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Abstract In this article, we extend the results concerning the deficiency
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1. Introduction

The deficiency index problem is one of the most important problems in spectral
theory of differential operators. The problem on the defect index of the second-
order differential equation

(τy)(x) := − (p (x) y′ (x))
′
+ v (x) y (x) = λy(x), x ∈ [a, b),

was first studied by Hermann Weyl [31]. In [31], Weyl shows that there may be
close connections between the deficiency index problem and the problem of de-
scribing the spectrum of the minimal operator associated with a formal ordinary
selfadjoint differential operator. Weyl was followed by Titchmarsh [30] and others
mathematicians ( [7,9–11,20,23,26,28,30,32]). The defect index d of τ is equal to the
number of linearly independent square integrable solutions of equation τy = λy for
each λ ∈ C, Imλ 6= 0. The deficiency index problem is the problem of determining
d in terms of p(x) and v(x). Since the number of linearly independent self-adjoint
boundary conditions required is given by the deficiency index, we study the defi-
ciency index of this operator if we investigate the spectra of selfadjoint extensions of
an operator. It is well known that a symmetric operator has a self-adjoint extension
if and only if its defect indices are equal. So it is very important to determine the
defect indices of the operator in the study of self-adjoint extensions of a minimal
operator (see [2, 3, 7, 9, 26,30]).

On the other hand, Hahn [12, 13] introduced the Hahn difference operator
in 1949 in order to generalize two well-known difference operators, the quantum
q−difference operator (see [17]) and the forward difference operator (see [18, 19]).
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The Hahn difference operator is defined by (ω > 0, q ∈ (0, 1)).

Dω,qf (x) =
f (ω + qx)− f (x)

ω + (q − 1)x
.

By using this operator, researchers can study the construction of families of or-
thogonal polynomials and approximation problems (see, for example, [4, 8, 21-22,
27]). Recently, new developments of the theory and applications of Hahn difference
operator were made. Hamza et al. [15] studied the theory of linear Hahn difference
equations. The authors also study the existence and uniqueness of solution for the
initial value problems for Hahn difference equations. In [16], the authors investigat-
ed Leibniz’s rule and Fubini’s theorem associated with Hahn difference operator.
In [29], the author study the nonlocal boundary value problem for nonlinear Hah-
n difference equation. Annaby et al. [6] study the regular Hahn-Sturm-Liouville
problem

−1

q
D−ωq ,

1
q
Dω,qy (x) + p (x) y (x) = λy (x) ,

a1y (ω0) + a2D−ωq ,
1
q
y (ω0) = 0,

b1y (b) + b2D−ωq ,
1
q
y (b) = 0,

where 0 < ω0 ≤ x < ∞, α ∈ C, ai, bi ∈ R := (−∞,∞), i = 1, 2, and p (.)
is a real-valued continuous function at ω0 defined on [ω0, b]. They discussed the
formulation of the self-adjoint operator and the properties of the eigenvalues and
the eigenfunctions. Furthermore, they construct the Green’s function and give an
eigenfunction expansion theorem.

There is well known that the classical Sturm-Liouville eigenvalue problem is
readily formulated as a constrained variational principle, namely as the isoperimetric
problem, and many general properties of the eigenvalues can be derived using the
variational principle. In this context, Malinowska and Torres [24] studied the Hahn
quantum variational calculus. Necessary and sufficient optimality conditions for the
basic, isoperimetric, and Hahn quantum Lagrange problems, are given. They also
proved the validity of Leitmann’s direct method for the Hahn quantum variational
calculus. Later, in [25], the authors developed the variational Hahn calculus. They
investigated problems of the calculus of variations using Hahn’s difference operator
and the Jackson-Nörlund integral.

To the best of our knowledge, there exists no work on the indices defect theo-
ry of the singular Hahn difference equations of the classical Sturm-Liouville type.
Motivated by the discussion above, the defect index of the singular Hahn-Sturm-
Liouville equations is studied in this paper. These results can be useful for the
study of spectrum of Hahn-Sturm-Liouville operators. Hence, our study could fill
an important gap in the spectral theory of the singular Hahn difference equations
of the classical Sturm-Liouville type.

2. Preliminaries

Now, we will give some knowledge about Hahn difference operators [5-6, 12-13].
Throughout the paper, we let q ∈ (0, 1) and ω > 0.

Define ω0 := ω/ (1− q) and let I be a real interval containing ω0.
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Definition 2.1 ( [12, 13]). Let f : I → R be a function. The Hahn difference
operator is defined by

Dω,qf (x) =


f(ω+qx)−f(x)
ω+(q−1)x , x 6= ω0,

f ′ (ω0) , x = ω0,

provided that f is differentiable at ω0. In this case, we callDω,qf, the ω, q−derivative
of f.

Remark 2.1. The Hahn difference operator unifies two well known operators.
When q → 1, we get the forward difference operator, which is defined by

∆ωf (x) :=
f (ω + x)− f (x)

(ω + x)− x
, x ∈ R.

When ω → 0, we get the Jackson q− difference operator, which is defined by

Dqf (x) :=
f (qx)− f (x)

(qx)− x
, x 6= 0.

Furthermore, under appropriate conditions, we have

lim
q→1
ω→0

Dω,qf (x) = f ′ (x) .

In what follows, we present some important properties of the ω, q− derivative.

Theorem 2.1 ( [5]). Let f, g : I → R be ω, q−differentiable at x ∈ I and h (x) :=
ω + qx, then we have for all x ∈ I :

Dω,q (af + bg) (x) = aDω,qf (x) + bDω,qg (x) , a, b ∈ I,
Dω,q (fg) (x) = Dω,q (f (x)) g (x) + f (ω + xq)Dω,qg (x) ,

Dω,q

(
f

g

)
(x) =

Dω,q (f (x)) g (x)− f (x)Dω,qg (x)

g (x) g (ω + xq)
,

Dω,qf
(
h−1 (x)

)
= D−ωq−1,q−1f (x) .

The concept of the ω, q−integral of the function f can be defined as follows.

Definition 2.2 (Jackson-Nörlund Integral [5]). Let f : I → R be a function and
a, b, ω0 ∈ I. We define ω, q−integral of the function f from a to b by∫ b

a

f (x) dω,q (x) :=

∫ b

ω0

f (x) dω,q (x)−
∫ a

ω0

f (x) dω,q (x) ,

where ∫ x

ω0

f (t) dω,q (t) := ((1− q)x− ω)

∞∑
n=0

qnf

(
ω

1− qn

1− q
+ xqn

)
, x ∈ I

provided that the series converges at x = a and x = b. In this case, f is called
ω, q−integrable on [a, b].
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Similarly, one can define the ω, q−integration for a function f over (ω0,∞) by∫ ∞
ω0

f (x) dω,q (x) := lim
b→∞

∫ b

ω0

f (x) dω,q (x) .

The following properties of ω, q−integration can be found in [5].

Theorem 2.2 ( [5]). Let f, g : I → R be ω, q−integrable on I, a, b, c ∈ I, a < c <
b and α, β ∈ R. Then the following formulas hold:∫ b

a

{αf (x) + βg (x)} dω,q (x) = α

∫ b

a

f (x) dω,q (x) + β

∫ b

a

g (x) dω,q (x) ,∫ a

a

f (x) dω,q (x) = 0,∫ b

a

f (x) dω,q (x) =

∫ c

a

f (x) dω,q (x) +

∫ b

c

f (x) dω,q (x) ,∫ b

a

f (x) dω,q (x) = −
∫ a

b

f (x) dω,q (x) .

Next, we present the ω, q−integration by parts.

Lemma 2.1 ( [5]). Let f, g : I → R be ω, q− integrable on I, a, b ∈ I, and
a < b. Then the following formula holds:∫ b

a

f (x)Dω,qg (x) dω,q (x) +

∫ b

a

g (ω + qx)Dω,qf (x) dω,q (x)

=f (b) g (b)− f (a) g (a) .

The next result is the fundamental theorem of Hahn calculus.

Theorem 2.3 ( [5]). Let f : I → R be continuous at ω0. Define

F (x) :=

∫ x

ω0

f (t) dω,q (t) , x ∈ I.

ThenF is continuous at ω0. Moreover, Dω,qF (x) exists for every x∈I and Dω,qF (x)=
f (x) . Conversely, ∫ b

a

Dω,qF (x) dω,q (x) = f (b)− f (a) .

Let L2
ω,q((ω0,∞), r) be the space of all complex-valued functions defined on

[ω0,∞) such that

‖f‖ :=

(∫ ∞
ω0

|f (x)|2 r (x) dω,qx

)1/2

< +∞,

where r is real-valued functions defined on [ω0,∞) and r (x) > 0 for all x ∈
[ω0,∞). The space L2

ω,q((ω0,∞), r) is a separable Hilbert space with the inner
product

(f, g) :=

∫ ∞
ω0

f (x) g (x)r (x) dω,qx, f, g ∈ L2
ω,q((ω0,∞), r)

(see [5]).
The ω, q−Wronskian of y (.) , z (.) is defined to be

Wω,q (y, z) (x) := y (x)Dω,qz (x)− z (x)Dω,qy (x) , x ∈ [ω0,∞). (2.1)
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3. Main Results

Consider the symmetric Hahn-Sturm-Liouville expression L determined by

Ly :=
1

r (x)

[
−q−1D−ωq−1,q−1 (p(x)Dω,qy (x)) + v (x) y (x)

]
, x ∈ (ω0,∞), (3.1)

where λ is a complex parameter, p, v, w are real-valued continuous functions at ω0

defined on [ω0,∞), and p(x) > 0, r (x) > 0, x ∈ [ω0,∞).
The singular Hahn-Sturm-Liouville equation

Ly = λy on (ω0,∞), (3.2)

where λ is a complex parameter, may be classified at the singular point∞ as either
limit-point (i.e., the deficiency indices of the operator L are equal to (1, 1)) or limit-
circle (i.e., the deficiency indices of the operator L are equal to (2, 2)) according
to whether the equation (3.2) has either at most one linearly independent solution
in L2

ω,q((ω0,∞), r) or two independent solutions in L2
ω,q((ω0,∞), r). The deficiency

index d of Hahn-Sturm-Liouville expression can be interpreted as the number of
linearly independent solutions of the equation (3.2) which lie in L2

ω,q((ω0,∞), r)
( [2, 3, 7, 9, 26,30]).

The equation (3.2) is called limit-point type at infinity if there is a solution y of
the equation Ly = 0 which is not in L2

ω,q((ω0,∞), r), i.e.,∫ ∞
ω0

|y(x)|2 r (x) dω,qx = +∞,

otherwise, i.e., if all solutions of the equation (3.2) are in L2
ω,q((ω0,∞), r), the

equation (3.2) is called limit-circle type at infinity ( [2, 3, 7, 9, 26,30]).
The maximal and minimal operators associated with a symmetric Hahn-Sturm-

Liouville expression L in the Hilbert space L2
ω,q((ω0,∞), r) are defined as follows:

Definition 3.1. The linear set Dmax consisting of all vectors y ∈ L2
ω,q((ω0,∞), r)

such that y and pDω,qy are continuous functions at ω0 defined on [ω0,∞) and
Ly ∈ L2

ω,q((ω0,∞), r). We define the maximal operator Lmax on Dmax by the
equality Lmaxy = Ly. Let Dmin be the linear set of all vectors y ∈ Dmax satisfying
the conditions

y (ω0) = (pD−ωq−1,q−1y) (ω0) = 0, [y, z] (∞) = 0,

for arbitrary z ∈ Dmax. The operator Lmin, that is the restriction of the operator
Lmax to Dmin is called the minimal operator and the equalities Lmax = L∗min holds.
Further Lmin is closed symmetric operator with deficiency indices (d, d), where d = 1
or d = 2 ( [9, 26]).

Lemma 3.1 (ω, q−Green’s formula). For every y, z ∈ Dmax, we have∫ b

ω0

(Ly)(x)z(x)dω,qx−
∫ b

ω0

y(x)(Lz)(x)dω,qx

=[y, z] (b)− [y, z] (ω0) , b ∈ (ω0,∞), (3.3)

where
[y, z](x) := p(x){y(x)D−ωq−1,q−1z(x)−D−ωq−1,q−1y(x)z(x)}.
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Proof. See [5].

Remark 3.1. Lemma 3.1 shows that for all y, z ∈ Dmax,

[y, z] (∞) := lim
ξ→∞

[y, z] (q−ξ)

exists and is finite.

Now, we will give some criteria under which the Hahn-Sturm-Liouville equation
(3.2) is of limit-point case at infinity.

Theorem 3.1. Assume there exists a point η ∈ (ω0,∞) such that

v2

r
∈ L1

ω,q ((η,∞), r) , (3.4)

and
r /∈ L1

ω,q ((η,∞), r) . (3.5)

Then the deficiency indices of the symmetric operator Lmin are equal to (1, 1) , i.e.,
equation (3.2) is in the limit-point case at infinity.

Proof. To obtain a contradiction, assume the deficiency indices of the symmetric
operator Lmin are equal to (2, 2) . Let ϕ and χ be linearly independent solutions of
the equation Ly = 0 for which

Wω,q (ϕ, χ) = ϕ (pDω,qχ)− χ (pDω,qϕ) = 1. (3.6)

ω, q−integrating D−ωq−1,q−1 (p(x)Dω,qϕ (x)) = qv (x)ϕ (x) from η to h(x), we get

p (x)Dω,qϕ (x) = p(h−1(η)Dω,qϕ
(
h−1 (η)

)
+ q

∫ h(x)

η

v (x)ϕ (x) dω,qx. (3.7)

It follows from Cauchy-Schwarz inequality that(∫ x

η

v (x)ϕ (x) dω,qx

)2

≤
(∫ x

η

v2 (x)

r (x)
dω,qx

)(∫ x

η

ϕ2 (x) r (x) dω,qx

)
. (3.8)

By virtue of (3.4), (3.5) and (3.7), we conclude that pDω,qϕ is bounded on (η,∞) .
Likewise, pDω,qχ is bounded on (η,∞) . Hence, by (3.6), we have

C1 (|ϕ|+ |χ|)
√
r ≥
√
r, (3.9)

where C1 is a positive constant. Squaring (3.9), we get

C2(|ϕ|2 + |χ|2)r ≥ r, (3.10)

where C2 is a positive constant. Since ϕ, χ ∈ L2
ω,q ((η,∞), r) and r /∈ L1

ω,q ((η,∞), r) ,
the inequality (3.10) contradicts our assumption.

Theorem 3.2. Let p(x) > 0, r (x) > 0 and M (.) be a positive function defined
on (ω0,∞), M and Dω,qM are continuous functions at ω0. Suppose that for some
η ∈ (ω0,∞), r /∈ L1

ω,q ((η,∞), r) , the following three conditions are satisfied:
(1) ∫ ∞

η

√
r (x)dω,qx√

p(x)M (ω + qx)
= +∞, (3.11)
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(2) there is a positive constant C such that∣∣∣∣∣
√
p(x)Dω,qM(x)

M(x)
√
r (x)

√
M (ω + qx)

∣∣∣∣∣ < C, x ∈ [η,∞), (3.12)

(3) there is a positive constant K such that

v(x) ≥ −Kr (x)M(x), x ∈ [η,∞). (3.13)

Then the deficiency indices of the symmetric operator Lmin are equal to (1, 1) , i.e.,
equation (3.2) is in the limit-point case at infinity.

Proof. Conversely, suppose that the deficiency indices of the symmetric operator
Lmin are equal to (2, 2) . Let ϕ and χ be linearly independent solutions of the
equation Ly = 0 for which

Wω,q (ϕ, χ) = ϕ (pDω,qχ)− χ (pDω,qϕ) = 1. (3.14)

If we multiply this identity by
√
r√
pM

, we obtain[√
p(x)

M(x)
Dω,qχ (x)

](
ϕ (x)

√
r (x)

)
(3.15)

−

[√
p(x)

M(x)
Dω,qϕ (x)

](
χ (x)

√
r (x)

)
=

√
r (x)√

p(x)M(x)
, x ∈ [η,∞).

If we integrate both sides of (3.15), we get∫ ∞
η

√
r (x)√

p(x)M(ω + qx)
dω,qx =

∫ ∞
η

√
p(x)r (x)

M(ω + qx)
ϕ(x)Dω,qχ(x)dω,qx

−
∫ ∞
η

√
p(x)r (x)

M(ω + qx)
χ(x)Dω,qϕ(x)dω,qx. (3.16)

By the Cauchy-Schwarz inequality, we conclude that∣∣∣∣∣
∫ ∞
η

√
r (x)√

p(x)M(ω + qx)
dω,qx

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞
η

√
p(x)r(x)

M(ω + qx)
ϕ(x)Dω,qχ(x)dω,qx−

∫ ∞
η

√
p(x)r(x

M(ω + qx)
χ(x)Dω,qϕ(x)dω,qx

∣∣∣∣∣
≤ ‖ϕ‖L2

ω,q((η,∞),r)

(∫ ∞
η

p(x)

M(ω + qx)
(Dω,qχ(x))

2
dω,qx

)1/2

+ ‖χ‖L2
ω,q((η,∞),r)

(∫ ∞
η

p(x)

M(ω + qx)
(Dω,qϕ(x))

2
dω,qx

)1/2

. (3.17)
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Suppose y is a solution of equation Ly = 0. Then

y
[
−q−1D−ωq−1,q−1 (pDω,qy)

]
M

=
−vy2

M
.

Integrating both sides, we conclude that

−
∫ q−ξ

η

vy2

M
dω,qx =

∫ q−ξ

η

y
[
−q−1D−ωq−1,q−1 (pDω,qy)

]
M

dω,qx, ξ ∈ N.

Using ω, q−integration by parts, we obtain

− q
∫ q−ξ

η

vy2

M
dω,qx

=
y

M
pDω,qy |h

−1(η)

h−1(q−ξ)
+

∫ q−ξ

η

(pDω,qy)Dω,q

( y
M

)
dω,qx

=
y

M
pDω,qy |h

−1(η)

h−1(q−ξ)
+

∫ q−ξ

η

(pDω,qy)

(
MDω,qy − yDω,qM

M(x)M (ω + qx)

)
dω,qx

=
y

M
pDω,qy |h

−1(η)

h−1(q−ξ)
+

∫ q−ξ

η

p

M(ω+qx)
(Dω,qy)

2
dω,qx−

∫ q−ξ

η

pyDω,qyDω,qM

M(x)M(ω+qx)
dω,qx.

By (3.13), we have

−
∫ q−ξ

η

vy2

M
dω,qx < K

∫ q−ξ

η

y2rdω,qx < K

∫ ∞
η

y2rdω,qx.

Hence, there is a constant K1 such that

K1 >− (
y

M
pDω,qy)h−1(q−ξ)

+

∫ q−ξ

η

p

M (ω + qx)
(Dω,qy)

2
dω,qx−

∫ q−ξ

η

pyDω,qyDω,qM

M(x)M (ω + qx)
dω,qx. (3.18)

Let

H (ξ) =

∫ q−ξ

η

p

M (ω + qx)
(Dω,qy)

2
dω,qx.

Using the Cauchy-Schwarz inequality, we have∣∣∣∣∣
∫ q−ξ

η

pyDω,qyDω,qM

M(x)M (ω + qx)
dω,qx

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ q−ξ

η

(
pr

M (ω + qx)

)1/2
1

M
Dω,qM

(
p

M (ω + qx) r

)1/2

yDω,qydω,qx

∣∣∣∣∣
2

≤ K2
2

(∫ q−ξ

η

(
pr

M (ω + qx)

)1/2

yDω,qydω,qx

)2

≤ K2
2H (ξ)

∫ q−ξ

η

y2rdω,qx < K2
3H (ξ) ,
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where K2 > 0 is a certain constant, and

K3 = K2

(∫ ∞
η

y2rdω,qx

)1/2

.

By (3.18), we obtain

K1 > −(
y

M
pDω,qy)h−1(q−ξ) +H (ξ)−K3

√
H (ξ).

If H (ξ)→∞ as ξ →∞, then for all large ξ, ( yM pDω,qy)h−1(q−ξ) > 0. Then y and
Dω,qy have the same sign for all large ξ, which contradicts y ∈ L2

ω,q((ω0,∞), r).
Thus

H (∞) =

∫ ∞
η

p

M (ω + qx)
(Dω,qy)

2
dω,qx < +∞. (3.19)

By the condition (3.11), the left hand-side of (3.16) is infinite. By virtue of (3.17)
and (3.19), the right hand-side of (3.16) is finite, a contradiction. So, the theorem
is proved.

Now, we will give special cases of this theorem.
In the case M(x) ≡ 1 and r (x) ≡ 1 the following corollary results.

Corollary 3.1. For sufficiently large x, let v(x) > −K, where K is a positive
constant, and ∫ ∞

ω0

p(x)−1/2dω,qx = +∞,

then the deficiency indices of the symmetric operator Lmin are equal to (1, 1) , i.e.,
equation (3.2) is in the limit-point case at infinity.

Let us consider the minimal symmetric operator Tmin generated by the ω, q−Sturm-
Liouville expression

Ty := −q−1D−ωq−1,q−1Dω,qy(x) + v(x)y(x), x ∈ (ω0,∞),

and
Ty = λy on (ω0,∞), (3.20)

where λ is a complex parameter.
Then we have a

Theorem 3.3. For sufficiently large x, let

v(x) > −Kx2,

where K is a positive constant. Then the deficiency indices of the symmetric op-
erator Tmin are equal to (1, 1) , i.e., equation (3.20) is in the limit-point case at
infinity.

Proof. If we take p(x) ≡ 1, r (x) ≡ 1 and M(x) = x2 in Theorem 3.2, we have
the proof.

Theorem 3.4. If, for certain constants c > 0, K > 0, and c < x1 < x2, the
inequality

v(x2)− v (x1) > −K (x2 − x1) (3.21)

holds, then the deficiency indices of the symmetric operator Tmin are equal to (1, 1) ,
i.e., equation (3.20) is in the limit-point case at infinity.
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Proof. If we take x2 = x and keep x1 fixed in (3.21), we get

v(x) > −K (x− x1) + v (x1) .

So, for sufficiently large x, v(x) > −K1x, where K1 > 0 is a constant. Applying
p(x) ≡ 1, r (x) ≡ 1 and M(x) = x in Theorem 3.2, we obtain the desired result.

Theorem 3.5. Let p(x) ≡ 1, v ∈ L2
ω,q

(
(ω0,∞), 1r

)
and r /∈ L1

ω,q((ω0,∞), r). Then
the deficiency indices of the symmetric operator Lmin are equal to (1, 1) , i.e., equa-
tion (3.2) is in the limit-point case at infinity.

Proof. We will show that the equation

− q−1D−ωq−1,q−1Dω,qy(x) + v(x)y(x) = 0 (3.22)

does not have two linearly independent solutions belonging to L2
ω,q((ω0,∞), r). Let y

is a such solution, i.e. y ∈ L2
ω,q((ω0,∞), r). By the condition v ∈ L2

ω,q

(
(ω0,∞), 1r

)
,

D−ωq−1,q−1Dω,qy(x) = qv(x)y(x) belongs to L1
ω,q (ω0,∞) . Thus, we have

∫ h(q−ξ)

ω0

D−ωq−1,q−1Dω,qy(x)dω,qx

=D−ωq−1,q−1y(h(q−ξ))−D−ωq−1,q−1y (ω0) .

Since

D−ωq−1,q−1y(h(q−ξ)) = Dω,qy(q−ξ)

and

D−ωq−1,q−1y (ω0) = Dω,qy
(
h−1 (ω0)

)
= Dω,qy (ω0) ,

we get

lim
ξ→∞

Dω,qy(q−ξ) = Dω,qy (ω0) +

∫ ∞
ω0

D−ωq−1,q−1Dω,qy(x)dω,qx. (3.23)

Then the limit in the equality (3.23) exist. Therefore, the function Dω,qy(q−ξ) is
bounded as ξ →∞.

Now, let y1 and y2 be two linearly independent solutions of equation (3.22), then

Wω,q (y1, y2) (x) = y1(x)Dω,qy2(x)− y2(x)Dω,qy1(x) = c 6= 0.

If y1 ∈ L2
ω,q((ω0,∞), r) and y2 ∈ L2

ω,q((ω0,∞), r), then Dω,qy1 and Dω,qy2 are
bounded. So, the function y1(x)Dω,qy2(x) − y2(x)Dω,qy1(x) = c 6= 0 also belongs
to L2

ω,q((ω0,∞), r), which is impossible. The theorem is proved.

Example 3.1. Consider the equation

− q−1D−ωq−1,q−1 [p (x)Dω,qy (x)] + v (x) y (x) = λy (x) , x ∈ (ω0,∞), (3.24)

where p (x) =
{
x− ω

1−q

}−2
and v (x) = x2. We will show that the assumptions in

Corollary 3.1 hold.
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It is clear that v (x) > −K, where K is a positive constant.
Consider∫ ∞

ω0

p(x)−1/2dω,qx =

∫ ∞
ω0

(
x− ω

1− q

)
dω,qx

= lim
b→∞

∫ b

ω0

(
x− ω

1− q

)
dω,qx

= lim
b→∞

((1− q) b− ω)

∞∑
n=0

q2n
(
b− ω

1− q

)
= +∞.

Thus, the assumptions of Corollary 3.1 hold, so we get that the equation (3.24)
is in the limit-point case at infinity.
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