− ϕt(s)|eδs ≤ (MeδT +Keδ/2T )e−δ/2t,

and
sup
s≤−t

|It(s)− ϕt(s)|eδs ≤ (‖I0‖+M)e−δt.

Therefore, we have
lim
t→∞

d(It,D) = 0,

T (t) is asymptotically smooth. Thus, we confirmed the condition (v) holds. Re-
garding (vi) , Obviously, A = {E0}, (E0 = (Λ/µ, 0, 0) ∈ X) and isolated. The
covering is simply N = {E0}, which is acyclic.

At last, we show that W s(E0)
⋂
X0 = φ. Suppose the contrary, there is a

solutions ϕt ∈ X0 such that

lim
t→∞

S(t) =
Λ

µ
, lim

t→∞
I(t) = 0, lim

t→∞
B(t) = 0.

Thus, there exists an ε0 > 0 such that S(t) >
Λ

µ
−ε0 and B(t) < ε0 for t ≥ t0−τ .

Since <0 > 1, we can choose the above sufficiently small ε0, such that(
Λ

µ
− ε0

)
βα

(γ(1−K) + µ)(1 + ε0)m0
> 1. (4.3)
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From system(4.2), we have

dI(t)

dt
≤ βB(t)

(1 + ε0)

(Λ

µ
− ε0

)
+ γ

∫ ∞
0

θ(τ)ρ(τ)I(t− τ)dτ − (γ + µ)I(t),

dB(t)

dt
= αI(t)−m0B(t).

(4.4)

Consider the following matrix Mε defined by

Mε =

−γ(1−K)− µ β

1 + ε0

(Λ

µ
− ε
)

α −m0

 . (4.5)

Since Mε admits positive off-diagonal element, the Perron-Frobenius Theorem [14]
implies that there is a positive eigenvector v = (v1, v2) for the maximum eigenvalue
λ∗ of Mε. From (4.5), we see that the maximum eigenvalue λ∗ is positive. Let us
consider the following system:

du1(t)

dt
=

β

1 + ε0

(Λ

µ
− ε
)
u2(t)− (γ(1−K) + µ)u1(t),

du2(t)

dt
= αu1(t)−m0u2(t).

(4.6)

Let u(t) = (u1(t), u2(t)) be a solution of (4.6) through (lv1, lv2) at t = t0, where
l > 0 satisfies lv1 < I(t0), lv2 < B(t0). Since the semi flow of (4.6) is monotone and
Mεv > 0, it follows that ui(t) are strictly increasing and ui(t) → +∞ as t → +∞,
contradicting the eventual boundedness of positive solutions of system (4.6). Thus,
W s(E0)

⋂
X0 = φ. By Theorem 4.1, we conclude our conclusion.

Now we first investigate the global stability of the uninfected equilibrium E0 by
constructing Lypunov function. We have the following result

Theorem 4.3. The disease-free equilibrium E0(
Λ

µ
, 0, 0, 0) of system (2.1) is globally

asymptotically stable when <0 < 1, and unstable when <0 > 1.

Proof. Let

V (t) = I(t) +

∫ +∞

0

∆(τ)r(τ, t)dτ +
γ + µ−Kγ

α
B(t),

where, ∆(τ) =

∫ +∞

τ

θ(v)e−
∫ v
τ
α(s)dsdv, α(τ) = µ+ θ(τ). By calculating the time

derivatives of V (t) along system (2.1), we obtain

dV (t)

dt
=
dI(t)

dt
+

∫ +∞

0

∆(τ)
∂r

∂t
dτ +

γ + µ−Kγ
α

dB(t)

dt

=
βB(t)S(t)

B(t) + 1
+

∫ +∞

0

θ(τ)r(τ, t)dτ − (γ + µ)I(t)

+

∫ +∞

0

∆(τ)[−(µ+ θ(τ))r(τ, t)− ∂r

∂τ
]dτ +

γ + µ−Kγ
α

(αI(t)−m0B(t))

=
βB(t)S(t)

B(t) + 1
+

∫ +∞

0

θ(τ)r(τ, t)dτ − (γ + µ)I(t)−
∫ +∞

0

∆(τ)α(τ)r(τ, t)dτ
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−
∫ +∞

0

∆(τ)
∂r

∂τ
dτ +

γ + µ

α
αI(t)− Kγ

α
αI(t)− γ + µ−Kγ

α
m0B(t)

=
βB(t)S(t)

B(t) + 1
+

∫ +∞

0

θ(τ)r(τ, t)dτ −
∫ +∞

0

∆(τ)α(τ)r(τ, t)dτ

+

∫ +∞

0

∆′(τ)r(τ, t)dτ −∆(τ)r(τ, t)
∣∣+∞
0
−KγI(t)− γ + µ−Kγ

α
m0B(t).

(4.7)

It is easy from the expression ∆(τ) to obtain that

∆′(τ) = ∆(τ)α(τ)− θ(τ), K = ∆(0).

Noting that r(0, t) = γI(t), S(t) ≤ Λ

µ
. Thus, from Eq.(4.7), we have

dV (t)

dt
= (

βS(t)

B(t) + 1
− γ + µ−Kγ

α
m0)B(t)

≤ (β
Λ

µ
− γ + µ−Kγ

α
m0)B(t)

=
(γ + µ−Kγ)µm0(<0 − 1)

µα
B(t).

(4.8)

The equality
dV (t)

dt
= 0 holds if and only if B(t) = 0. Thus, from system

(2.1), it is easy to obtain that S(t) → Λ

µ
and I(t) = 0 when t → ∞. Along the

characteristic lines, from system (2.1), we have that r(τ, t) = 0 for all t > τ . It is
easy to show that {E0} is the maximal compact invariant set. From the LaSalle
invariant principle ( [14],Theorem 5.3.1), we have that the disease-free equilibrium
E0 of system (2.1) is globally stable for <0 ≤ 1.

Now we investigate the global stability of the infected equilibrium E∗. By using
the function g(x) = x − 1 − lnx > 0, x ≥ 0, we construct the suitable Lyapunov
functions and establish the following result

Theorem 4.4. The unique endemic equilibrium E∗(S∗, I∗, r∗(τ), B∗) of system
(2.1) is globally asymptotically stable when <0 > 1.

Proof. Let

L(t) = L1(t) + L2(t) + L3(t) + L4(t),

where

L1(t) = S(t)− S∗ − S∗ ln
S(t)

S∗
,

L2(t) = I∗g(
I(t)

I∗
),

L3(t) =

∫ +∞

0

∆(τ)r∗(τ)g(
r(t, τ)

r∗(τ)
)dτ,

L4(t) =
γ + µ−Kγ

α
B∗g(

B(t)

B∗
).

(4.9)
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By calculating the time derivatives of L1(t) along system (2.1), we obtain

dL1(t)

dt
=
dS

dt
(1− S∗

S(t)
)

= [Λ− βB(t)S(t)

B(t) + 1
− µS(t)](1− S∗

S(t)
)

= [
βB∗S∗

B∗ + 1
− βB(t)S(t)

B(t) + 1
+ µ(S∗ − S(t))](1− S∗

S(t)
)

=
−µ(S∗ − S(t))2

S(t)
+
βB∗S∗

B∗ + 1
(1− S∗

S(t)
)− βB(t)S(t)

B(t) + 1
+
βB(t)S(t)

B(t) + 1

S∗

S(t)

=
−µ(S∗ − S(t))2

S(t)
− βB∗S∗

B∗ + 1
g(

S∗

S(t)
)

− βB∗S∗

B∗ + 1
ln

S∗

S(t)
− βB(t)S(t)

B(t) + 1
+
βB(t)S∗

1 +B(t)
.

By calculating the time derivatives of L2(t) along system (2.1), we obtain

dL2(t)

dt
= (1− I∗

I(t)
)
dI(t)

dt

= (1− I∗

I(t)
)[
βB(t)S(t)

B(t) + 1
+

∫ +∞

0

θ(τ)r(τ, t)dτ−(γ+µ)I(t)]

= (1− I∗

I(t)
)[
βB(t)S(t)

B(t) + 1
− βB

∗S∗

B∗ + 1
+

∫ +∞

0

θ(τ)r(τ, t)dτ−
∫ +∞

0

θ(τ)r∗(τ)dτ

+ (γ + µ)I∗ − (γ + µ)I(t)]

=
βB(t)S(t)

B(t) + 1
− βB(t)S(t)

B(t) + 1

I∗

I(t)
+
βB∗S∗

B∗ + 1
(
I∗

I(t)
− 1)

+ (1− I∗

I(t)
)

∫ +∞

0

θ(τ)r∗(τ)(
r(τ, t)

r(τ)∗
−1)dτ+(1− I∗

I(t)
)(γ+µ)I∗(1− I(t)

I∗
)

=
βB(t)S(t)

B(t)+1
− βB

∗S∗

B∗+1

B∗+1

B(t)+1

B(t)S(t)I∗

B∗S∗I(t)
+
βB∗S∗

B∗+1
g(

I∗

I(t)
)+

βB∗S∗

B∗+1
ln
I∗

I(t)

+

∫ +∞

0

θ(τ)r∗(τ)dτ [g(
r(τ, t)

r∗(τ)
)− g(

I∗r(t, τ)

I(t)r∗(τ)
) + g(

I∗

I(t)
)]

+ (γ + µ)I∗[−g(
I(t)

I∗
)− g(

I∗

I(t)
)]

=
βB(t)S(t)

B(t) + 1
− βB∗S∗

B∗ + 1
g(

B∗ + 1

B(t) + 1

B(t)S(t)I∗

B∗S∗I(t)
)− βB∗S∗

B∗ + 1

− βB∗S∗

B∗ + 1
ln

B∗ + 1

B(t) + 1

B(t)S(t)I∗

B∗S∗I(t)
+
βB∗S∗

B∗ + 1
g(

I∗

I(t)
) +

βB∗S∗

B∗ + 1
ln

I∗

I(t)

+

∫ +∞

0

θ(τ)r∗(τ)dτ [g(
r(τ, t)

r∗(τ)
)− g(

I∗r(τ, t)

I(t)r∗(τ)
) + g(

I∗

I(t)
)]

+ (γ + µ)I∗[−g(
I(t)

I∗
)− g(

I∗

I(t)
)]

=
βB(t)S(t)

B(t) + 1
− βB∗S∗

B∗ + 1
g(

B∗ + 1

B(t) + 1

B(t)S(t)I∗

B∗S∗I(t)
)− βB∗S∗

B∗ + 1
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− βB∗S∗

B∗ + 1
ln

B∗ + 1

B(t) + 1

B(t)S(t)I∗

B∗S∗I(t)
+
βB∗S∗

B∗ + 1
ln

I∗

I(t)

+

∫ +∞

0

θ(τ)r∗(τ)dτ [g(
r(τ, t)

r∗(τ)
)− g(

I∗r(τ, t)

I(t)r∗(τ)
)]− (γ + µ)I∗g(

I(t)

I∗
).

(4.10)

By calculating the time derivatives of L3(t) along system (2.1), we obtain

dL3(t)

dt
=

∫ +∞

0

∆(τ)(1− r∗(τ)

r(t, τ)
)
∂r(t, τ)

∂t
dτ

=

∫ +∞

0

∆(τ)(1− r∗(τ)

r(t, τ)
)(−(µ+ θ(τ))r(τ, t)− ∂r(t, τ)

∂τ
)dτ.

(4.11)

By direct calculating the derivative of the expression ∆(τ)r∗(τ)g

(
r(t, τ)

r∗(τ)

)
for τ ,

[∆(τ)r∗(τ)g(
r(t, τ)

r∗(τ)
)]′

= ∆′(τ)r∗(τ)g(
r(t, τ)

r∗(τ)
) + ∆(τ)r′∗(τ)g(

r(t, τ)

r∗(τ)
)

+ ∆(τ)r∗(τ)(1− r∗(τ)

r(t, τ)
)(

∂r(t, τ)

∂τ
r∗(τ)− dr∗(τ)

dτ
r(τ, t)

(r∗(τ))2
)

= ∆′(τ)r∗(τ)g
(r(t, τ)

r∗(τ)
)
)
+∆(τ)r′∗(τ)g(

r(t, τ)

r∗(τ)
)

+ ∆(τ)(1− r∗(τ)

r(t, τ)
)
∂r(t, τ)

∂τ
−∆(τ)(1− r∗(τ)

r(t, τ)
)
dr∗(τ)

dτ

r(t, τ)

r∗(τ)

= (∆(τ)α(τ)− θ(τ))r∗(τ)g(
r(t, τ)

r∗(τ)
) + ∆(τ)(−α(τ))r∗(τ)g(

r(t, τ)

r∗(τ)

+ ∆(τ)(1− r∗(τ)

r(t, τ)
)
∂r(t, τ)

∂τ
+ ∆(τ)(1− r∗(τ)

r(t, τ)
)α(τ)r(τ, t)

= −θ(τ)r∗(τ)g(
r(t, τ)

r∗(τ)
) + ∆(τ)(1− r∗(τ)

r(t, τ)
)(
∂r(t, τ)

∂τ
+ (µ+ θ(τ))r(t, τ)).

From (4.11), we obtian∫ +∞

0

∆(τ)(1− r∗(τ)

r(t, τ)
)(−(µ+ θ(τ))r(τ, t)− ∂r(t, τ)

∂τ
)dτ

=

∫ +∞

0

−θ(τ)r∗(τ)g(
r(t, τ)

r∗(τ)
)dτ − (∆(τ)r∗(τ)g(

r(t, τ)

r∗(τ)
))
∣∣+∞
0

=

∫ +∞

0

−θ(τ)r∗(τ)g(
r(t, τ)

r∗(τ)
)dτ − (∆(τ)r∗(τ)g(

r(t, τ)

r∗(τ)
))
∣∣+∞
0

+KγI∗g(
I(t)

I∗
)

=

∫ +∞

0

−θ(τ)r∗(τ)g(
r(t, τ)

r∗(τ)
)dτ−(∆(τ)r∗(τ)g(

r(t, τ)

r∗(τ)
))
∣∣+∞
0

+

∫ +∞

0

θ(τ)r∗(τ)g(
I(t)

I∗
)dτ.

(4.12)
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By calculating the time derivatives of L4(t) along system (2.1), we obtain

dL4(t)

dt
=
γ + µ−Kγ

α
(1− B∗

B(t)
)
dB

dt
=
γ + µ−Kγ

α
(1− B∗

B(t)
)(αI(t)−m0B(t))

=
γ + µ−Kγ

α
(1− B∗

B(t)
)(αI(t)− αI∗ + αI∗ − αI∗

B∗
B(t))

=
γ + µ−Kγ

α
(1− B∗

B(t)
)αI∗(

I(t)

I∗
− 1 + 1− B(t)

B∗
)

=
γ + µ

α
(1− B∗

B(t)
)αI∗(

I(t)

I∗
− B(t)

B∗
)− Kγ

α
(1− B∗

B(t)
)αI∗(

I(t)

I∗
− B(t)

B∗
)

= (γ+µ)I∗(1− B∗

B(t)
)(
I(t)

I∗
−B(t)

B∗
)−
∫ +∞

0

θ(τ)r∗(τ)dτ(1− B∗

B(t)
)(
I(t)

I∗
−B(t)

B∗
)

= (γ + µ)I∗[g(
I(t)

I∗
)− g(

B(t)

B∗
)− g(

I(t)B∗

I∗B(t)
)]

−
∫ +∞

0

θ(τ)r∗(τ)dτ [g(
I(t)

I∗
)− g(

B(t)

B∗
)− g(

I(t)B∗

I∗B(t)
)]

= (γ+µ)I∗g(
I(t)

I∗
)−
∫ +∞

0

θ(τ)r∗(τ)dτg(
I(t)

I∗
)+

βB∗S∗

B∗+1
[−g(

B(t)

B∗
)−g(

I(t)B∗

I∗B(t)
)].

From the Eq.(4.12),(4.12) and (4.13), we have

dL(t)

dt
=
dL1(t)

dt
+
dL2(t)

dt
+
dL3(t)

dt
+
dL4(t)

dt

=
−µ(S∗−S(t))2

S(t)
− βB

∗S∗

B∗+1
g(

S∗

S(t)
)− βB

∗S∗

B∗+1
ln

S∗

S(t)
− βB(t)S(t)

B(t)+1
+

βBS∗

1+B(t)

+
βB(t)S(t)

B(t) + 1
− βB∗S∗

B∗ + 1
g(

B∗ + 1

B(t) + 1

B(t)S(t)I∗

B∗S∗I(t)
)− βB∗S∗

B∗ + 1

− βB∗S∗

B∗ + 1
ln

B∗ + 1

B(t) + 1

B(t)S(t)I∗

B∗S∗I(t)
+
βB∗S∗

B∗ + 1
ln

I∗

I(t)

+

∫ +∞

0

θ(τ)r∗(τ)dτ [g(
r(t, τ)

r∗(τ)
)− g(

I∗r(t, τ)

I(t)r∗(τ)
)]− (γ + µ)I∗g(

I(t)

I∗
)

+

∫ +∞

0

−θ(τ)r∗(τ)dτg(
r(t, τ)

r∗(τ)
)− (∆(τ)r∗(τ)g(

r(t, τ)

r∗(τ)
))
∣∣+∞
0

+

∫ +∞

0

θ(τ)r∗(τ)dτg(
I(t)

I∗
) + (γ + µ)I∗g(

I(t)

I∗
)

−
∫ +∞

0

θ(τ)r∗(τ)dτg(
I(t)

I∗
) +

βB∗S∗

B∗ + 1
[−g(

B(t)

B∗
)− g(

I(t)B∗

I∗B(t)
)]

=
−µ(S∗ − S(t))2

S(t)
− βB∗S∗

B∗ + 1
g(

S∗

S(t)
)− βB∗S∗

B∗ + 1
g(

B∗ + 1

B(t) + 1

B(t)S(t)I∗

B∗S∗I(t)
)

−
∫ +∞

0

θ(τ)r∗(τ)dτg(
I∗r(t, τ)

I(t)r∗(τ)
)− (∆(τ)r∗(τ)g(

r(t, τ)

r∗(τ)
))|+∞0

− βB∗S∗

B∗ + 1
g(
I(t)B∗

I∗B(t)
) +

βB(t)S∗

1 +B(t)
− βB∗S∗

B∗ + 1

− βB∗S∗

B∗ + 1
ln

B∗ + 1

B(t) + 1

B(t)

B∗
− βB∗S∗

B∗ + 1
g(
B(t)

B∗
). (4.13)
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Let

H(t) =
βB(t)S∗

1 +B(t)
− βB∗S∗

B∗ + 1
− βB∗S∗

B∗ + 1
ln

B∗ + 1

B(t) + 1

B(t)

B∗
− βB∗S∗

B∗ + 1
g(
B(t)

B∗
).

By direct calculating, we obtain that following

H(t) =
βB(t)S∗

1 +B(t)
− βB∗S∗

B∗ + 1
− βB∗S∗

B∗ + 1
ln

B∗ + 1

B(t) + 1

B(t)

B∗
− βB∗S∗

B∗ + 1
g(
B(t)

B∗
)

=
βB(t)S∗

1+B(t)
− βB

∗S∗

B∗+1
− βB

∗S∗

B∗+1
ln

B∗+1

B(t)+1

B(t)

B∗
+
βB∗S∗

B∗+1
ln
B(t)

B∗
− βB

∗S∗

B∗+1
(
B(t)

B∗
−1)

=
βB(t)S∗

1 +B(t)
− βB∗S∗

B∗ + 1
+
βB∗S∗

B∗ + 1
ln
B(t) + 1

B∗ + 1
− βB∗S∗

B∗ + 1
(
B(t)

B∗
− 1)

=
βB(t)S∗

1 +B(t)
− βB∗S∗

B∗ + 1
− βB∗S∗

B∗ + 1
g(
B(t) + 1

B∗ + 1
)− βB∗S∗

B∗ + 1
+
βB∗S∗

B∗ + 1

B(t) + 1

B∗ + 1

− βB∗S∗

B∗ + 1
(
B(t)

B∗
− 1)

= −βB
∗S∗

B∗ + 1
g(
B(t) + 1

B∗ + 1
) +

βB∗S∗

B∗ + 1
[

1 +B∗

1 +B(t)

B(t)

B∗
− 1 +

B(t) + 1

B∗ + 1
− B(t)

B∗
]

= −βB
∗S∗

B∗ + 1
g(
B(t) + 1

B∗ + 1
)− βS∗(B(t)−B∗)2

(1 +B(t))(1 +B∗)2
≤ 0. (4.14)

From (4.13),(4.14),and using g(x) = x−1−lnx > 0, x ≥ 0, we obtain that
dL(t)

dt
≤ 0

for S(t), I(t), r(t, τ), and B(t) > 0 . Moreover,
dL(t)

dt
= 0 if and only if S(t) =

S∗, I(t) = I∗, r(t, τ) = r∗(τ), and B(t) = B∗, for all t ≥ 0. The largest compact
invariant set in

Ω = {(S(t), I(t), r(t, τ), B(t)|L̇(t) = 0}

is {E∗}. By LaSalle’s invariance principle, we can conclude that the endemic equi-
librium E∗ of system (2.1) is globally asymptotically stable for <0 > 1.

5. Concluding Remarks

Loss of immunity is considered to be one of the sources causing recurrence of in-
fectious disease dynamics observed in many epidemics. This recurrence of dis-
ease is an important feature of some infectious diseases, for example, tuberculosis
(TB), Cholera, and Herpes. In recent years, several disease transmission model-
s [10,25,40,41] with temporary immunity have been investigated, where numerical
simulations and the theoretical results are presented that there are not any evidence
of sustained oscillatory solutions for recurrence of diseases. In this paper, a cholera
epidemic model with age-of-immunity structure has been discussed, where recov-
ered individuals may relapse with reactivation of latent infection and revert back
to the infective class. By mathematical analysis for the model, we have established
a threshold dynamics, which is completely determined by the basic reproduction
number. It is shown that when the reproduction number <0 > 1, then the endemic
equilibrium is globally asymptotically stable and the disease persists in the human
population. The infection free equilibrium is globally asymptotically stable and
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the cholera is disappeared if the reproduction number <0 < 1. From the obtained
expression of the reproduction number <0, it can be observed that host immuni-
ty, pathogen hyperinfectivity and phages are all factors that can be leveraged for
outbreak control. Recently, the cholera outbreak in Yemen [37] is shaped by the
interplay of biological, environmental, socioeconomic, and climatic factors. To bet-
ter understand cholera epidemiology retrospectively and to predict the impact of
interventions in the future, further developments on cholera modeling demand a
systematic study that incorporate all these components.
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