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Abstract In this paper, the predictor-corrector approach is used to propose
two algorithms for the numerical solution of linear and non-linear fractional
differential equations (FDE). The fractional order derivative is taken to be
in the sense of Caputo and its properties are used to transform FDE into a
Volterra-type integral equation. Simpson’s 3/8 rule is used to develop new
numerical schemes to obtain the approximate solution of the integral equation
associated with the given FDE. The error and stability analysis for the two
methods are presented. The proposed methods are compared with the ones
available in the literature. Numerical simulation is performed to demonstrate
the validity and applicability of both the proposed techniques. As an applica-
tion, the problem of dynamics of the new fractional order non-linear chaotic
system introduced by Bhalekar and Daftardar-Gejji is investigated by means
of the obtained numerical algorithms.
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1. Introduction

Fractional calculus is a branch of mathematical analysis which deals with integrals
and derivatives of arbitrary (non-integer) order and their applications. However,
the topic of fractional calculus did not attract much attention until recently, espe-
cially, concerning its applications. It might have been due to the reasons such as its
intrinsic complexity [25], self-sufficiency of the classical calculus [3], lack of accept-
able geometric or physical interpretation of fractional derivative [30, 32], multiple
definitions for fractional derivatives [13], etc. However, the theoretical development
and potential applications of fractional calculus in science and engineering helped
to make it one of the hot topics for the researchers during the last few decades.
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Examples include Medical and biological sciences [38], psychology and social sci-
ences [34], dynamical phenomena in physics [37], economy [11], electronics and
control theory [1,33], etc. For more examples and details, we refer the reader to [6].

In mathematical modeling of the real world problems, the underlying dynamics
of a system depends on its history (the stored information) [35]. This means that
the future state of the system relies not only on its present state, but also upon the
the preceding history of states as well. Since the integer order differential operator is
a local operator, it cannot describe the hereditory behavior of such systems. On the
other hand, the fractional order derivative, being nonlocal in its nature, is found to
be a suitable tool to model nonlocal phenomena either in space or in time [18, 24].
Fractional order operators involved in the model cover the entire progress of the
process under investigation. Thus such operators serve as an excellent instrument
for the description of memory and hereditary properties of the systems [2, 5]. In
fact, the nonlocal characteristic of fractional order operators played a key role in
the popularity of fractional calculus [24,26].

Mathematical modelling of real world systems in terms of fractional-order deriva-
tives gives rise to a set of FDE, which cannot be solved analytically in many of
the cases [8, 10]. However, analytic solutions for some FDE have been obtained
by means of Adomians decomposition method, Mellin transform, Fourier transform
and Laplace transform under certain circumstances, especially for homogeneous lin-
ear FDE with constant coefficients [23,29]. These solutions generally involve special
functions such as Mittag-Leffler function, which are difficult to interpret [45]. In
order to make such solutions plausible, high computational cost is required [23].
The non-availability or availability in terms of complicated mathematical functions
of analytic solutions instigated researchers to develop numerical and approximate
analytic methods for solving FDE. However, owing to difficulties in analysis of nu-
merical methods for FDE, the scope of numerical methods for FDE is limited [8]
and many researchers are working on this topic to develop new numerical algorithms
for FDE.

Diethelm et al [20] suggested the predictor-corrector method for solving FDE.
This method is a generalization of the classical one-step Adams-Bashforth-Moulton
scheme, which is a well known technique for obtaining the numerical solution of first
order equations. It was pointed out that the accuracy of predictor-corrector method
can be improved with teh aid of the Richardson extrapolation, short memory princi-
ple and corresponding mixed numerical schemes. The detailed error analysis for this
algorithm was given in [21]. Later, some researchers [12,16,17] focused on improv-
ing this method and solved some applied fractional order problems [15, 19, 27, 40].
Deng [17] introduced the new numerical approximation by combining the short
memory principle and the predictor-corrector approach. Daftardar-Gejji et al [12]
used the idea of iteration to modify Adams method and investigated dynamics of a
fractional chaotic system by this new approach. Li et al [28] applied the Simpson’s
rule instead of trapezoidal quadrature formula to achieve higher order numerical
algorithm for fractional differential equations. In a recent work, Yang et al [43] ap-
plied a new computational approach for solving local fractional wave equation based
on the Gao-Yang-Kang version of the local fractional calculus. Motivated by the
recent development on the topic, a new improved version of the predictor-corrector
method possessing a better convergence has been proposed in this paper.

There are several definitions of fractional derivative in the literature. Among
these definitions, Caputo and Riemann-Liouville type fractional derivatives gained
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much popularity [5,23]. In order to develop the fractional calculus without singular
kernel of exponential function, the Yang-Srivastava-Machado fractional derivative
was proposed in the articles [36, 39]. Yang et al [42] introduced the concept of so
called Yang-Gao-Machado-Baleanu fractional derivative to deal with the fractional
calculus without singular kernel of sinc function. Cattani [9] studied Sinc-fractional
operators on Shannon wavelet space. For the details on general fractional calcu-
lus operators involving special functions and variable-order fractional operators,
see [41,44]. Fractional differential equations involving Riemann-Liouville fractional
derivative need initial conditions in terms of the unknown function together with
its Riemann-Liouville fractional derivative, which are unavailable for most of the
practical applications and have no physical meaning. For this reason, the Riemann-
Liouville fractional derivative is not always the automatic choice for real applica-
tions [14]. However, Fractional differential equations involving Caputo fractional
derivative utilize classical initial conditions, which are accurately measurable and
physically interpretable. Hence, we choose the Caputo fractional derivative in the
present setting.

The rest of the paper is organized as follows. In Section 2, the detailed construc-
tion of the predictor-corrector scheme is described, and improved algorithm for this
scheme is presented. In Section 3, the truncation error analysis of the proposed
methods is derived through a series of Lemmas and Theorems. The stability of the
numerical methods is proven in Section 4. To demonstrate the effectiveness of the
proposed methods, we apply these methods to solve some numerical examples in
Section 5. Fractional analogue of the new chaotic system introduced by Bhalekar
and Daftardar-Gejji is also investigated in this section and relevant phase portraits
are obtained by means of new improved numerical algorithm for different values
of the order of fractional system. Finally, Some concluding remarks are given in
Section 6.

2. The numerical method

We consider and investigate the the numerical solution for the following initial value
problem: {

C
0 D

α
t y(t) = f(t, y(t)), 0 ≤ t ≤ T, α > 0,

y(k)(x0) = y
(k)
0 , k = 0, 1, . . . , dαe − 1,

(2.1)

where dαe is the first integer not less than α, C0 D
α
t y(t) denotes Caputo fractional

derivative defined by

C
0 D

α
t y(t) =

1

Γ(n− α)

∫ t

0

y(n)(τ)

(t− τ)α−n+1
dτ, n− 1 < α ≤ n,

where y(n)(τ) is the classical nth-order derivative of y(τ). Throughout the forth-
coming analysis, it is assumed that f(t, y(t)) is a continuous function which satisfies
a Lipschitz condition with respect to second argument, that is, |f(t, y)− f(t, x)| ≤
L|y − x|, which L > 0. Notice that continuity and Lipschitz conditions are suffi-
cient to ensure existence of a unique solution to the problem (2.1) on the interval
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[0, T ] [28]. Applying Laplace transform to both sides of (2.1), we get

sαY (s)−
dαe−1∑
i=0

sα−i−1y(i)(0) = F (s, Y (s)),

which, on taking inverse Laplace transform, yields

y(t) =

dαe−1∑
i=0

ti

k!
y(i)(0) +

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, y(τ))dτ. (2.2)

Observe that the integral equation (2.2) is equivalent to the problem (2.1).

For computational convenience, let Fj = f(tj , yj) and F (tj) = f(tj , y(tj)), where
yj is the numerical approximation to y(tj).

2.1. Main algorithm

In this subsection, a new algorithm based on predictor-corrector scheme is designed
for solving problem (2.1) by discretizing Eq. (2.2) with uniform grids tj = jh, (j =
0, 1, ..., N), h = [ TN ]. Like the classic predictor-corrector method [20], the basic
idea is to calculate approximations yj , j = 0, 1, .., k and then use these values to
obtain the approximation yk+1 via Eq. (2.2). In order to construct the high order
scheme, we use the Simpson’s 3/8 rule with nodes tj , taken with respect to the
weight function (tk+1 − ·)α−1 to evaluate the integral in Eq. (2.2). In order to do
so, we need nodes tj , (j = 0, 1, ..., k + 1), tj+ 1

3
and tj+ 2

3
, (j = 0, 1, ..., k). New

method for approximating yk+ 1
3
, yk+ 2

3
and yk+1 will be developed in three steps.

Step 1. (An explicit algorithm for calculating yk+ 1
3
)

The discretized form of (2.2) to calculate y
(
tk+ 1

3

)
is

y
(
tk+ 1

3

)
=

dαe−1∑
i=0

ti
k+ 1

3

i!
y(i)(0) +

1

Γ(α)

∫ t
k+1

3

0

(tk+ 1
3
− τ)α−1F (τ)dτ. (2.3)

The product rectangle formula is used to approximate the integral in (2.3) as follows.

Ik+ 1
3

=

∫ t
k+1

3

0

(tk+ 1
3
− τ)α−1F (τ)dτ =

∫ t
k+1

3

0

(tk+ 1
3
− τ)α−1F̂ (τ)dτ

=

k−1∑
j=0

[∫ t
j+1

3

tj

F (tj) +

∫ tj+1

t
j+1

3

F (tj+1)

]
(tk+ 1

3
− τ)α−1dτ


+

∫ t
k+1

3

tk

(tk+ 1
3
− τ)α−1F (tk)dτ. (2.4)

Now Eq. (2.4) simplifies to the following form:

∫ t
k+1

3

0

(tk+ 1
3
− τ)α−1F (τ)dτ =

k∑
j=0

ej,k+ 1
3
F (tj), (2.5)
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where

ej,k+ 1
3

=
hα

α

{
(k + 1

3 )α − kα, j = 0,

(k − j + 1)α − (k − j)α, 1 ≤ j ≤ k.
(2.6)

In this way, yk+ 1
3

can be determined by the following formula:

yk+ 1
3

=

dαe−1∑
i=0

ti
k+ 1

3

i!
y(i)(0) +

1

Γ(α)

k∑
j=0

ej,k+ 1
3
Fj . (2.7)

Step 2. (An explicit algorithm for finding yk+ 2
3
)

The discretized form of (2.2) to calculate y
(
tk+ 2

3

)
is

y
(
tk+ 2

3

)
=

dαe−1∑
i=0

ti
k+ 2

3

i!
y(i)(0) +

1

Γ(α)

∫ t
k+2

3

0

(tk+ 2
3
− τ)α−1F (τ)dτ. (2.8)

To determine yk+ 2
3
, the integral in (2.8) is approximated as follows:

Ik+ 2
3

=

∫ t
k+2

3

0

(tk+ 2
3
− τ)α−1F (τ)dτ =

[∫ tk

0

+

∫ t
k+2

3

tk

]
(tk+ 2

3
− τ)α−1F̂ (τ)dτ

=

k−1∑
j=0

∫ tj+1

tj

(tk+ 2
3
− τ)α−1F̂j+1(τ)dτ +

∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1F̂k+1(τ)dτ,

(2.9)

where, in each interval, F̂j+1(τ) is the piecewise linear interpolation for F (τ) at the
points tj and tj+ 1

3
. For example, in the interval [tj , tj+1], we have∫ tj+1

tj

(tk+ 2
3
− z)α−1ĝ(z)dz =

∫ tj+1

tj

(tk+ 2
3
− z)α−1

z − tj+ 1
3

tj − tj+ 1
3

g(tj)dz

+

∫ tj+1

tj

(tk+ 2
3
− z)α−1 z − tj

tj+ 1
3
− tj

.g(tj+ 1
3
)dz.

After performing a series of calculations, we obtain∫ t
k+2

3

0

(tk+ 2
3
− z)α−1F (τ)dτ =

k∑
j=0

fj,k+ 2
3
F (tj) +

k∑
j=0

hj,k+ 2
3
F (tj+ 1

3
), (2.10)

where

fj,k+ 2
3

=
hα

α(α+ 1)


(
k − j + 2

3

)α
(α+ 3j − 3k − 1)

+
(
k − j − 1

3

)α
(2α− 3j + 3k + 1), 0 ≤ j ≤ k − 1,(

2
3

)α
(α− 1), j = k,

(2.11)

hj,k+ 2
3

=
hα

α(α+ 1)


(
k − j + 2

3

)α
(−3j + 3k + 2)

+
(
k − j − 1

3

)α
(−3α+ 3j − 3k − 2), 0 ≤ j ≤ k − 1,

2
(

2
3

)α
, j = k.

(2.12)



1532 M. S. Asl, M. Javidi & B. Ahmad

Thus we get the following formula for determining yk+ 2
3
:

yk+ 2
3

=

dαe−1∑
i=0

ti
k+ 2

3

i!
y(i)(0) +

1

Γ(α)

[
k∑
j=0

fj,k+ 2
3
Fj +

k∑
j=0

hj,k+ 2
3
Fj+ 1

3

]
. (2.13)

Note that the values of yj for j = 0, 1, 2, . . . , k in the above equation are known and
the value of yk+ 1

3
is calculated in the prior step.

Step 3. (A predictor-corrector algorithm to calculate yk+1)
The discretized form of (2.2) to find y (tk+1) is

y (tk+1) =

dαe−1∑
i=0

tik+1

i!
y(i)(0) +

1

Γ(α)

∫ tk+1

0

(tk+1 − τ)α−1F (τ)dτ. (2.14)

In order to find yk+1, the integral in (2.14) is approximated by the following proce-
dure.

Ik+1 =

∫ tk+1

0

(tk+1 − τ)α−1F (τ)dτ =

∫ tk+1

0

(tk+1 − τ)α−1F̂k(τ)dτ

=

k∑
j=0

∫ tj+1

tj

(tk+1 − τ)α−1F̂j+1(τ)dτ, (2.15)

where F̂j+1(τ) is the cubic interpolation for F (τ) at the nodes tj , tj+ 1
3
, tj+ 2

3
and

tj+1. After certain calculations, we get

Ik+1 =

k+1∑
j=0

aj,k+1F (tj) +

k∑
j=0

bj,k+1F (tj+ 1
3
) +

k∑
j=0

cj,k+1F (tj+ 2
3
). (2.16)

The weights of the above equation are given by

a′0,k+1 = kα+1
[
α2 + 5α+ 9αk + 6 + 27k(k + 1)

]
+ 1

2

[
k + 1

]α[
2α3

+α2(1− 11k) + α
(
36k2 + 17k + 3

)
− 6k

(
9k2 + 9k + 2

)]
,

a′j,k+1 =
[
k − j

]α+1[
α2 + 5α+ 27j2 + 27k2 − 9j(α+ 6k + 3) + 9k(α+ 3)

+6
]

+
[
k − j + 2

]α+1[
α2 − 13α+ 27j2 + 27k2 − 9j(−α+ 6k + 9)

−9k(α− 9) + 60
]
−
[
k − j + 1

]α+1[
11α2 + 55α+ 54j2

−108j(k + 1) + 54k(k + 2) + 120
]
, 1 ≤ j ≤ k,

a′k+1,k+1 = α2 − 4α+ 6,

(2.17)

b′j,k+1 =
−9

2

[
k − j

]α+1[
18j2 + 18k2 + (α+ 2)(α+ 3)− 4j(2α+ 9k + 6) + 8k

(α+ 3)
]

+ 9
[
k − j + 1

]α+1[
9j2 + 9k2 + α2 + j(5α− 18k − 3) + k(3− 5α)

]
,

(2.18)
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c′j,k+1 = 9
[
k − j

]α+1[
9j2 + 9k2 + (α+ 2)(α+ 3)− j(5(α+ 3) + 18k) + 5k

(α+ 3)
]
− 9

2

[
k − j + 1

]α+1[
α2 + α(8j − 8k − 3) + 6(j − k)(3j − 3k − 2)

]
, (2.19)

where aj,k+1 = hα

α(α+1)(α+2)(α+3)a
′
j,k+1, bj,k+1 = hα

α(α+1)(α+2)(α+3)b
′
j,k+1 and cj,k+1 =

hα

α(α+1)(α+2)(α+3)c
′
j,k+1. In this way, we obtain the following implicit formula for cal-

culating yk+1:

yk+1 =

dαe−1∑
i=0

tik+1

i!
y(i)(0) +

1

Γ(α)

[
k∑
j=0

aj,k+1Fj +

k∑
j=0

bj,k+1Fj+ 1
3

+

k∑
j=0

cj,k+1Fj+ 2
3

+ ak+1,k+1f(tk+1, y
P
k+1)

]
. (2.20)

In the above equation, the values of yk+ 1
3

and yk+ 2
3

are found in Steps 1 and 2,
respectively. Thus the rest of the problem is to design an explicit formula to find
yPk+1. For that, we use the rectangle formula instead of the 3/8 Simpson’s formula
in Eq. (2.15) and get∫ tk+1

0

(tk+1 − z)α−1F (τ)dτ =

∫ tk+1

0

(tk+1 − τ)α−1F̂ (τ)dτ

=

k∑
j=0

∫ tj+1

tj

(tk+1 − τ)α−1F (tk)dτ =

k∑
j=0

dj,k+1F (tj), (2.21)

where

dj,k+1 =

∫ tj+1

tj

(tk+1− τ)α−1dτ =
hα

α

[
(k− j+ 1)α− (k− j)α

]
, 0 ≤ j ≤ k. (2.22)

In this way, yPk+1 is determined by the following formula:

yPk+1 =

dαe−1∑
i=0

tik+1

i!
y(i)(0) +

1

Γ(α)

k∑
j=0

dj,k+1Fj . (2.23)

Thus, assuming that the approximated values of yj , j = 0, 1, .., k are already
found, we can summarize the main algorithm based on predictor-corrector scheme
for calculating yk+1 as follows.

1. Find the value of yk+ 1
3

from Eq. (2.7).

2. Calculate the value of yk+ 2
3

by substituting yk+ 1
3

(from Step 1) in Eq. (2.13).

3. Obtain the value of yPk+1 from Eq. (2.23).

4. Calculate the value of yk+1 by substituting the values of yk+ 1
3
, yk+ 2

3
, and yPk+1

( from Steps 1, 2 and 3, respectively) in Eq. (2.20).
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2.2. Improved algorithm

Here we improve the algorithms obtained in the last subsection by developing new
predictor-corrector algorithms to approximate the values of y(t) at the nodes tk+ 1

3

and tk+ 2
3

in two steps.

Step 1. (Design a predictor-corrector algorithm to calculate yk+ 1
3
)

We derive an implicit formula (corrector) for approximating yk+ 1
3

by approximating

Eq. (2.4) as follows.

Ik+ 1
3

=

∫ t
k+1

3

0

(tk+ 1
3
− τ)α−1F (τ)dτ

=

∫ tk

0

(tk+ 1
3
− τ)α−1F̃1(τ)dτ +

∫ t
k+1

3

tk

(tk+ 1
3
− τ)α−1F̃2(τ)dτ

=

k−1∑
j=0

∫ tj+1

tj

(tk+ 1
3
− τ)α−1F̂j+1(τ)dτ +

∫ t
k+1

3

tk

(tk+ 1
3
− τ)α−1F̂k+1(τ)dτ. (2.24)

The first integral in the above equation is approximated by using the Simpson’s 3/8
rule, while the second integral is approximated by using the trapezoidal quadrature
formula. Evidently, F̂j+1(τ) (j = 0, 1, . . . , k − 1) in Eq. (2.24) is cubic Lagrange

interpolation of F (τ) at the nodes tj , tj+ 1
3
, tj+ 2

3
and tj+1, and F̂k+1(τ) is the linear

Lagrange interpolation of F (τ) at the nodes tk and tk+ 1
3
. In consequence, we obtain

Ik+ 1
3

=

k∑
j=0

IIj,k+ 1
3
F (tj) +

k∑
j=0

Ilj,k+ 1
3
F (tj+ 1

3
) +

k−1∑
j=0

IMj,k+ 1
3
F (tj+ 2

3
), (2.25)

with the weights given by

I ′
0,k+ 1

3

=
[
k − 2

3

]α+1[
α2 − α+ 27k2 + 9k(α− 1)

]
− 1

6

[
k + 1

3

]α[
− 6α3

−23α+ α2(33k − 25) + 3αk(31− 36k) + 18k
(
9(k − 1)k + 2

)]
,

I ′
j,k+ 1

3

=
[
− (j − k + 2

3 )
]α+1[

α(α− 1) + 27j2 − 9j(α+ 6k − 1) + 27k2

+9(α− 1)k
]
−
[
k − j + 1

3

]α+1[
11α(α+ 5) + 54j2 − 36j(3k + 1)

+18k(3k + 2) + 72
]

+
[
k − j + 4

3

]α+1[
α2 + α(9j − 9k − 7)

+9(j − k − 1)(3j − 3k − 2)
]
, 1 ≤ j ≤ k − 1,

I ′
k,k+ 1

3

= 3−α−1

2

[
− 17α2 − 97α+ 22α+3

(
(α− 7)α+ 18

)
− 144

]
,

(2.26)

l′
j,k+ 1

3

= 3
2

[
k − j − 2

3

]α+1[
α− 3

(
α2 + 8α(k − j) + 18(j − k)2

)
+ 6
]

+3
[
k − j + 1

3

]α+1[
3α2 + 5α(3j − 3k + 2) + 3(3j − 3k + 1)

(3j − 3k + 2)
]
, 0 ≤ j ≤ k − 1,

l′
k,k+ 1

3

= (α+ 2)(α+ 3)(3)−α,

(2.27)

M ′j,k+ 1
3

= 3
[
k − j − 2

3

]α+1[
3α2 + 5α(−3j + 3k + 1) + 9(j − k)(3j − 3k − 1)

]
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− 3

2

[
k − j +

2

3

]α+1[
3α2 + α(24j − 24k + 7) + 18(j − k)(3j − 3k + 2)

]
, (2.28)

where Ij,k+ 1
3

= hα

α(α+1)(α+2)(α+3)I
′
j,k+ 1

3

, lj,k+ 1
3

= hα

α(α+1)(α+2)(α+3) l
′
j,k+ 1

3

and Mj,k+ 1
3

=
hα

α(α+1)(α+2)(α+3)M
′
j,k+ 1

3

. In this way, we get the following implicit formula for finding
yk+ 1

3
:

yk+ 1
3

=

dαe−1∑
i=0

ti
k+ 1

3

i!
y(i)(0) +

1

Γ(α)

[ k∑
j=0

Ij,k+ 1
3
Fj +

k−1∑
j=0

lj,k+ 1
3
Fj+ 1

3

+

k−1∑
j=0

Mj,k+ 1
3
Fj+ 2

3
+ lk,k+ 1

3
f(tk+ 1

3
, yPk+ 1

3
)
]
. (2.29)

Note that the product rectangle rule is applied to calculate y 1
3

as follows∫ t 1
3

0

(t 1
3
− z)α−1ĝ(z)dz =

∫ t 1
3

0

(t 1
3
− z)α−1

z − t 1
3

0− t 1
3

g(0)dz

+

∫ t 1
3

0

(t 1
3
− z)α−1 z − 0

t 1
3
− 0

g(t 1
3
)dz.

Hence, if k = 0, we have

I ′0, 13
= α(α+ 2)(α+ 3)(3)−α, l′0, 13

= (α+ 2)(α+ 3)(3)−α. (2.30)

We will follow the idea of subsection 2.1 to derive an explicit formula for determining
the value of yP

k+ 1
3

. In Eq. (2.24), the product rectangle formula is utilized as follows:

Ik+ 1
3

=

∫ tk

0

(tk+ 1
3
− τ)α−1F̃ (τ)dτ +

∫ t
k+1

3

tk

(tk+ 1
3
− τ)α−1F̂ (τ)dτ

=

k−1∑
j=0

∫ tj+1

tj

(tk+ 1
3
− τ)α−1F (tj)dτ +

∫ t
k+1

3

tk

(tk+ 1
3
− τ)α−1F (tk)dτ

=

k∑
j=0

Nj,k+ 1
3
F (tj), (2.31)

where

Nj,k+ 1
3

=
hα

α

{(
k − j + 1

3

)α
−
(
k − j − 2

3

)α
, 0 ≤ j ≤ k − 1,

3−α, j = k.
(2.32)

Hence we obtain the following formula for finding yP
k+ 1

3

:

yPk+ 1
3

=

dαe−1∑
i=0

ti
k+ 1

3

i!
y(i)(0) +

1

Γ(α)

k∑
j=0

Nj,k+ 1
3
Fj . (2.33)

Thus a new predictor-corrector scheme for calculating yk+ 1
3

is achieved in terms of

(2.29) and (2.33).
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Step 2. (Design a predictor-corrector algorithm to calculate yk+ 2
3
)

In this step, the ideas of the previous step will be employed to design a new
predictor-corrector formula to calculate yk+ 2

3
. In order to derive an implicit formula

(corrector) for finding yk+ 2
3
, Eq. (2.9) can be approximated as follows.

Ik+ 2
3

=

∫ t
k+2

3

0

(tk+ 2
3
− τ)α−1F (τ)dτ

=

∫ tk

0

(tk+ 2
3
− τ)α−1F̃1(τ)dτ +

∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1F̃2(τ)dτ

=

k−1∑
j=0

∫ tj+1

tj

(tk+ 2
3
− τ)α−1F̂j+1(τ)dτ +

∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1F̂k+1(τ)dτ,

(2.34)

where F̂j+1(τ) j = 0, 1, . . . , k−1 is the same as given by Eq. (2.24). The Simpson’s

1/3 formula is applied to approximate the second integral. Notice that F̂k+1(τ) is
the piecewise quadratic interpolation of F (τ) at the nodes tk, tk+ 1

3
and tk+ 2

3
. After

a series of calculations, we get

Ik+ 2
3

=

k∑
j=0

pj,k+ 2
3
F (tj) +

k∑
j=0

qj,k+ 2
3
F (tj+ 1

3
) +

k∑
j=0

rj,k+ 2
3
F (tj+ 2

3
), (2.35)

with the weights given by



p′
0,k+ 2

3

= 1
6

[
k + 2

3

]α[
2α (3α2 + 7α+ 2)− 162k3 + 108αk2 − 3k(11α2

+7α− 6)
][
k − 1

3

]α+1[
α(α+ 2) + 27k2 + 9k(α+ 1)

]
,

p′
j,k+ 2

3

=
[
k − j + 5

3

]α+1[
α2 − 10α+ 27j2 − 9j(−α+ 6k + 7) + 27k2

−9k(α− 7) + 36
]

+
[
− (j − k + 1

3 )
]α+1[

α(α+ 2) + 27j2 − 9j

(α+ 6k + 1) + 27k2 + 9k(α+ 1)
]
−
[
k − j + 2

3

]α+1[
11α(α+ 5)

+54j2 − 36j(3k + 2) + 18k(3k + 4) + 90
]
, 1 ≤ j ≤ k − 1,

p′
k,k+ 2

3

=
[

5
3

]α+1[
(α− 10)α+ 36

]
− 1

3

[
2
3

]α+2[
α(5α+ 28) + 45

]
,

(2.36)



q′
j,k+ 2

3

= 3
[
k − j + 2

3

]α+1[
α(3α+ 5) + 27j2 + j(15α− 54k + 9) + 27k2

−3k(5α+ 3)
]
− 3

2

[
k − j − 1

3

]α+1[
α(3α+ 7) + 54j2

−12j(2α+ 9k + 3) + 54k2 + 12k(2α+ 3)
]
, 1 ≤ j ≤ k − 1,

q′
k,k+ 2

3

= α(α+ 3)2
(

2
3

)α
,

(2.37)
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r′
j,k+ 2

3

= 3
[
− j + k − 1

3

]α+1[
3α2 + 10α+ 27j2 − 3j(5α+ 18k + 9)

+27k2 + 3k(5α+ 9) + 6
]
− 3

2

[
− j + k + 2

3

]α+1[
3α2 − α

+54j2 + 24αj − 108jk + 54k2 − 24αk − 6
]
, 1 ≤ j ≤ k − 1,

r′
k,k+ 2

3

= (2− α)(α+ 3)
(

2
3

)α
,

(2.38)

where pj,k+ 2
3

= hα

α(α+1)(α+2)(α+3)p
′
j,k+ 2

3

, qj,k+ 2
3

= hα

α(α+1)(α+2)(α+3)q
′
j,k+ 2

3

and rj,k+ 2
3

=
hα

α(α+1)(α+2)(α+3)r
′
j,k+ 2

3

. This leads to the following implicit formula for finding yk+ 2
3
:

yk+ 2
3

=

dαe−1∑
i=0

ti
k+ 2

3

i!
y(i)(0) +

hα

Γ(α)

[
k∑
j=0

pj,k+ 2
3
Fj +

k∑
j=0

qj,k+ 2
3
Fj+ 1

3

+

k−1∑
j=0

rj,k+ 2
3
Fj+ 2

3
+ rk,k+ 2

3
f(tk+ 2

3
, yPk+ 2

3
)

]
. (2.39)

Here we mention that the Simpson’s rule at the nodes t0, t 1
3

and t 2
3

is applied to
calculate y 2

3
. In particular, for k = 0, we have

p′0, 23
= α2(α+ 3)

(2

3

)α
, q′0, 23

= α(α+ 3)2
(2

3

)α
, r′0, 23

= (2− α)(α+ 3)
(2

3

)α
. (2.40)

The integral in Eq. (2.34) is approximated by the product rectangle rule to obtain
a predictor formula for yP2

3

given by

Ik+ 2
3

=

∫ tk

0

(tk+ 2
3
− τ)α−1F̃ (τ)dτ +

∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1F̂ (τ)dτ

=

k−1∑
j=0

∫ tj+1

tj

(tk+ 2
3
− τ)α−1F (tj)dτ +

∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1F (tk)dτ

=

k∑
j=0

vj,k+ 2
3
F (tj), (2.41)

where

vj,k+ 2
3

=
hα

α


(
k − j + 2

3

)α
−
(
k − j − 1

3

)α
, 0 ≤ j ≤ k − 1,(

2
3

)α
, j = k.

(2.42)

In this way, we obtain the following formula for finding yP
k+ 2

3

:

yPk+ 2
3

=

dαe−1∑
i=0

ti
k+ 2

3

i!
y(i)(0) +

1

Γ(α)

k∑
j=0

vj,k+ 2
3
Fj . (2.43)

In consequence, after obtaining the approximations for yj for yj , j = 0, 1, .., k, the
improved version of the predictor-corrector scheme for finding yk+1 can be summa-
rized as follows.
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1. Obtain the value of yP
k+ 1

3

from Eq. (2.33).

2. Calculate yk+ 1
3

by substituting the value of yP
k+ 1

3

obtained from Step 1 into

Eq. (2.29).

3. Calculate the value of yP
k+ 2

3

From Eq. (2.43).

4. Find yk+ 2
3

by substituting the values of yk+ 1
3

and yP
k+ 2

3

found in Steps 2 and

3 into Eq. (2.39).

5. Approximate the value of yPk+1 from Eq. (2.23).

6. Calculate the value of yk+1 by substituting yk+ 1
3
, yk+ 2

3
, and yPk+1 found in

the steps 2, 4 and 5respectively into Eq. (2.20).

Note that the steps 5 and 6 of the improved algorithm are the same as the last two
steps of the main algorithm derived in section 2.1.

3. Error analysis

In this section, we present the error analysis for the numerical algorithms. For
computational convenience, let El = y(tl)− yl and EPl = y(tl)− yPl . We emphasize
that C denotes a fixed constant which has different values for different formulae in
the forthcoming analysis.

3.1. Truncation error analysis for the main algorithm

We first discuss the errors of Simpson’s 3/8 rule, trapezoidal quadrature formula
and product rectangle rule used in the main predictor-corrector algorithm.

Lemma 3.1. For the weights of the the main predictor-corrector algorithm the
following inequalities hold:

k∑
j=0

∣∣∣ej,k+ 1
3

∣∣∣ ≤ Ce
α T

α,
k∑
j=0

∣∣∣fj,k+ 2
3

∣∣∣ ≤ Cf
α T

α,
k∑
j=0

∣∣∣hj,k+ 2
3

∣∣∣ ≤ Ch
α T

α,

k∑
j=0

|aj,k+1| ≤ CPa
α Tα,

k∑
j=0

|bj,k+1| ≤ Cb
α T

α,
k∑
j=0

|cj,k+1| ≤ Cc
α T

α,

k∑
j=0

|dj,k+1| ≤ Cd
α T

α,

where the constants c∗ > 0 and cP∗ > 0 are independent of all discretization param-
eters.

Proof. Observe that∣∣∣e0,k+ 1
3

∣∣∣ =

∣∣∣∣∫ t 1
3

t0

(tk+ 1
3
− τ)α−1dτ

∣∣∣∣ =
1

α

[
(tk+ 1

3
− t0)α − (tk+ 1

3
− t 1

3
)α
]

=
1

α

[
(tk+ 1

3
)α − (tk)α

]
≤ 1

α
(tk+1)α =

1

α
Tα.

For 1 ≤ j ≤ k, we have

k∑
j=1

∣∣∣ej,k+ 1
3

∣∣∣ =

k∑
j=1

∣∣∣∣ ∫ tj

t
j− 2

3

(tk+ 1
3
− τ)α−1dτ +

∫ t
j+1

3

tj

(tk+ 1
3
− τ)α−1dτ

∣∣∣∣

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=
1

α

k∑
j=1

[
(tk+ 1

3
− tj− 2

3
)α − (tk+ 1

3
− tj)α

]
+
[
(tk+ 1

3
− tj)α − (tk+ 1

3
− tj+ 1

3
)α
]
,

k∑
j=1

∣∣∣ej,k+ 1
3

∣∣∣ =
1

α

k∑
j=1

[
(tk+ 1

3
− tj− 2

3
)α − (tk+ 1

3
− tj+ 1

3
)α
]

=
1

α
(tk+ 1

3
− t 1

3
)α

≤ 1

α
tαk+1 =

1

α
Tα.

Thus
k∑
j=0

∣∣∣ej,k+ 1
3

∣∣∣ ≤ Ce
α T

α. The proof of the inequality
k∑
j=0

∣∣∣dj,k+ 1
3

∣∣∣ ≤ Cd
α T

α is

similar, so we omit it. We derive the estimate for
k∑
j=0

∣∣∣fj,k+ 2
3

∣∣∣ for two cases.

Case 1 ( 0 ≤ j ≤ k).

k−1∑
j=0

∣∣∣fj,k+ 2
3

∣∣∣ =

k−1∑
j=0

∣∣∣∣∣
∫ tj+1

tj

(tk+ 2
3
− τ)α−1

τ − tj+ 1
3

tj − tj+ 1
3

dτ

∣∣∣∣∣
≤
k−1∑
j=0

∫ tj+1

tj

(tk+ 2
3
− τ)α−1

∣∣∣∣∣ τ − tj+ 1
3

tj − tj+ 1
3

∣∣∣∣∣ dτ.
By the first integral mean value theorem, for τ̃j ∈ [tj , tj+1], the above equation can
be rewritten as follows:

k−1∑
j=0

∣∣∣fj,k+ 2
3

∣∣∣ ≤ k−1∑
j=0

∣∣∣∣∣ τ̃j − tj+ 1
3

tj − tj+ 1
3

∣∣∣∣∣
∫ tj+1

tj

(tk+ 2
3
− τ)α−1dτ

≤
∣∣∣∣ h

− 1
3h

∣∣∣∣ 1

α

k−1∑
j=0

[
(tk+ 2

3
− tj)α − (tk+ 2

3
− tj+1)α

]
=

3

α

[
(tk+ 2

3
− t0)α − (tk+ 2

3
− tk)α

]
=

3

α

[
(tk+ 2

3
)α − (t 2

3
)α
]
≤ 3

α
tαk+1 =

3

α
Tα.

Case 2 ( j = k).

∣∣∣fk,k+ 2
3

∣∣∣ ≤ ∫ t
k+2

3

tk

(tk+ 2
3
−τ)α−1

∣∣∣∣∣ τ−tk+ 1
3

tk−tk+ 1
3

∣∣∣∣∣ dτ≤
∣∣∣∣∣ τ̃−tk+ 1

3

tk−tk+ 1
3

∣∣∣∣∣
∫ t

k+2
3

tk

(tk+ 2
3
−τ)α−1dτ

≤
∣∣∣∣ h

− 1
3h

∣∣∣∣ 1

α

[
(tk+ 2

3
− tk)α − (tk+ 2

3
− tk+ 2

3
)α
]
.

Therefore it follows that
k∑
j=0

∣∣∣fj,k+ 2
3

∣∣∣ ≤ Cf
α T

α. The rest of the inequalities can be

established in a similar manner.
The errors of the compound Simpson’s 3/8 formula given by Eq. (2.15) are

presented in the following Lemma.
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Lemma 3.2. Let F (τ) ∈ C4[0, T ]. Then∣∣∣∣ ∫ tk+1

0

(tk+1 − τ)α−1
(
F (τ)− F̂k(τ)

)
dτ

∣∣∣∣ ≤ Ch4. (3.1)

Proof. By Taylor’s theorem, for all τ ∈ [tj , tj+1], there exist ξj(τ) ∈ [tj , tj+1] such
that

I =

∣∣∣∣ k∑
j=0

∫ tj+1

tj

(tk+1 − τ)α−1
(
F (τ)− F̂j+1(τ)

)
dτ

∣∣∣∣
≤

k∑
j=0

∫ tj+1

tj

∣∣∣∣(tk+1 − τ)α−1F
(4)(ξj(τ))

4!
(τ − tj)(τ − tj+ 1

3
)(τ − tj+ 2

3
)(τ − tj+1)

∣∣∣∣dτ
≤ M4

4!

k∑
j=0

∣∣∣∣(τ̃j − tj)(τ̃j − tj+1/3)(τ̃j − tj+2/3)(τ̃j − tj+1)

∣∣∣∣ ∫ tj+1

tj

(tk+1 − τ)α−1dτ

≤ h4M4

4!

1

α

k∑
j=0

[(tk+1 − tj)α − (tk+1 − tj+1)α] =

(
M4

4!

1

α
(tk+1)α

)
h4

where τ̃j ∈ [tj , tj+1] and M4 = supt∈[0,T ]

∣∣F (4)(t)
∣∣.

The errors of the trapezoidal quadrature formula given by Eq. (2.9) are described
in the following Lemma.

Lemma 3.3. Let F (τ) ∈ C2[0, T ]. Then∣∣∣∣ ∫ tk

0

(tk+ 2
3
− τ)α−1

(
F (τ)− F̂k(τ)

)
dτ

∣∣∣∣ ≤ Ch2, (3.2)∣∣∣∣ ∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1

(
F (τ)− F̂k(τ)

)
dτ

∣∣∣∣ ≤ Ch2+α. (3.3)

Proof. We do not provide the the proof of Eq. (3.2) as it is similar to that of
Lemma 3.2. Eq. (3.3) can be proven as follows.

I =

∣∣∣∣ ∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1F

(2)(ξj(τ))

2!
(τ − tk)(τ − tk+ 1

3
)dτ

∣∣∣∣
≤ M2

2!

∣∣∣∣ ∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1(τ − tk)(τ − tk+ 1

3
)dτ

∣∣∣∣
=

(
M2

2!

∣∣∣∣− 2α+13−α−2(α− 2)

α (α2 + 3α+ 2)

∣∣∣∣)hα+2,

where M2 = supt∈[0,T ]

∣∣F (2)(t)
∣∣.

The errors of the rectangle quadrature formula described by Eq. (2.4) is given
in the following Lemma.

Lemma 3.4. Let F (τ) ∈ C1[0, T ]. Then∣∣∣∣ ∫ t
k+1

3

0

(tk+ 1
3
− τ)α−1

(
F (τ)− F̂ (τ)

)
dτ

∣∣∣∣ ≤ Ch. (3.4)
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Proof. Note that

I =

∣∣∣∣ k−1∑
j=0

∫ t
j+1

3

tj

(tk+ 1
3
− τ)α−1

(
F (τ)− F̂ (τ)

)
dτ

+

k−1∑
j=0

∫ tj+1

t
j+1

3

(tk+ 1
3
− τ)α−1

(
F (τ)− F̂ (τ)

)
dτ

+

∫ t
k+1

3

tk

(tk+ 1
3
− τ)α−1

(
F (τ)− F̂ (τ)

)
dτ

∣∣∣∣ = |I1 + I2 + I3| . (3.5)

We estimate the above integrals separately. In order to estimate |I1|, we use Taylor’s
theorem. Thus, for all τ ∈ [tj , tj+ 1

3
], there exist ξj(τ) ∈ [tj , tj+ 1

3
] such that

|I1| ≤
k−1∑
j=0

∫ t
j+1

3

tj

(tk+ 1
3
− τ)α−1

∣∣∣∣F (1)(ξj(τ))

1!
(τ − tj)

∣∣∣∣dτ
≤
k−1∑
j=0

|M1(τ̄j − tj)|
∫ t

j+1
3

tj

(tk+ 1
3
− τ)α−1dτ,

where τ̄j ∈ [tj , tj+ 1
3
] and M1 = supt∈[0,T ]

∣∣F (1)(t)
∣∣. Thus

|I1| ≤ hM1
1

α

k−1∑
j=0

[
(tk+ 1

3
− tj)α − (tk+ 1

3
− tj+ 1

3
)α
]

= hM1
1

α

[
(tk+ 1

3
)α − (t1)α

]
≤ hM1

1

α
(tk+1)α =

(
M1

1

α
Tα
)
h = C1h. (3.6)

In a similar manner, we can establish that

|I2| ≤= C2h. (3.7)

The estimate for |I3| is also based on Taylor theorem. Thus, for all τ ∈ [tj , tj+ 1
3
],

there exist ξj(τ) ∈ [tj , tj+ 1
3
] such that

|I3| ≤M1

∣∣∣∣ ∫ t
k+1

3

tk

(tk+ 1
3
− τ)α−1(τ − tk+1)dτ

∣∣∣∣
=

(
M1

∣∣∣∣− 3−α−1(3α+ 2)

α(α+ 1)

∣∣∣∣)hα+1 ≤ C3h
α+1. (3.8)

Combining Eqs. (3.5–3.8), we find that

I ≤ |I1|+ |I2|+ |I3| = C1h+ C2h+ C3h
α+1 ≤ Ch.

The errors of the rectangle quadrature formula given in Eq. (2.21) is presented
in the following Lemma.

Lemma 3.5. Let F (τ) ∈ C1[0, T ]. Then∣∣∣∣ ∫ tk+1

0

(tk+1 − τ)α−1
(
F (τ)− F̂ (τ)

)
dτ

∣∣∣∣ ≤ Ch. (3.9)
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We omit the proof as it is similar to that of Lemma 3.4. The error analysis for
the (2.23) in given in the following Lemma.

Lemma 3.6. Assume that the solution y of the given initial value problem satisfies∣∣∣∣∣∣
∫ tk+1

0

(tk+1 − t)α−1C
0 D

α
t y(t)dt−

k∑
j=0

dj,k+1
C
0 D

α
t y(tj)

∣∣∣∣∣∣ ≤ Chδ1 , (3.10)

where δ1 > 0. Then, for C1P , C2P > 0, we have∣∣EPk+1

∣∣ ≤ C1Ph
δ1 + C2P max

0≤j≤k
|Ej | . (3.11)

Proof. By the predictor formula (2.23) and Eq. (2.2), one can find that∣∣EPk+1

∣∣= ∣∣y(tk+1)− yPk+1

∣∣
=

1

Γ(α)

∣∣∣∣ ∫ tk+1

0

(tk+1 − τ)α−1F (τ)dτ −
k∑
j=0

dj,k+1Fj ±
k∑
j=0

dj,k+1F (tj)

∣∣∣∣
≤ 1

Γ(α)

∣∣∣∣∫ tk+1

0

(tk+1−τ)α−1F (τ)dτ−
k∑
j=0

dj,k+1F (tj)

∣∣∣∣+ k∑
j=0

|dj,k+1| |F (tj)−Fj | ,

Using Lemma 3.1, Eq. (2.1) and the Lipschitz property, we have

∣∣EPk+1

∣∣ ≤ 1

Γ(α)

∣∣∣∣ ∫ tk+1

0

(tk+1 − t)α−1C
0 D

α
t y(t)dt−

k∑
j=0

dj,k+1
C
0 D

α
t y(tj)

∣∣∣∣
+

L

Γ(α)

k∑
j=0

dj,k+1 |y(tj)− yj |

≤ 1

Γ(α)
Chδ1 +

L

Γ(α)
max

0≤j≤k
|Ej |

k∑
j=0

|dj,k+1| ≤ C1Ph
δ1 + C2P max

0≤j≤k
|Ej | ,

where C1P = C
Γ(α) , C2P = LCdT

α

Γ(α+1) .

Lemma 3.7. Assume that the solution y of the given initial value problem satisfies∣∣∣∣∣∣
∫ t

k+1
3

0

(tk+ 1
3
− t)α−1C

0 D
α
t y(t)dt−

k∑
j=0

ej,k+ 1
3

C
0 D

α
t y(tj)

∣∣∣∣∣∣ ≤ Chδ2 , (3.12)

where δ2 > 0. Then, for C1 1
3
, C2 1

3
> 0, we have

max
0≤j≤k

∣∣∣Ej+ 1
3

∣∣∣ ≤ C1 1
3
hδ2 + C2 1

3
max

0≤j≤k
|Ej | . (3.13)

Proof. We complete the proof by means of mathematical induction. In view of
the given initial conditions, the induction basis (j = 0) is evident. Assuming that
(3.13) holds for j = 0, 1, 2, . . . , k− 1; it will be shown that it holds for j = k. From
(2.7) and (2.3), it follows that∣∣∣Ek+ 1

3

∣∣∣ ≤ 1

Γ(α)

[∣∣∣∣ ∫ t
k+1

3

0

(tk+ 1
3
− τ)α−1F (τ)dτ −

k∑
j=0

ej,k+ 1
3
F (tj)

∣∣∣∣
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+

∣∣∣∣ k∑
j=0

ej,k+ 1
3
(F (tj)− Fj)

∣∣∣∣
]
,

We have, by the Lipschitz condition

∣∣∣Ek+ 1
3

∣∣∣ ≤ 1

Γ(α)

Chδ2 + L

k∑
j=0

∣∣∣ej,k+ 1
3

∣∣∣ |y(tj)− yj |


≤ 1

Γ(α)

Chδ2 + L max
0≤j≤k

|y(tj)− yj |
k∑
j=0

∣∣∣ej,k+ 1
3

∣∣∣


≤ C1 1
3
hδ2 + C2 1

3
max

0≤j≤k
|Ej | ,

which, by Lemma 3.1, implies that C1 1
3

= C
Γ(α) , C2 1

3
= LCeT

α

Γ(α+1) .

Lemma 3.8. Assume that the condition (3.12) of Lemma 3.7 is satisfied and that
the solution y of the given initial value problem satisfies∣∣∣∣ ∫ t

k+2
3

0

(tk+ 2
3
− t)α−1C

0 D
α
t y(t)dt−

k∑
j=0

fj,k+ 2
3

C
0 D

α
t y(tj)

−
k∑
j=0

hj,k+ 2
3

C
0 D

α
t y(tj+ 1

3
)

∣∣∣∣ ≤ Chδ3 , (3.14)

where δ3 > 0. Then, for C1 2
3
, C2 2

3
> 0 we have

max
0≤j≤k

∣∣∣Ej+ 2
3

∣∣∣ ≤ C1 2
3
hmin{δ2,δ3} + C2 2

3
max

0≤j≤k
|Ej | . (3.15)

Proof. By the formula for yk+ 2
3
, Eq. (2.8) and Lipschitz condition, we deduce

that∣∣∣Ek+ 2
3

∣∣∣ ≤ 1

Γ(α)

[∣∣∣∣ ∫ t
k+2

3

0

(tk+ 2
3
− τ)α−1F (τ)dτ −

k∑
j=0

fj,k+ 2
3
F (tj)

−
k∑
j=0

hj,k+ 2
3
F (tj+ 1

3
)

∣∣∣∣+ L1

k∑
j=0

∣∣∣fj,k+ 2
3

∣∣∣ |Ej |+ L2

k∑
j=0

∣∣∣hj,k+ 2
3

∣∣∣ ∣∣∣Ej+ 1
3

∣∣∣ ],
∣∣∣Ek+ 2

3

∣∣∣ ≤ 1

Γ(α)

[
Chδ3 + L1 max

0≤j≤k
|Ej |

k∑
j=0

∣∣∣fj,k+ 2
3

∣∣∣+ L2 max
0≤j≤k

∣∣∣Ej+ 1
3

∣∣∣ k∑
j=0

∣∣∣hj,k+ 2
3

∣∣∣ ].
By applying the Lemmas 3.1 and 3.7, we obtain∣∣∣Ek+ 2

3

∣∣∣≤ 1

Γ(α)

[
Chδ3 +L1 max

0≤j≤k
|Ej |

(
Cf
α
Tα
)

+L2

(
C1 1

3
hδ2 +C2 1

3
max

0≤j≤k
|Ej|
)(Ch

α
Tα
)]

=C1h
δ2 + C2h

δ3 + C3 max
0≤j≤k

|Ej | ,
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where

C1 =
L2C1 1

3
ChT

α

Γ(α+ 1)
, C2 =

CTα

Γ(α)
, C3 =

L1CfT
α

Γ(α+ 1)
+
L2C2 1

3
ChT

α

Γ(α+ 1)
.

Choosing sufficiently large values of the constants completes the proof.
In the following theorem, based on the error estimate of the preceding subsection,

we present the truncation error analysis for the main predictor-corrector method
described by (2.7), (2.13), (2.20) and (2.23).

Theorem 3.1. Let the assumptions (3.10), (3.12) and (3.14) (of Lemmas 3.6,
3.7 and 3.8, respectively) hold and that the solution y of the initial value problem
satisfies the inequality∣∣∣∣ ∫ tk+1

0

(tk+1 − t)α−1C
0 D

α
t y(t)dt−

k+1∑
j=0

aj,k+1
C
0 D

α
t (yj)−

k∑
j=0

bj,k+1
C
0 D

α
t (yj+ 1

3
)

−
k∑
j=0

cj,k+1
C
0 D

α
t (yj+ 2

3
)

∣∣∣∣ ≤ Chδ4 , (3.16)

with δ4 > 0. Then, for the main algorithm, we have

max
0≤j≤N

|Ej | = O(hq),

where q = min{α+ δ1, δ2, min{δ2, δ3}, δ4}, and N =
[
T
h

]
.

Proof. The proof is based on mathematical induction. Assume that

max
0≤j≤k

|Ej | ≤ C0 h
q (3.17)

holds for j = 0, 1, 2, . . . , k for some k ≤ N−1 and it will be shown that it holds true
for j = k + 1. In view of the given initial conditions, the induction basis (j = 0) is
trivial. For yPk+1, it follows from Eqs. (2.14) and (2.20), and the Lipschitz property
of F (τ) that

|Ek+1| ≤
1

Γ(α)

[∣∣∣∣ ∫ tk+1

0

(tk+1 − τ)α−1F (τ)dτ −
k+1∑
j=0

aj,k+1F (tj)−
k∑
j=0

bj,k+1F (tj+ 1
3
)

−
k∑
j=0

cj,k+1F (tj+ 2
3
)

∣∣∣∣+ k∑
j=0

|aj,k+1| |F (tj)−Fj |+
k∑
j=0

|bj,k+1|
∣∣∣F (tj+ 1

3
)−Fj+ 1

3

∣∣∣
+

k∑
j=0

|cj,k+1|
∣∣∣F (tj+ 2

3
)−Fj+ 2

3

∣∣∣+|ak+1,k+1|
∣∣f(tk+1, yk+1)−f(tk+1, y

P
k+1)

∣∣ ],
|Ek+1| ≤

1

Γ(α)

[
Chδ4 + L1 max

0≤j≤k
|Ej |

k∑
j=0

|aj,k+1|+ L2 max
0≤j≤k

∣∣∣Ej+ 1
3

∣∣∣ k∑
j=0

|bj,k+1|

+ L3 max
0≤j≤k

∣∣∣Ej+ 2
3

∣∣∣ k∑
j=0

|cj,k+1|+ L4 |ak+1,k+1|
∣∣EPk+1

∣∣ ].
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Applying Lemmas 3.1, 3.6, 3.7 and 3.8 together with the induction hypothesis (3.17)
and the value of ak+1,k+1 given in (2.17), we obtain

|Ek+1| ≤
1

Γ(α)

[
Chδ4 + L1 max

0≤j≤k
|Ej |

(
Ca
α
Tα
)

+ L2

(
C1 1

3
hδ2 + C2 1

3
max

0≤j≤k
|Ej |

)
(
Cb
α
Tα
)

+ L3

(
C1 2

3
hmin{δ2,δ3} + C2 2

3
max

0≤j≤k
|Ej |

)(
Cc
α
Tα
)

+ L4

∣∣∣∣ α2 − 4α+ 6

α(α+ 1)(α+ 2)(α+ 3)
hα
∣∣∣∣ (C1Ph

δ1 + C2P max
0≤j≤k

|Ej |
)]

=C1h
δ1+α + C2h

δ2 + C3h
min{δ2,δ3} + C4h

δ4 + C5h
q + C6h

q+α, (3.18)

where

C1 =
L4(α2 − 4α+ 6)C1P

Γ(α+ 4)
, C2 =

L2C1 1
3
CbT

α

Γ(α+ 1)
, C3 =

L3C1 2
3
CcT

α

Γ(α+ 1)
,

C4 =
C

Γ(α)
, C5 =

L1CaT
α + L2C2 1

3
CbT

α + L3C2 2
3
CcT

α

Γ(α+ 1)
,

C6 =
L4(α2 − 4α+ 6)C2P

Γ(α+ 4)
.

In view of the relations q = min{α + δ1, δ2, min{δ2, δ3}, δ4}, and q < q + α and
by choosing C sufficiently large, the above equation takes the form:

|Ek+1| ≤ Chq.

3.2. Truncation error analysis of the improved algorithm

In this subsection, we presents some results concerning the error bound for the
improved predictor-corrector approach.

Lemma 3.9. For the weights of the the main predictor- corrector algorithm, the
following inequalities hold:

k∑
j=0

∣∣∣IIj,k+ 1
3

∣∣∣ ≤ CII
α Tα,

k∑
j=0

∣∣∣Ilj,k+ 1
3

∣∣∣ ≤ CIl
α Tα,

k−1∑
j=0

∣∣∣IMj,k+ 1
3

∣∣∣ ≤ CIM
α Tα,

k∑
j=0

∣∣∣Nj,k+ 1
3

∣∣∣ ≤ CN
α Tα,

k∑
j=0

∣∣∣Ipj,k+ 2
3

∣∣∣ ≤ CIp
α Tα,

k∑
j=0

∣∣∣Iqj,k+ 2
3

∣∣∣ ≤ CIq
α Tα,

k∑
j=0

∣∣∣Irj,k+ 2
3

∣∣∣ ≤ CIr
α Tα,

k∑
j=0

∣∣∣vj,k+ 1
3

∣∣∣ ≤ Cv
α T

α,

where the constants c∗ > 0 and cP∗ > 0 are independent of all discretization param-
eters.

We do not provide the proof of this lemma as it is similar to that of Lemma 3.1.
The errors for the compound Simpson’s 3/8 formulas (2.24) and (2.34) are given by
the following Lemmas. We omit the proof for these Lemmas as those are similar to
that of the Lemma 3.2.
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Lemma 3.10. Let F (τ) ∈ C4[0, T ]. Then∣∣∣∣ ∫ tk

0

(tk+ 1
3
− τ)α−1

(
F (τ)− F̃1(τ)

)
dτ

∣∣∣∣ ≤ Ch4. (3.19)

Lemma 3.11. Let F (τ) ∈ C4[0, T ]. Then∣∣∣∣ ∫ tk

0

(tk+ 2
3
− τ)α−1

(
F (τ)− F̃1(τ)

)
dτ

∣∣∣∣ ≤ Ch4. (3.20)

The following lemma presents the error bound for the compound Simpson’s 1/3
formula (2.34).

Lemma 3.12. Let F (τ) ∈ C3[0, T ]. Then∣∣∣∣ ∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1

(
F (τ)− F̃2(τ)

)
dτ

∣∣∣∣ ≤ Ch3+α. (3.21)

Proof. By Taylor theorem, for all τ ∈ [tk, tk+ 2
3
], there exist ξj(τ) ∈ [tk, tk+ 2

3
] such

that

I ≤ M3

3!

∣∣∣∣ ∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1(τ − tk)(τ − tk+ 1

3
)(τ − tk+ 2

3
)dτ

∣∣∣∣
=

(
M3

3!

∣∣∣∣ 2α+23−α−3(α− 1)

(α+ 1)(α+ 2)(α+ 3)

∣∣∣∣)hα+3, M3 = sup
t∈[0,T ]

∣∣∣F (3)(t)
∣∣∣ .

The error for the trapezoidal quadrature formula (2.24) is described in the fol-
lowing Lemma, whose proof is omitted as it is similar to that of Eq. (3.3).

Lemma 3.13. Let F (τ) ∈ C2[0, T ]. Then∣∣∣∣ ∫ t
k+1

3

tk

(tk+ 1
3
− τ)α−1

(
F (τ)− F̃2(τ)

)
dτ

∣∣∣∣ ≤ Ch2+α. (3.22)

The errors for the rectangle quadrature formulas (2.31) and (2.41) are given by
the following Lemmas.

Lemma 3.14. Let F (τ) ∈ C1[0, T ]. Then∣∣∣∣ ∫ tk

0

(tk+ 1
3
− τ)α−1

(
F (τ)− F̃ (τ)

)
dτ

∣∣∣∣ ≤ Ch, (3.23)∣∣∣∣ ∫ t
k+1

3

tk

(tk+ 1
3
− τ)α−1

(
F (τ)− F̂ (τ)

)
dτ

∣∣∣∣ ≤ Ch1+α. (3.24)

Lemma 3.15. Let F (τ) ∈ C1[0, T ]. Then∣∣∣∣ ∫ tk

0

(tk+ 2
3
− τ)α−1

(
F (τ)− F̃ (τ)

)
dτ

∣∣∣∣ ≤ Ch, (3.25)∣∣∣∣ ∫ t
k+2

3

tk

(tk+ 2
3
− τ)α−1

(
F (τ)− F̂ (τ)

)
dτ

∣∣∣∣ ≤ Ch1+α. (3.26)
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The proof for Lemmas 3.14 and 3.15 is similar to that Lemma 3.4. The following
two Lemmas can be proven by employing the arguments for proof of Lemma (3.6).

Lemma 3.16. Assume that the solution y of the initial value problem satisfies the
inequality∣∣∣∣∣∣

∫ t
k+1

3

0

(tk+ 1
3
− t)α−1C

0 D
α
t y(t)dt−

k∑
j=0

Nj,k+ 1
3

C
0 D

α
t y(tj)

∣∣∣∣∣∣ ≤ Chδ2 , (3.27)

where δ2 > 0. Then, for C1P 1
3
, C2P 1

3
> 0, we have∣∣∣EPk+ 1

3

∣∣∣ ≤ C1P 1
3
hδ2 + C2P 1

3
max

0≤j≤k
|Ej | . (3.28)

Lemma 3.17. Assume that the solution y of the initial value problem satisfies the
inequality:∣∣∣∣∣∣

∫ t
k+2

3

0

(tk+ 2
3
− t)α−1 C

0 D
α
t y(t)dt−

k∑
j=0

vj,k+ 2
3

C
0 D

α
t y(tj)

∣∣∣∣∣∣ ≤ Chδ3 , (3.29)

where δ3 > 0. Then, for C1P 2
3
, C2P 2

3
> 0, we have∣∣∣EPk+ 2

3

∣∣∣ ≤ C1P 2
3
hδ3 + C2P 2

3
max

0≤j≤k
|Ej | . (3.30)

Lemma 3.18. Let assumptions (3.27) and (3.29) (of Lemmas 3.16 and 3.17, re-
spectively) be satisfied and that the solution y of the initial value problem is such
that∣∣∣∣∣

∫ t
k+2

3

0

(tk+ 2
3
− t)α−1 C

0 D
α
t y(t)dt−

k∑
j=0

Ij,k+ 1
3

C
0 D

α
t (yj)

−
k∑
j=0

lj,k+ 1
3

C
0 D

α
t (yj+ 1

3
)−

k−1∑
j=0

Mj,k+ 1
3

C
0 D

α
t (yj+ 2

3
)

∣∣∣∣∣ ≤ Chδ5 , (3.31)

∫ t
k+2

3

0

(tk+ 2
3
− t)α−1 C

0 D
α
t y(t)dt−

k∑
j=0

pj,k+ 2
3

C
0 D

α
t y(tj)

−
k∑
j=0

qj,k+ 2
3

C
0 D

α
t y(tj+ 1

3
)−

k−1∑
j=0

rj,k+ 2
3

C
0 D

α
t y(tj+ 2

3
)

∣∣∣∣∣ ≤ Chδ6 , (3.32)

where δ5, δ6 > 0. Moreover assume that

max
0≤j≤k

|Ej | ≤ C0 h
q. (3.33)

Then

max
0≤j≤k

∣∣∣Ej+ 1
3

∣∣∣ ≤ C1 1
3
hp1 + C2 1

3
max

0≤j≤k
|Ej | , (3.34)

max
0≤j≤k

∣∣∣Ej+ 2
3

∣∣∣ ≤ C1 2
3
hp2 + C2 2

3
max

0≤j≤k
|Ej | , (3.35)

for all j = 0, 1, 2, . . . , k, where p1 = min{α + δ2, δ5, p2} and p2 = min{α +
δ3, δ6, p1}.
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Proof. We make use of mathematical induction to establish this result. In view of
the given initial condition, the induction basis (j = 0) is presupposed. Assume that
(3.34) and (3.35) hold for j = 0, 1, 2, ..., k− 1. Then it will be shown that the given
inequities hold true for j = k. Let us first consider Eq. (3.34). By construction of
yk+ 1

3
, Eq. (2.3) and the Lipschitz property of F (τ), we have

∣∣∣Ek+ 1
3

∣∣∣ ≤ 1

Γ(α)

[∣∣∣∣ ∫ t
k+1

3

0

(tk+ 1
3
− τ)α−1F (τ)dτ −

k∑
j=0

Ij,k+ 1
3
F (tj)

−
k∑
j=0

lj,k+ 1
3
F (tj+ 1

3
)−

k−1∑
j=0

Mj,k+ 1
3
F (tj+ 2

3
)

∣∣∣∣+ L1 max
0≤j≤k

|Ej |
k∑
j=0

∣∣∣Ij,k+ 1
3

∣∣∣
+ L2 max

0≤j≤k−1

∣∣∣Ej+ 1
3

∣∣∣ k−1∑
j=0

∣∣∣lj,k+ 1
3

∣∣∣+ L3 max
0≤j≤k−1

∣∣∣Ej+ 2
3

∣∣∣ k−1∑
j=0

∣∣∣Mj,k+ 1
3

∣∣∣
+ L4

∣∣∣lk,k+ 1
3

∣∣∣ ∣∣∣EPk+ 1
3

∣∣∣ ].
In view of Lemmas 3.9 and 3.16, the induction hypothesis, and the value of lk,k+ 1

3

given by (2.27), the above inequality leads to∣∣∣Ek+ 1
3

∣∣∣ ≤ 1

Γ(α)

[
Chδ5 + L1C0h

q

(
CI
α
Tα
)

+ L2

(
C1 1

3
hp1 + C2 1

3
hq
)(Cl

α
Tα
)

+L3

(
C1 2

3
hp2 +C2 2

3
hq
)(CM

α
Tα
)

+L4

∣∣∣∣hα(3)−α

α(α+1)

∣∣∣∣(C1P 1
3
hδ2 +C2P 1

3
C0h

q
)]

=C1h
δ2+α + C2h

δ5 + C3h
p1 + C4h

p2 + C5h
q + C6h

q+α,

where

C1 =
L4(3)−αC1P 1

3

Γ(α+ 2)
, C2 =

C

Γ(α)
, C3 =

L2C1 1
3
CMT

α

Γ(α+ 1)
, C4 =

L3C1 2
3
ClT

α

Γ(α+ 1)
,

C5 =
L1C0CIT

α

Γ(α+ 1)
+
L2C2 1

3
ClT

α

Γ(α+ 1)
+
L3C2 2

3
CMT

α

Γ(α+ 1)
, C6 =

L4(3)−αC2P 1
3

Γ(α+ 2)
.

By the relations p1 = min{α+ δ2, δ5, p2}, and q < q+α together with sufficiently

large values of C1 1
3

and C2 1
3
, the above inequality can be written as

∣∣∣Ek+ 1
3

∣∣∣ ≤
C1 1

3
hp1 + C2 1

3
hq. Thus Eq. (3.34) holds true for j = 0, 1, 2, . . . , k.

Next we prove the validity of Eq. (3.35). Observe that

∣∣∣Ek+ 2
3

∣∣∣ ≤ 1

Γ(α)

[∣∣∣∣∫ t
k+2

3

0

(tk+ 2
3
−τ)α−1F (τ)dτ−

k∑
j=0

Ipj,k+ 2
3
F (tj)−

k∑
j=0

Iqj,k+ 2
3
F (tj+ 1

3
)

−
k∑
j=0

Irj,k+ 2
3
F (tj+ 2

3
)

∣∣∣∣+ L1 max
0≤j≤k

|Ej |
k∑
j=0

∣∣∣pj,k+ 2
3

∣∣∣+ L2 max
0≤j≤k

∣∣∣Ej+ 1
3

∣∣∣
k−1∑
j=0

∣∣∣qj,k+ 2
3

∣∣∣+ L3 max
0≤j≤k−1

∣∣∣Ej+ 2
3

∣∣∣ k−1∑
j=0

∣∣∣rj,k+ 1
3

∣∣∣+ L4

∣∣∣rk,k+ 2
3

∣∣∣ ∣∣∣EPk+ 2
3

∣∣∣ ],
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which, on using Lemmas 3.9 and 3.17, Eq. (3.34), the induction hypothesis, and
the value of rk,k+ 1

3
from (2.38), leads to∣∣∣Ek+ 2

3

∣∣∣ ≤ 1

Γ(α)

[
Chδ6 + L1C0h

q

(
Cp
α
Tα
)

+ L2

(
C1 1

3
hp1 + C2 1

3
hq
)(Cq

α
Tα
)

+ L3

(
C1 2

3
hp2 + C2 2

3
hq
)(Cr

α
Tα
)

+ L4

∣∣∣∣∣ (2− α)
(

2
3

)α
hα

α(α+ 1)(α+ 2)

∣∣∣∣∣ (C1P 2
3
hδ3

+ C2P 2
3
C0h

q
)]

= C1h
δ3+α + C2h

δ6 + C3h
p1 + C4h

p2 + C5h
q + C6h

q+α,

where

C1 =
L4(2− α)

(
2
3

)α
C1P 2

3

Γ(α+ 3)
, C2 =

C

Γ(α)
, C3 =

L2C1 1
3
CqT

α

Γ(α+ 1)
, C4 = +

L3C1 2
3
CIrT

α

Γ(α+ 1)
,

C5 =
L1C0CpT

α

Γ(α+ 1)
+
L2C2 1

3
CqT

α

Γ(α+ 1)
+
L3C2 2

3
CrT

α

Γ(α+ 1)
, C6 =

L4(2− α)
(

2
3

)α
C2P 2

3

Γ(α+ 3)
.

In view of the relations p2 = min{α+δ3, δ6, p1}, q < q+α and fixing C1 2
3

and C2 2
3

to

be sufficiently large, the above inequality takes the form:
∣∣∣Ek+ 2

3

∣∣∣ ≤ C1 2
3
hp2 +C2 2

3
hq.

In consequence we deduce that Eq. (3.35) holds true for j = 0, 1, 2, . . . , k. This
completes the proof.

Utilizing the error estimates obtained in the preceding subsection, we present the
truncation error analysis for the improved predictor-corrector approaches described
by (2.20), (2.23), (2.29), (2.33), (2.39) and (2.43).

Theorem 3.2. Let the assumptions (3.16), (3.10), (3.27), (3.29), (3.31) and (3.32)
(of Theorem 3.1 and Lemmas 3.6, 3.16, 3.17 and 3.18, respectively) be satisfied.
Then, for the improved algorithm, we have

max
0≤j≤N

|Ej | = O(hq),

where q = min{α+ δ1, p1, p2, δ4}, and N =
[
T
h

]
.

The proof is similar to that of Theorem 3.1, so it is omitted.

4. Stability analysis

An important characteristic of a numerical method applied to approximate the
solution of a given initial value problem is its stability, that is, a small change in
the initial data results in a small change in the computed solutions [4, 28]. In this
section, we discuss the stability of the main algorithm and the improved algorithm
of predictor-corrector method. For that, let us set Ẽl = yl − ỹl and ẼPl = yl − ỹPl .

4.1. Stability analysis of the main algorithm

Theorem 4.1. Let yk+1 and ỹk+1 denote numerical solutions given by (2.20) with

the initial conditions y
(i)
0 and ỹ

(i)
0 respectively. Then

|yk+1 − ỹk+1| =
∣∣∣Ẽk+1

∣∣∣ ≤ K ‖y0 − ỹ0‖∞ , (4.1)
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for any k, that is, the main predictor-corrector scheme described by (2.7), ( 2.13),
( 2.20) and (2.23) is numerically stable.

Proof. We make use of mathematical induction to complete the proof. According
to the given initial condition, the induction basis (j = 0) is presupposed. Suppose
that Eq. (4.1) is true for j = 0, 1, 2, ..., k. Then we have to show that the inequality
indeed holds for j = k + 1. We first consider the following formulae for ypk+1, yk+ 1

3

and yk+ 2
3

with the predictor step ypk+1:

∣∣yPk+1 − ỹPk+1

∣∣ =
∣∣∣ẼPk+1

∣∣∣ =

∣∣∣∣∣
dαe−1∑
i=0

tik+1

i!
y(i)(0) +

1

Γ(α)

k∑
j=0

dj,k+1f(tj , yj)

∣∣∣∣∣
−

∣∣∣∣∣
dαe−1∑
i=0

tik+1

i!
ỹ(i)(0) +

1

Γ(α)

k∑
j=0

dj,k+1f(tj , ỹj)

∣∣∣∣∣,
∣∣∣ẼPk+1

∣∣∣ ≤ dαe−1∑
i=0

tik+1

i!

∥∥∥Ẽ0

∥∥∥
∞

+
L1

Γ(α)

k∑
j=0

|dj,k+1|
∣∣∣Ẽj∣∣∣

≤ K1P

∥∥∥Ẽ0

∥∥∥
∞

+K2P max
0≤j≤k

∣∣∣Ẽj∣∣∣ . (4.2)

In a similar manner, from Eq. (2.7), we can obtain∣∣∣Ẽk+ 1
3

∣∣∣ =
∣∣∣Ẽk+ 1

3

∣∣∣ ≤ K1 1
3

∥∥∥Ẽ0

∥∥∥
∞

+K2 1
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ . (4.3)

By Eqs. (2.13) and (4.3), Lemma 3.1 and the Lipschitz property of F (τ) for yk+ 2
3
,

we get

∣∣∣Ẽk+ 2
3

∣∣∣ ≤ dαe−1∑
i=0

ti
k+ 2

3

i!

∥∥∥Ẽ0

∥∥∥
∞

+
L1

Γ(α)

k∑
j=0

∣∣∣fj,k+ 2
3

∣∣∣ ∣∣∣Ẽj∣∣∣+
L2

Γ(α)

k∑
j=0

∣∣∣hj,k+ 2
3

∣∣∣ ∣∣∣Ẽj+ 1
3

∣∣∣ .
∣∣∣Ẽk+ 2

3

∣∣∣ ≤ dαe−1∑
i=0

ti
k+ 2

3

i!

∥∥∥Ẽ0

∥∥∥
∞

+
L1

Γ(α)

k∑
j=0

∣∣∣fj,k+ 2
3

∣∣∣ max
0≤j≤k

∣∣∣Ẽj∣∣∣+
L2

Γ(α)

k∑
j=0

∣∣∣hj,k+ 2
3

∣∣∣(
K1 1

3

∥∥∥Ẽ0

∥∥∥
∞

+K2 1
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ ) ≤ K1 2
3

∥∥∥Ẽ0

∥∥∥
∞

+K2 2
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ .
(4.4)

Similarly, for yk+1, we have

∣∣∣Ẽk+1

∣∣∣ ≤ dαe−1∑
i=0

tik+1

i!

∥∥∥Ẽ0

∥∥∥
∞

+
L1

Γ(α)

k∑
j=0

|aj,k+1| max
0≤j≤k

∣∣∣Ẽj∣∣∣+ L2

Γ(α)

k∑
j=0

|bj,k+1|
∣∣∣Ẽj+ 1

3

∣∣∣
+

L3

Γ(α)

k∑
j=0

|cj,k+1|
∣∣∣Ẽj+ 2

3

∣∣∣+
L4

Γ(α)
|ak+1,k+1|

∣∣∣ẼPk+1

∣∣∣ ,
∣∣∣Ẽk+1

∣∣∣ ≤ dαe−1∑
i=0

tik+1

i!

∥∥∥Ẽ0

∥∥∥
∞

+
L1

Γ(α)

(
Ca
α
Tα
)

max
0≤j≤k

∣∣∣Ẽj∣∣∣
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+
L2

Γ(α)

(
Cb
α
Tα
)(

K1 1
3

∥∥∥Ẽ0

∥∥∥
∞

+K2 1
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ )
+

L3

Γ(α)

(
Cc
α
Tα
)(

K1 2
3

∥∥∥Ẽ0

∥∥∥
∞

+K2 2
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ )
+

L4

Γ(α)

∣∣∣∣ α2 − 4α+ 6

α(α+ 1)(α+ 2)(α+ 3)
hα
∣∣∣∣ (K1P

∥∥∥Ẽ0

∥∥∥
∞

+K2P max
0≤j≤k

∣∣∣Ẽj∣∣∣ ),
where we have used Lemma 3.1, Eqs. (4.2), (4.3) and (4.4). Simplifying the above
equation and applying the induction hypothesis leads to the completion of the proof.

4.2. Stability analysis of the improved algorithm

This subsection is devoted to the stability analysis of the improved algorithm.

Lemma 4.1. Let yk+ 1
3

and ỹk+ 1
3

be the numerical solutions given by (2.29), and

yk+ 2
3

and ỹk+ 2
3

represent numerical solutions given by (2.39), with the initial con-

ditions y
(i)
0 and ỹ

(i)
0 , respectively. Then

max
0≤j≤k

∣∣∣Ẽj+ 1
3

∣∣∣ ≤ K1 1
3

∥∥∥Ẽ0

∥∥∥
∞

+K2 1
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ , (4.5)

max
0≤j≤k

∣∣∣Ẽj+ 2
3

∣∣∣ ≤ K1 2
3

∥∥∥Ẽ0

∥∥∥
∞

+K2 2
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ . (4.6)

Proof. The principle of mathematical induction is the main tool of the proof. In
view of the given initial condition, the induction basis is presupposed. Suppose that
Eqs. (4.5) and (4.6) hold for j = 0, 1, 2, ..., k − 1. Similar to (4.2), one can achieve
the following inequalities:∣∣∣ẼPk+ 1

3

∣∣∣ ≤ K1P 1
3

∥∥∥Ẽ0

∥∥∥
∞

+K2P 1
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ , (4.7)∣∣∣ẼPk+ 2
3

∣∣∣ ≤ K1P 2
3

∥∥∥Ẽ0

∥∥∥
∞

+K2P 2
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ . (4.8)

Using Lemma 3.9, Eq. (4.7) and the induction hypothesis, one can prove Eq. (4.5)
as follows.

∣∣∣Ẽk+ 1
3

∣∣∣ ≤ dαe−1∑
i=0

ti
k+ 1

3

i!

∥∥∥Ẽ0

∥∥∥
∞

+
L1

Γ(α)

k∑
j=0

∣∣∣IIj,k+ 1
3

∣∣∣ max
0≤j≤k

∣∣∣Ẽj∣∣∣+
L2

Γ(α)

k−1∑
j=0

∣∣∣Ilj,k+ 1
3

∣∣∣
(
K1 1

3

∥∥∥Ẽ0

∥∥∥
∞

+K2 1
3

max
0≤j≤k−1

∣∣∣Ẽj∣∣∣ )+
L3

Γ(α)

k−1∑
j=0

∣∣∣IMj,k+ 1
3

∣∣∣ (K1 2
3

∥∥∥Ẽ0

∥∥∥
∞

+K2 2
3

max
0≤j≤k−1

∣∣∣Ẽj∣∣∣ )+
L4

Γ(α)

∣∣∣Ilk,k+ 1
3

∣∣∣ (K1P 1
3

∥∥∥Ẽ0

∥∥∥
∞

+K2P 1
3

max
0≤j≤k

∣∣∣Ẽj∣∣∣ ).
(4.9)

Next Eq. (4.6) can be proven by utilizing Lemma 3.9, Eqs. (4.6) and (4.9) and the
induction hypothesise.
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Theorem 4.2. Let yk+1 and ỹk+1 denote numerical solutions given by (2.20) of

the given problem with the initial conditions y
(i)
0 and ỹ

(i)
0 , respectively. Then

|yk+1 − ỹk+1| ≤ K ‖y0 − ỹ0‖∞ , (4.10)

for any k, that is, the improved predictor-corrector scheme described by (2.20),
(2.23), (2.29), (2.33), (2.39) and (2.43) is numerically stable.

We do not provide the proof as it is similar to that of Theorem (4.1).

5. Numerical results and discussion

In this section, we illustrate and verify the obtained numerical schemes with the aid
of examples.

Example 5.1. Consider the following initial value problem

C
0 D

α
t y(t) =

t2−α

Γ(3− α)
− y(t) + t2, y(0) = 0. (5.1)

The initial value problem (5.1) is solved by the main predictor-corrector scheme for
α = 0.9. The exact Solution of the initial value problem (5.1) is y(t) = t2. By the
main scheme of predictor-corrector formula, the numerical solutions are obtained
and the comparison with the absolute errors of Ref. [31] is presented at different
positions. From the results listed in Table. 1, the absolute errors for the presented
main scheme (E1) is found to be less than the one obtainted in [31] (E2). In all
given cases, one can note that the main predictor-corrector scheme is more accurate.

Table 1. The absolute errors of the present main scheme (E1) and numerical method of [31] (E2) for
(5.1) with α = 0.9.

t = 1.008 t = 5.008 t = 7.008

h E1 E2 E1 E2 E1 E2

0.016 3.3322e-04 0.025858 0.0222 0.096058 0.0233 0.128336
0.008 1.8320e-04 0.020939 0.0110 0.088030 0.0125 0.120168
0.004 9.5437e-05 0.018472 0.0015 0.084016 0.0196 0.116084

Example 5.2. Consider the problem

C
0 D

α
t y(t) + y4(t) =

Γ(2α+ 1)tα

Γ(α+ 1)
− 2t2−α

Γ(3− α)
+
(
t2α − t2

)4
, y(0) = 0. (5.2)

The initial value problem (5.2) is solved by the improved predictor-corrector scheme
and the fractional predictor-corrector Adams method [22] for α = 0.75, h = 0.1.
Exact solution for the problem (5.2) is y(t) = t2α− t2. Solutions are plotted in Fig.
1. All the three solutions coincide in this case and it is clear that both the methods
are in very good agreement.

The absolute errors at different times for the fractional Adams method and the
improved algorithm are given in Table 2, which show that the improved algorithm
is more accurate than the fractional Adams method.
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Figure 1. Solutions of (5.2) with α = 0.75, h = 0.1.

Table 2. The absolute errors of the present improved algorithm and fractional Adams method for (5.2)
with α = 0.75, h = 0.1.

t = 0.5 t = 1 t = 1.5 t = 2
Fractional Adams method 0.0036 0.0034 0.0019 0.0975
Improved algorithm 1.4824e-04 1.2566e-04 1.8503e-04 0.0088

Example 5.3 (Bhalekar-Gejji System). Let us consider a fractional order chaotic
system due to Bhalekar and Daftardar-Gejji [7] given by

Dαx = ωx− y2,

Dαy = µ(z − y),

Dαz = ay − bz + xy,

(5.3)

with ω = −2.667, µ = 10, a = 27.3, b = 1. The fractional order Bhalekar-Gejji
System is solved numerically by improved predictor-corrector scheme. The phase
portraits of system (5.3) are shown in Figs. 2–3 for α = 0.88, 0.89, with initial
conditions (0, 10, 10) and the step size h = 0.02. One can observe that the given
system shows stable orbits for α = 0.88 and indicates chaotic behavior for α = 0.89.
The simulation results obtained for the Bhalekar-Gejji System are in agreement
with the ones presented in Ref. [12].

6. Conclusions

A new predictor-corrector method to solve fractional order non-linear differential
equations is established. The possible improvements for the fractional predictor-
corrector algorithm are also discussed. The local truncation errors and the stability
analysis for the new schemes are derived. Validation tests presented in the paper
have shown the applicability and efficiency of the proposed methods. It is shown
that the results obtained by using the obtained schemes are in complete agreement
with the exact solution and the results obtained by other methods [31] and [22]. The
algorithm developed in this paper is applicable to fractional differential equations
as well as to fractional order systems. As an application, the improved numerical
algorithm is applied to show the chaotic behavior and dynamics of Bhalekar and
Daftardar-Gejji fractional order nonlinear system.
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Figure 2. Waveform of the non-linear system (5.3) for α = 0.88.
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Figure 3. Waveform of the non-linear system (5.3) for α = 0.89.
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