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Abstract This paper is mainly concerned with the Stepanov-like pseudo al-
most periodicity to a class of impulsive perturbed partial stochastic differential
equations. Firstly, we prove the existence of p-mean piecewise Stepanov-like
pseudo almost periodic mild solutions for the impulsive stochastic dynamical
system in a Hilbert space under non-Lipschitz conditions. The results are ob-
tained by using the fixed point techniques with fractional power arguments.
Then the existence of optimal pairs of system governed by impulsive partial
stochastic differential equations is also obtained. Finally, an example is pro-
vided to illustrate the developed theory.
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1. Introduction
The concept of Stepanov-like pseudo almost periodicity as a natural generalization
of the concept of pseudo almost periodicity as well as the one of Stepanov-like
almost periodicity. In recent years, there has been a significant development in
the existence of Stepanov-like pseudo almost periodic solutions to deterministic ab-
stract differential equations; see [3,11,14] and references therein. In the real world,
stochastic perturbation is unavoidable and omnipresent. Therefore, the concept of
Stepanov-like pseudo almost periodicity is of great importance in probability for
investigating stochastic processes. Recently, the existence of Stepanov-like pseudo
almost periodic or Stepanov-like almost periodic solutions to some stochastic dif-
ferential equations have been considered in many publications such as [4, 5, 12, 31]
and the references therein.

On the other hand, the impulsive effects exist widely in many evolution pro-
cesses in which states are changed abruptly at certain moments of time, involving
such fields as finance, economics, mechanics, electronics and telecommunications,
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etc. (see [21]). The existence and qualitative properties of piecewise almost peri-
odic solutions, piecewise pseudo almost periodic solutions and piecewise weighted
pseudo almost periodic solutions for impulsive deterministic differential equations
have been considered by many authors; see [16, 22, 23, 25, 26]. However, besides
impulse effects and delays, stochastic effects likewise exist in real systems. Several
dynamical systems have variable structures subject to stochastic abrupt changes,
which may result from abrupt phenomena such as sudden environment changes,
changes in the interconnections of subsystems, stochastic failures and repairs of
the components, etc. Therefore, impulsive stochastic differential equations describ-
ing these dynamical systems subject to both impulse and stochastic changes have
attracted considerable attention [15,19,20,27]. More recently, Yan and Lu [28] ob-
tained the existence and exponential stability of piecewise pseudo almost periodic
mild solutions for nonlinear impulsive stochastic differential equations by using a
fixed point theorem.

In this article, we investigate the existence of p-mean piecewise Stepanov-like
pseudo almost periodic mild solutions for the following impulsive stochastic per-
turbed partial differential equations such as

d[x(t) + g(t, B1x(t))] = A[x(t) + g(t, B1x(t))]dt+ f(t, B2x(t))dt

+F (t, B3x(t))dW (t), t ∈ R, t ̸= ti, i ∈ Z, (1.1)

∆x(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i ∈ Z, (1.2)

where A is the infinitesimal generator of an uniformly exponentially stable analytic
semigroup (T (t))t≥0 on Lp(P,H), and Bj , j = 1, 2, 3, are arbitrary linear (possibly
unbounded) operators on Lp(P,H), W (t) is a two-sided standard one-dimensional
Brownian motion defined on the filtered probability space (Ω,F ,P,Ft), where Ft =
σ{W (s)−W (τ); s, τ ≤ t}. g, f, F and Ii, ti satisfy suitable conditions which will be
established later. x(t+i ), x(t−i ) represent the right-hand side and the left-hand side
limits of x(·) at ti, respectively.

The asymptotic properties of solutions to dynamical systems is one of the fun-
damental tasks of the analysis theory and finds its application in various fields;
see [6, 8, 9, 16, 22, 23, 25, 26, 28]. However, many systems arising from realistic mod-
els can be described as partial stochastic differential equations with impulse and
Stepanov-like pseudo almost periodic coefficients, and the systems deserve a study
because it is a more general hybrid system, and that of can be more accurate de-
scription of the actual phenomenon in the real world. So it is natural to extend the
concept of Stepanov-like pseudo almost periodic periodicity to dynamical systems
represented by these impulsive systems in an infinite interval. Motivated by the
above consideration, we study the problems, which are natural generalizations of
the concepts for impulsive equations well known in the theory of infinite dimensional
systems. This is one of our motivations.

The study of optimal control problems for differential control systems in prac-
tical engineering applications will be more important to the system stability and
performance. For instance [13, 18, 24], and the authors [1, 29, 30] discussed the op-
timal control of partial stochastic differential systems with impulse under a finite
interval. However, the optimal control of impulsive stochastic differential control
systems with Stepanov-like pseudo almost periodic coefficients is an untreated topic.
Therefore, it is interesting to study the control problems. This is another of our
motivations.
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This paper has three main contributions: (i) We introduce the new concept of
p-mean piecewise Stepanov-like pseudo almost periodic mild solutions for impulsive
stochastic systems, which is natural generalizations of the concept of pseudo almost
periodicity for stochastic differential systems in abstract spaces. (ii) We study
and obtain the existence of p-mean piecewise Stepanov-like pseudo almost periodic
mild solutions to system (1.1)-(1.2) for the non-Lipschitz conditions cases by using
the Krasnoselskii-Schaefer type fixed point theorem along with a new composition
theorem, stochastic analysis, analytic semigroup and fractional powers of closed
operators. Moreover, we consider the Lagrange problem of systems governed by
impulsive partial stochastic differential equations with Stepanov-like pseudo almost
coefficients and an existence result of optimal controls is presented. (iii) The known
results appeared in [11, 12, 14, 16, 23, 25, 28, 31] are generalized to the impulsive
stochastic control systems with Stepanov-like pseudo almost periodic coefficients
settings.

The paper is organized as follows. In Section 2, we introduce some notations
and necessary preliminaries. In Section 3, we give the existence of Stepanov-like
pseudo almost periodic mild solutions for (1.1)-(1.2). In Section 4, we establish
the existence result of optimal controls for a Lagrange problem. In Section 5, an
example is given to illustrate our results. Finally, concluding remarks are given in
Section 6.

2. Preliminaries
Throughout the paper, we assume that (H, ∥ · ∥), (K, ∥ · ∥K) are real separable
Hilbert spaces and (Ω,F ,P) is supposed to be a filtered complete probability space.
Let L(K,H) be the space of all linear bounded operators from K into H, equipped
with the usual operator norm ∥ · ∥L(K,H); in particular, this is simply denoted by
L(H) when K = H. Furthermore, L0

2(K,H) denotes the space of all Q-Hilbert-
Schmidt operators from K to H with the norm ∥ ψ ∥2

L0
2
= Tr(ψQψ∗) < ∞ for any

ψ ∈ L(K,H). Let T be the set consisting of all real sequences {ti}i∈Z such that
γ = infi∈Z(ti+1 − ti) > 0, limi→∞ ti = ∞ and limi→−∞ ti = −∞. For {ti}i∈Z ∈ T,
let PC(R, Lp(P,H)) be the space consisting of all bounded piecewise continuous
processes f : R → Lp(P,H) such that f(·) is continuous at t for any t /∈ {ti}i∈Z and
f(ti) = f(t−i ) for all i ∈ Z; let PC(R× Lp(P,K), Lp(P,H)) be the space formed by
all piecewise continuous processes f : R × Lp(P,K) → Lp(P,H) such that for any
x ∈ Lp(P,K), f(·, x) ∈ PC(R, Lp(P,H)) and for any t ∈ R, f(t, ·) is continuous at
x ∈ Lp(P,K).

Definition 2.1 ( [5]). A function f ∈ C(R, Lp(P,H)) is said to be p-mean almost
periodic if for each ε > 0, there exists an l(ε) > 0, such that every interval J of
length l(ε) contains a number τ with the property that E ∥ f(t + τ) − f(t) ∥p< ε
for all t ∈ R. Denote by AP (R, Lp(P,H)) the set of such functions.

Definition 2.2 ( [21]). A sequence {xn} is called p-mean almost periodic if for
any ε > 0, there exists a relatively dense set of its ε-periods, i.e., there exists a
natural number l = l(ε), such that for k ∈ Z, there is at least one number q in
[k, k + l], for which inequality E ∥ xn+q − xn ∥p< ε holds for all n ∈ N. Denote by
AP (Z, Lp(P,H))) the set of such sequences.

Define l∞(Z, Lp(P,H)) = {x : Z → Lp(P,H) :∥ x ∥= supn∈Z(E ∥ x(n) ∥p)1/p <



Stepanov-like pseudo almost periodic solutions 533

∞}, and

PAP0(Z, Lp(P,H)) =

{
x ∈ l∞(Z, Lp(P,H)) : lim

n→∞

1

2n

n∑
j=−n

E ∥ x(j) ∥p= 0

}
.

Definition 2.3 ( [28]). A sequence {xn}n∈Z ∈ l∞(Z, Lp(P,H)) is called p-mean
pseudo almost periodic if xn = x1n+x

2
n, where x1n ∈ AP (Z, Lp(P,H)), x2n ∈ PAP0(Z,

Lp(P,H)). Denote by PAP (Z, Lp(P,H)) the set of such sequences.

Definition 2.4 (Compare with [21]). For {ti}i∈Z ∈ T, the function f ∈ PC(R,
Lp(P,H)) is said to be p-mean piecewise almost periodic if the following conditions
are fulfilled:

(i) {tji = ti+j − ti}, j ∈ Z, is equipotentially almost periodic, that is, for any
ε > 0, there exists a relatively dense set Qε of R such that for each τ ∈ Qε

there is an integer q̃ ∈ Z such that |ti+q̃ − ti − τ | < ε for all i ∈ Z.

(ii) For any ε > 0, there exists a positive number δ̃ = δ̃(ε) such that if the points
t′ and t′′ belong to a same interval of continuity of ϕ and |t′ − t′′| < δ̃, then
E ∥ f(t′)− f(t′′) ∥p< ε.

(iii) For every ε > 0, there exists a relatively dense set Ω̃(ε) in R such that if
τ ∈ Ω̃(ε), then

E ∥ f(t+ τ)− f(t) ∥p< ε

for all t ∈ R satisfying the condition |t− ti| > ε, i ∈ Z. The number τ is called
ε-translation number of f.

We denote by APT (R, Lp(P,H)) the collection of all the p-mean piecewise almost
periodic functions. Obviously, the space APT (R, Lp(P,H)) endowed with the sup
norm defined by ∥ f ∥∞= supt∈R(E ∥ f(t) ∥p)1/p for any f ∈ APT (R, Lp(P,H))
is a Banach space. Let UPC(R, Lp(P,H)) be the space of all stochastic functions
f ∈ PC(R, Lp(P,H)) such that f satisfies the condition (ii) in Definition 2.4.

Definition 2.5 ( [21]). The function f ∈ PC(R × Lp(P,K), Lp(P,H)) is said to
be p-mean piecewise almost periodic in t ∈ R uniform in x ∈ Lp(P,K) if for every
compact subset K ⊆ Lp(P,K), {f(·, x) : x ∈ K} is uniformly bounded, and given
ε > 0, there exists a relatively dense subset Ωε such that

E ∥ f(t+ τ, x)− f(t, x) ∥p< ε

for all x ∈ K, τ ∈ Ωε, and t ∈ R satisfying |t − ti| > ε. Denote by APT (R ×
Lp(P,K), Lp(P,H)) the set of all such functions.

Denote

PC0
T (R, Lp(P,H)) =

{
f ∈ PC(R, Lp(P,H)) : lim

t→∞
E ∥ f(t) ∥p= 0

}
,

PAP 0
T (R, Lp(P,H)) =

{
f ∈ PC(R, Lp(P,H)) : lim

r→∞

1

2r

∫ r

−r

E ∥ f(t) ∥p dt = 0

}
,
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PAP 0
T (R× Lp(P,K), Lp(P,H))

=

{
f ∈ PC(R× Lp(P,K), Lp(P,H)) : lim

r→∞

1

2r

∫ r

−r

E ∥ f(t, x) ∥p dt = 0

uniformly with respect to x ∈ K,

where K is an arbitrary compact subset of Lp(P,K)

}
.

Definition 2.6 ( [28]). A function f ∈ PC(R, Lp(P,H)) is said to be p-mean
piecewise pseudo almost periodic if it can be decomposed as f = h + ϕ, where
h ∈ APT (L

p(P,H)) and ϕ ∈ PAP 0
T (L

p(P,H)). Denote by PAPT (R, Lp(P,H)) the
set of all such functions. PAPT (R, Lp(P,H)) is a Banach space with the sup norm
∥ · ∥∞ .

Remark 2.1 ( [28]). (i) PAP 0
T (R, Lp(P,H)) is a translation invariant set of PC(R,

Lp(P,H))). (ii) PC0
T (R, Lp(P,H)) ⊂ PAP 0

T (R, Lp(P,H)).

Lemma 2.1 ( [28]). Let {fn}n∈N ⊂ PAP 0
T (R, Lp(P,H)) be a sequence of functions.

If fn converges uniformly to f, then f ∈ PAP 0
T (R, Lp(P,H)).

Definition 2.7 ( [28]). A function f ∈ PC(R×Lp(P,K), L2(P,H)) is said to be p-
mean piecewise pseudo almost periodic if it can be decomposed as f = h+ϕ, where
h ∈ APT (R × Lp(P,K)) and ϕ ∈ PAP 0

T (L
p(R × Lp(P,K)). Denote by PAPT (R ×

Lp(P,K), Lp(P,H)) the set of all such functions.

Lemma 2.2 ( [28]). Let f ∈ PAPT (R × Lp(P,K), Lp(P,H)). Assume further that
there exists a number Lf > 0 satisfying

E ∥ f(t, x)− f(t, y) ∥p≤ LfE ∥ x− y ∥p

for all t ∈ R, x, y ∈ Lp(P,K). If φ(·) ∈ PAPT (R, Lp(P,K)) then f(·, φ(·)) ∈
PAPT (R, Lp(P,H)).

Lemma 2.3 ( [28]). Assume the sequence of vector-valued functions {Ii}i∈Z is
pseudo almost periodic, and there exist Li > 0 satisfying

E ∥ Ii(x)− Ii(y) ∥p≤ LiE ∥ x− y ∥p)

for all x, y ∈ Lp(P,K), i ∈ Z. If φ ∈ PAPT (R, Lp(P,H)) ∩ UPC(R, Lp(P,H)) such
that R(φ) ⊂ Lp(P,K), then Ii(φ(ti)) is pseudo almost periodic.

Definition 2.8 ( [4]). The Bochner transform xb(t, s), t ∈ R, s ∈ [0, 1], of a stochas-
tic process x : R → Lp(P,H) is defined by

xb(t, s) := x(t+ s).

Remark 2.2 ( [4]). A stochastic process ψ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner
transform of a certain stochastic process x,

ψ(t, s) = xb(t, s),

if and only if
ψ(t+ τ, s− τ) = ψ(s, t)

for all t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].
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Definition 2.9 ( [4]). The Bochner transform F b(t, s, ũ), t ∈ R, s ∈ [0, 1], ũ ∈
Lp(P,H), of a function F : R× Lp(P,H) → Lp(P,H) is defined by

F b(t, s, ũ) := F (t+ s, ũ)

for each ũ ∈ Lp(P,H).

Definition 2.10 ( [4]). The spaceBSp(R, Lp(P,H)) of all Stepanov bounded stochas-
tic processes consists of all measurable stochastic processes x : R → Lp(P,H) such
that

xb ∈ L∞(R, Lp((0, 1), Lp(P,H))).

This is a Banach space with the norm

∥ x ∥Sp=∥ xb ∥L∞(R,Lp)= sup
t∈R

(∫ t+1

t

E ∥ x(τ) ∥p dτ
) 1

p

.

Definition 2.11. A stochastic process f ∈ BSp(R, Lp(P,H)) is said to be Stepanov-
like p-mean piecewise pseudo almost periodic (or Sp-pseudo almost periodic) if it
can be decomposed as f = h + ϕ, where hb ∈ APT (R, Lp((0, 1), Lp(P,H))) and
ϕb ∈ PAP 0

T (R, Lp((0, 1), Lp(P,H))). Denote the set of all such stochastically con-
tinuous processes by PAPSp

T (R, Lp(P,H)).

In other words, a stochastic process f ∈ Lp
loc(R, Lp(P,H)) is said to be Stepanov-

like p-mean piecewise pseudo almost periodic if its Bochner transform f b : R →
Lp((0, 1), Lp(P,H)) is p-mean piecewise pseudo almost periodic in the sense that
there exist two functions h, ϕ : R → Lp(P,H) such that f = h + ϕ, where hb ∈
APT (R, Lp((0, 1), Lp(P,H))) and ϕb ∈ PAP 0

T (R, Lp((0, 1), Lp(P,H))) i.e.,

lim
r→∞

1

2r

∫ r

−r

(∫ t+1

t

E ∥ ϕ(τ) ∥p dτ
) 1

p

dt = 0.

Obviously, the following inclusions hold:

APT (R, Lp(P,H)) ⊂ PAPT (R, Lp(P,H)) ⊂ PAPSp
T (R, L

p(P,H)).

Definition 2.12. A stochastic process f ∈ BSp(R × Lp(P,K), Lp(P,H)) is said
to be Stepanov-like p-mean piecewise pseudo almost periodic (or Sp-pseudo al-
most periodic) if it can be decomposed as f = h + ϕ, where hb ∈ APT (R ×
Lp((0, 1), Lp(P,K), Lp(P,H))) and ϕb ∈ PAP 0

T (R × Lp((0, 1), Lp(P,K), Lp(P,H))).
Denote the set of all such stochastically continuous processes by PAPSp(R ×
Lp(P,K), Lp(P,H)).

We need the following composition of Stepanov-like p-mean pseudo almost pe-
riodic processes.

Lemma 2.4. Assume f ∈ PAPSp
T (R × Lp(P,K), Lp(P,H)). Suppose that f(t, x)

satisfies
E ∥ f(t, x)− f(t, y) ∥p≤ Λ(E ∥ x− y ∥p) (2.1)

for all t ∈ R, x, y ∈ Lp(P,K), where Λ is a concave and continuous nondecreasing
function from R+ to R+ such that Λ(0) = 0,Λ(s) > 0 for s > 0 and

∫
0+

ds
Λ(s) = +∞.

Here, the symbol
∫
0+

stands for limε→0+

∫ +∞
ε

. If φ(·) ∈ PAPSp
T (R, Lp(P,K)) then

f(·, φ(·)) ∈ PAPSp
T (R, Lp(P,H)).
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Proof. Assume that fp = fp1 + fp2 , φ
p = φp1 + φp2, where fp1 ∈ APT (R× Lp((0, 1),

Lp(P,K))), Lp(P, H)), fp2 ∈ PAP 0
T (R×Lp((0, 1), Lp(P,K), Lp(P,H))), φ1 ∈ APT (R,

Lp((0, 1), Lp(P,K))), and φ2 ∈ PAP 0
T (R, Lp((0, 1), Lp(P,K))). Consider the decom-

position

fp(t, φp(t)) = fp1 (t, φ
p
1(t)) + [fp(t, φp(t))− fp(t, φp1(t))] + fp2 (t, φ

p
1(t)).

Since fp1 (·, φ
p
1(·)) ∈ APT (R, Lp((0, 1), Lp(P,H))), it remains to prove that both

[fp(·, φp(·))− fp(·, φp1(·))] and fp2 (·, φ
p
1(·)) belong to PAP 0

T (R, Lp((0, 1), Lp(P,H))).
Indeed, using (2.1), it follows that

1

2r

∫ r

−r

∫ t+1

t

E ∥ fp(τ, φp(τ))− fp(τ, φp1(τ)) ∥p dτdt

≤ 1

2r

∫ r

−r

∫ t+1

t

Λ(E ∥ φp(τ)− φp1(τ) ∥p)dτdt

=
1

2r

∫ r

−r

∫ t+1

t

Λ(E ∥ φp2(τ) ∥p)dτdt,

noting that Λ is concave, continuous and Λ(0) = 0, we deduce that

1

2r

∫ r

−r

∫ t+1

t

Λ(E ∥ φp2(τ) ∥p)dτdt

≤Λ

(
1

2r

∫ r

−r

∫ t+1

t

E ∥ φp2(τ) ∥p dτdt
)

→ 0 as r → ∞,

which implies that [f(·, φ(·))− f(·, φ1(·))] ∈ PAP 0
T (R, Lp(0, 1;Lp(P,H)).

Since φp1(R) is relatively compact in Lp(P,K) and fp1 is uniformly continuous
on sets of the form R ×K where K ⊂ Lp(P,K) is compact subset, for ε > 0 there
exists ξ ∈ (0, 1) such that

E ∥ fp1 (t, z)− fp1 (t, z̃) ∥p≤ ε, z, z̃ ∈ φp1(R)

with |z− z̃| < ξ. Now, fix z1, . . . , zn ∈ φp1(R) such that φp1(R) ⊂
⋃n

j=1Bξ(zj , L
p(0, ς;

Lp(P,K)). Obviously, the sets Dj = (φp1)
−1(Bξ(zj)) form an open covering of R,

and therefore using the sets B1 = D1, B2 = D2\D1 and Bj = Dj\
⋃j−1

k=1Dk one
obtains a covering of R by disjoint open sets. For t ∈ Bj , φ

p
1(t) ∈ Bξ(zj),

E ∥ fp2 (t, φ
p
1(t)) ∥p ≤ 3p−1E ∥ fp(t, φp1(t))− fp(t, zj) ∥p

+ 3p−1E ∥ −fp1 (t, φ
p
1(t)) + fp1 (t, zj) ∥p

+ 3p−1E ∥ fp2 (t, zj) ∥p

≤ 3p−1Λ(E ∥ φp1(t)− zj ∥p) + 3p−1ε+ 3p−1E ∥ fp2 (t, zj) ∥p

≤ 3p−1Λ(ε) + 3p−1ε+ 3p−1E ∥ fp2 (t, zj) ∥p .

Now using the previous inequality it follows that

1

2r

∫ r

−r

∫ t+1

t

E ∥ fp2 (t, φ
p
1(τ)) ∥p dτdt

=
1

2r

n∑
j=1

∫
Bj∩[−r,r]

∫ t+1

t

E ∥ fp1 (τ, φ
p
1(τ)) ∥p dτdt



Stepanov-like pseudo almost periodic solutions 537

≤3p−1 1

2r

n∑
j=1

∫
Bj∩[−r,r]

∫ t+1

t

E ∥ fp(τ, φp1(τ))− fp(τ, zj) ∥p dτdt

+ 3p−1 1

2r

n∑
j=1

∫
Bj∩[−r,r]

∫ t+1

t

E ∥ fp1 (τ, φ
p
1(τ))− fp1 (τ, zj) ∥p dτdt

+ 3p−1 1

2r

n∑
j=1

∫
Bj∩[−r,r]

∫ t+1

t

E ∥ fp2 (τ, zj) ∥p dτdt

≤3p−1 1

2r

∫ r

−r

∫ t+1

t

[Λ(ε) + ε]dτdt

+ 3p−1
n∑

j=1

1

2r

∫ r

−r

∫ t+1

t

E ∥ fp2 (τ, zj) ∥p dτdt.

In view of the above it is clear that fp2 (·, φ
p
1(·)) belongs to PAP 0

T (R, Lp(0, 1;Lp(P,H)).

Next, we introduce a useful compactness criterion on PC(R, Lp(P,H)). Let h :
R → R+ be a continuous function such that h(t) ≥ 1 for all t ∈ R and h(t) → ∞ as
|t| → ∞. Define

PC0
h(R, Lp(P,H)) =

{
f ∈ PC(R, Lp(P,H)) : lim

|t|→∞

E ∥ f(t) ∥p

h(t)
= 0

}
endowed with the norm ∥ f ∥h= supt∈R

E∥f(t)∥p

h(t) , it is a Banach space.

Lemma 2.5 ( [28]). A set B̃ ⊆ PC0
h(R, Lp(P,H)) is relatively compact if and only

if it verifies the following conditions:

(i) lim
|t|→∞

E∥f(t)∥p

h(t) = 0 uniformly for f ∈ B̃.

(ii) B̃(t) = {f(t) : f ∈ B̃} is relatively compact in Lp(P,H) for every t ∈ R.

(iii) The set B̃ is equicontinuous on each interval (ti, ti+1)(i ∈ Z).

Let 0 ∈ ρ(A), then it is possible to define the fractional power Aα, for 0 < α ≤ 1,
as a closed linear operator on its domain D(Aα). Furthermore, the subspace D(Aα)
is dense in H and the expression ∥ x ∥α=∥ Aαx ∥, x ∈ D(Aα), defines a norm on
D(Aα). Hereafter we denote by Hα the Banach space D(Aα) with norm ∥ x ∥α .

Lemma 2.6 ( [17]). Let 0 < α ≤ β ≤ 1. Then the following properties hold:

(a) Hβ is a Banach space and Hβ ↪→ Hα is continuous.
(b) The function s → AβT (s) is continuous in the uniform operator topology on

(0,∞) and there exists Mβ > 0 such that ∥ AβT (t) ∥≤ Mβe
−δtt−β for each

t > 0.

(c) For each x ∈ D(Aβ) and t ≥ 0, AβT (t)x = T (t)Aβx.

(d) A−β is a bounded linear operator in H with D(Aβ) = Im(A−β).

Similar to [16], one has
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Lemma 2.7. Assume that f ∈ APT (R, Lp(P,H)), the sequence {xi}i∈Z ∈ AP (Z,
Lp(P,H)), and {tji}, j ∈ Z are equipotentially almost periodic. Then, for each ε > 0,
there exist relatively dense sets Ωε of R and Ωε of Z such that

(i) E ∥ f(t+ τ)− f(t) ∥p< ε for all t ∈ R, |t− ti| > ε, τ ∈ Ωε and i ∈ Z.
(ii) E ∥ xi+q̃ − xi ∥p< ε for all q̃ ∈ Ωε and i ∈ Z.

(iii) E ∥ xq̃i − τ ∥p< ε for all q̃, τ ∈ Ωε and i ∈ Z.

Lemma 2.8 (Krasnoselskii-Schaefer type fixed point theorem [7]). Let Φ1,Φ2 be
two operators such that:

(a) Φ1 is a contraction, and
(b) Φ2 is completely continuous.

Then either:

(i) the operator equation x = Φ1x+Φ2x has a solution, or
(ii) the set G = {x ∈ H : λΦ1(

x
λ ) + λΦ2x = x} is unbounded for λ ∈ (0, 1).

3. Existence of Stepanov-like pseudo almost peri-
odic mild solution

In this section, we investigate the existence of p-mean piecewise Stepanov-like
pseudo almost periodic mild solution for system (1.1)-(1.2). To do this, we first
introduce the notion of mild solution to system (1.1)-(1.2).

Definition 3.1. An Ft -progressively measurable process {x(t)}t∈R is called a mild
solution of system (1.1)-(1.2) if for any t ∈ R, t > σ, σ ̸= ti, i ∈ Z,

x(t) = T (t− σ)[x(σ) + g(σ,B1x(σ))]− g(t, B1x(t))

+

∫ t

σ

T (t− s)f(s,B2x(s))ds+

∫ t

σ

T (t− s)F (s,B3x(s))dW (s)

+
∑

σ<ti<t

T (t− ti)Ii(x(ti)). (3.1)

In order to obtain our main results, we assume that the operator A−q : H → Hα

is compact for 0 ≤ α < q < 1. In addition, we make the following hypotheses:

(H1) A is the infinitesimal generator of a exponentially stable analytic semigroup
(T (t))t≥0 on Lp(P,H) such that for all t ≥ 0, ∥ T (t) ∥≤Me−δt with M, δ > 0.

(H2) The operators Bj : Lp(P,Hα) → Lp(P,H) are bounded for α ∈ (0, 1), j =
1, 2, 3, and $0 := maxj=1,2,3 ∥ Bj ∥L(Lp(P,Hα),Lp(P,H)) .

(H3) The function g ∈ PAPT (R × Lp(P,H), Lp(P,Hβ)), and there exist constants
β, Lg > 0 such that 0 < α ≤ β < 1, and

E ∥ g(t1, ψ1)− g(t2, ψ2) ∥pβ ≤ Lg[|t1 − t2|+ ∥ ψ1 − ψ2 ∥p],
t1, t2 ∈ R, ψ1, ψ2 ∈ Lp(P,H),

E ∥ g(t, ψ) ∥pβ≤ Lg(∥ ψ ∥p +1), t ∈ R, ψ ∈ Lp(P,H).
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(H4) The functions f ∈ PAPSp
T (R×Lp(P,H), Lp(P,H)), F ∈ PAPSp

T (R×Lp(P,H),
Lp(P, L0

2)), and for each t ∈ R, ψ1, ψ2 ∈ Lp(P,H),

E ∥ f(t, ψ1)− f(t, ψ2) ∥p +E ∥ F (t, ψ1)− F (t, ψ2) ∥pL0
2
≤ Λ(E ∥ ψ1 − ψ2 ∥p),

where Λ is a concave and continuous nondecreasing function from R+ to R+

such that Λ(0) = 0, Λ(s) > 0 for s > 0 and
∫
0+

ds
Λ(s) = +∞.

(H5) For any ρ1 > 0, there exists a constant µ > 0 and nondecreasing continuous
function Θ : R+ → R+ such that for all t ∈ R, and ψ ∈ Lp(P,H) with
E ∥ x ∥p> µ,

∥ f(t, ψ) ∥pSp + ∥ F (t, ψ) ∥pSp≤ ρ1Θ(E ∥ ψ ∥p).

(H6) The functions Ii ∈ PAP (Z, Lp(P,H)), and there exist constants ci > 0 such
that

E ∥ Ii(x1)− Ii(x2) ∥p≤ ciE ∥ x1 − x2 ∥pα, x1, x2 ∈ Lp(P,Hα), i ∈ Z,

E ∥ Ii(x) ∥p≤ ci(E ∥ x ∥pα +1), x ∈ Lp(P,Hα), i ∈ Z.

Also, we need to introduce a few preliminary and important results.

Lemma 3.1. If the assumptions (H1), (H2) and (H4) hold and if Υ is the function,
for x ∈ PAPT (R, Lp(P,Hα)), defined by

Υ(t) :=

∫ t

−∞
T (t− s)f(s,B2x(s))ds (3.2)

for each t ∈ R, then Υ ∈ PAPT (R, Lp(P,Hα)).

Proof. Let x ∈ PAPT (R, Lp(P,Hα)). Since B2 ∈ L(Lp(P,Hα), L
p(P,H)) then

B2x ∈ PAPT (R, Lp(P,H)). Setting f(t) = f(t, B2x(t)) and using Lemma 2.4, it
follows that f ∈ PAPSp

T (R, Lp(P,H)). Moreover, it follows that

E

wwww∫ t

−∞
T (t− s)f(s)ds

wwwwp

α

≤Mp
αE

[ ∫ t

−∞
(t− s)−αe−δ(t−s) ∥ f(s) ∥ ds

]p
,

and hence the function s→ T (t− s)f(s) is integrable over (−∞, t) for each t ∈ R.
Let f = f1 + f2, where f b1 ∈ APT (R, Lp((0, 1), Lp(P,H))) and f b2 ∈ PAP 0

T (R,
Lp((0, 1), Lp(P,H))), such that

Υ(t) =

∫ t

−∞
T (t− s)f1(s)ds+

∫ t

−∞
T (t− s)f2(s)ds =: Υ1(t) + Υ2(t).

Next we only need to verify Υ1 ∈ APT (R, Lp(P,Hα)) and Υ2 ∈ PAP 0
T (R, Lp(P,Hα)).

Thus, the following verification procedure is divided into three steps.
Step 1. Υ1 ∈ UPC(R, Lp(P,Hα)).
Let t′, t′′ ∈ (ti, ti+1), i ∈ Z, t′′ < t′. By {T (t)}t≥0 is an exponentially stable

analytic semigroup, for any ε > 0, there exists 0 < ξ < (1 − pα
p−1 )

p−1( ε
2f̃1

)
1

p(α−1)−1

such that 0 < t′ − t′′ < ξ, we have

∥ T (t′ − t′′)− I ∥p≤ δ̃1ε

2f̃1
,
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where f̃1 = 2p−1Mp
α ∥ f1 ∥pSp , δ̃1 = [(Γ(1− pα

p−1 )δ
pα
p−1−1)p−1 eδ

e−δ−1
]−1. Using Hölder’s

inequality, we have

E ∥ Υ1(t
′)−Υ1(t

′′) ∥pα

≤ 2p−1E

wwww∫ t′′

−∞
T (t′′ − s)[T (t′ − t′′)− I]f1(s)ds

wwwwp

α

+ 2p−1E

wwww∫ t′

t′′
T (t′ − s)f1(s)ds

wwwwp

α

≤ 2p−1Mp
α ∥ T (t′ − t′′)− I ∥p

(∫ t′′

−∞
(t′′ − s)−

p
p−1αe−δ(t′′−s)ds

)p−1

×
( ∞∑

n=1

∫ t′′−n+1

t′′−n

e−δ(t′′−s)E ∥ f1(s) ∥p ds
)

+ 2p−1Mp
α

(∫ t′

t′′
(t′ − s)−

p
p−1αe−δ(t′−s)

)p−1

×
(∫ t′

t′′
e−δ(t′−s)E ∥ f1(s) ∥p ds

)
≤ 2p−1Mp

α ∥ T (t′ − t′′)− I ∥p
(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1

×
[ ∞∑
n=1

e−δ(n−1)

∫ n

n−1

E ∥ f1(t′′ − s) ∥p ds
]

+ 2p−1Mp
α

(∫ t′

t′′
(t′ − s)−

p
p−1α

)p−1(∫ t′

t′′
E ∥ f1(s) ∥p ds

)
≤ 2p−1Mp

α ∥ T (t′ − t′′)− I ∥p
(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1
eδ

eδ − 1
∥ f1 ∥pSp

+ 2p−1Mp
α

(
1− pα

p− 1

)1−p

∥ f1 ∥pSp (t′ − t′′)p(1−α)−1

< 2p−1Mp
α ∥ δ̃1ε

2f̃1

(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1
eδ

eδ − 1
∥ f1 ∥pSp

+ 2p−1Mp
α

(
1− pα

p− 1

)1−p

∥ f1 ∥pSp

[(
ε

2f̃1

) 1
p(1−α)−1

]p(1−α)−1

= ε.

Consequently, Υ1 ∈ UPC(R, Lp(P,Hα)).
Step 2. Υ1 ∈ APT (R, Lp(P,Hα)).
Consider for each n = 1, 2, . . . , the integrals

Υ
(n)
1 (t) =

∫ t−n+1

t−n

T (t− s)f1(s)ds

for each t ∈ (ti, ti+1), i ∈ N. Set

Υ
(n)
1 (t) =

∫ t−n+1

t−n

T (t− s)f1(s)ds =

∫ n

n−1

T (s)f1(t− s)ds
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for each t ∈ (ti, ti+1), i ∈ N.
From assumption (H4) and Hölder’s inequality, it follows that

E ∥ Υ
(n)
1 (t) ∥pα ≤Mp

αE

[ ∫ n

n−1

s−αe−δs ∥ f1(t− s) ∥ ds
]p

≤Mp
α

(∫ n

n−1

s−
p

p−1αe−δsds

)p−1

×
(∫ n

n−1

e−δsE ∥ f1(t− s) ∥p ds
)

≤Mp
α(n− 1)−pα

(∫ n

n−1

e−δsds

)p−1

× e−δ(n−1)

(∫ n

n−1

E ∥ f1(t− s) ∥p ds
)

≤Mp
α(n− 1)−pαe−pδ(n−1) ∥ f1 ∥pSp .

Since the series
∞∑

n=1

∫ n

n−1

(n− 1)−pαe−pδ(n−1) <∞,

we deduce from the well-known Weirstrass test that the series
∑∞

n=1 Υ
(n)
1 (t) is

convergent in the sense of the norm ∥ · ∥Sp uniformly on R. Now let Υ1(t) =∑∞
n=1 Υ

(n)
1 (t). Observe that

Υ1(t) =

∫ t

−∞
T (t− s)f1(s)ds,

and hence Υ1(t) ∈ PC(R, Lp(P,H)). Moreover, for any t ∈ R, we have

E ∥ Υ1(t) ∥pα ≤
∞∑

n=1

E ∥ Υ
(n)
1 (t) ∥pα≤ C1(Mα, p, α, δ) ∥ f1 ∥pSp ,

where C1(Mα, p, α, δ) depends only on the fixed constants Mα, p, α, δ.

Now we show that each Υ
(n)
1 ∈ APT (R, Lp(P,Hα)). Indeed, by f b1 ∈ APT (R,

Lp(0, 1), Lp(P, H))), given ε > 0, one can find l(ε) > 0 such that any interval of
length l(ε) contains at least s′ with the property that∫ t+1

t

E ∥ f1(s+ s′)− f1(s) ∥p ds < ε (3.3)

for all t ∈ (ti, ti+1), i ∈ Z. On the other hand, using the inequality (3.3), exponential
stable of T (t)t≥0 and Höder’s inequality, we obtain that

E ∥ Υ
(n)
1 (t+ s′)−Υ

(n)
1 (t) ∥pα

≤E
wwww∫ n

n−1

T (s)[f1(t+ s′ − s)− f1(t− s)]dτ

wwwwp

α

≤Mp
αE

(∫ n

n−1

sαe−δs ∥ f1(t+ s′ − s)− f1(t− s) ∥ ds
)p
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≤Mp
α

(∫ n

n−1

s−
p−1
p αe−δsds

)
×
(∫ n

n−1

e−δsE ∥ f1(t+ s′ − s)− f1(t− s) ∥2 ds
)

≤Mp
α(n− 1)−pαe−pδ(n−1)

(∫ t−n+1

t−n

E ∥ f1(s+ s′)− f1(s) ∥p ds
)

<Mp
α(n− 1)−pαe−pδ(n−1)ε.

Therefore, we deduce that Υ
(n)
1 ∈ APT (R, Lp(P,Hα)).

Step 3. Υ2 ∈ PAP 0
T (R, Lp(P,Hα)).

We will prove that Υ
(n)
2 ∈ PAP 0

T (R, Lp(P,Hα)). It is obvious that Φ
(n)
2 ∈

BC(R, Lp(P,H)), the left task is to show that

lim
r→∞

1

2r

∫ r

−r

E ∥ Υ
(n)
2 (t) ∥p dt = 0

for each t ∈ (ti, ti+1), i ∈ N, and n = 1, 2, 3, . . . . Then, by using the exponential
stable of T (t)t≥0 and Höder’s inequality, it follows that

E ∥ Υ
(n)
2 (t) ∥pα ≤Mp

αE

[ ∫ n

n−1

s−αe−δs ∥ f2(t− s) ∥ ds
]p

≤Mp
α

(∫ n

n−1

s−
p

p−1αe−δsds

)p−1

×
(∫ n

n−1

e−δsE ∥ f2(t− s) ∥p ds
)

≤Mp
α(n− 1)−pα

(∫ n

n−1

e−δsds

)p−1

× e−δ(n−1)

(∫ n

n−1

E ∥ f2(t− s) ∥p ds
)

≤Mp
α(n− 1)−pαe−pδ(n−1)

(∫ n

n−1

E ∥ f2(t− s) ∥p ds
)
.

Then, for r > 0, we see that

1

2r

∫ r

−r

E ∥ Υ
(n)
2 (t) ∥pα dt ≤Mp

α(n− 1)−pαe−pδ(n−1) 1

2r

∫ r

−r

∫ n

n−1

E ∥ f2(t− s) ∥p ds.

Since f b2 ∈ PAP 0
T (R, Lp((0, 1), Lp(P,Hα))), the above inequality leads to Υ

(n)
2 ∈

PAP 0
T (R, Lp(P,Hα)) for each n = 1, 2, . . . . The above inequality leads also to

E ∥ Υ
(n)
2 (t) ∥pα≤Mp

α(n− 1)−pαe−pδ(n−1) ∥ f2 ∥Sp .

Since the series
∞∑

n=1

∫ n

n−1

(n− 1)−pαe−pδ(n−1) <∞,

we deduce from the well-known Weirstrass test that the series
∑∞

n=1 Υ
(n)
2 (t) is

convergent in the sense of the norm ∥ · ∥Sp uniformly on R. Furthermore,

Υ2(t) =

∞∑
n=1

Υ
(n)
2 (t)
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for each (ti, ti+1), i ∈ N. Clearly, Υ2(t) ∈ PCT (R,L
p(P,Hα)). Applying Υ

(n)
2 ∈

PAP 0
T (R, Lp(P,Hα)) and the inequality

1

2r

∫ r

−r

E ∥ Υ2(t) ∥pα dt ≤
1

2r

∫ r

−r

E

wwwwΥ2(t)−
m∑

n=1

Υ
(n)
2 (t)

wwwwp

α

dt

+

m∑
n=1

1

2r

∫ r

−r

E ∥ Υ
(n)
2 (t) ∥pα .

We deduce that the uniformly limit Υ2(t) =
∑∞

n=1 Υ
(n)
2 (t) ∈ PAP 0

T (R, Lp(P,Hα)).

Lemma 3.2. If the assumptions (H1), (H2), (H4) hold and if Ψ is the function,
for x ∈ PAPT (R, Lp(P,Hα)), defined by

Ψ(t) :=

∫ t

−∞
T (t− s)F (s,B3x(s))dW (s) (3.4)

for each t ∈ R, then Ψ ∈ PAPT (R, Lp(P,Hα)).

Proof. Let x ∈ PAPT (R, Lp(P,Hα)). Since B3 ∈ L(Lp(P,Hα), L
p(P,H)) then

B3x ∈ PAPT (R, Lp(P,H)). Setting F (t) = F (t, B3x(t)) and using Lemma 2.4, it
follows that F ∈ PAPSp

T (R, Lp(P,H)). Moreover, it follows that

E

wwww∫ t

−∞
T (t−s)F (s)dW (s)

wwwwp

α

≤MαCpE

[ ∫ t

−∞
(t−s)−2αe−2δ(t−s) ∥ F (s) ∥2L0

2
ds

]p/2
,

and hence the function s→ T (t− s)F (s) is integrable over (−∞, t) for each t ∈ R.
Let F = F1 + F2, where F b

1 ∈ APT (R, Lp((0, 1), Lp(P,H))) and F b
2 ∈ PAP 0

T (R,
Lp((0, 1), Lp(P, H))), such that

Ψ(t) =

∫ t

−∞
T (t− s)F1(s)dW (s) +

∫ t

−∞
T (t− s)F2(s)dW (s)

=: Ψ1(t) + Ψ2(t).

Next we only need to verify Ψ1 ∈ APT (R, Lp(P,Hα)) and Ψ2 ∈ PAP 0
T (R, Lp(P,Hα)).

Thus, the following verification procedure is divided into three steps.
Step 1. Ψ1 ∈ UPC(R, Lp(P,Hα)).

Let t′, t′′ ∈ (ti, ti+1), i ∈ Z, t′′ < t′. By {T (t)}t≥0 is an exponentially stable
analytic semigroup, for any ε > 0, there exists 0 < ξ < (1 − 2pα

p−2 )
p−2
p ( ε

2F̃1
)

p
p−2−pα)

such that 0 < t′ − t′′ < ξ, we have for p > 2,

∥ T (t′ − t′′)− I ∥p≤ δ̃2ε

2F̃1

,

where F̃1 = 2p−1Mp
αCp ∥ F1 ∥pSp , δ̃2 = [(Γ(1 − 2pα

p−2 )(2δ)
pα
p−2−1)

p−2
p e2δ

e2δ−1
]−1. Using
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Hölder’s inequality and the Itô integral [10], we have
E ∥ Ψ1(t

′)−Ψ1(t
′′) ∥pα

≤ 2p−1E

wwww∫ t′′

−∞
T (t′′ − s)[T (t′ − t′′)− I]F1(s)dW (s)

wwwwp

α

+ 2p−1E

wwww∫ t′

t′′
T (t′ − s)F1(s)dW (s)

wwwwp

α

+ 2p−1Mp
αCpE

[ ∫ t′′

−∞
(t′′ − s)−2αe−2δ(t′′−s)

× ∥ T (t′ − t′′)− I ∥2∥ F1(s) ∥2L0
2
ds

]p/2
+ 2p−1Mp

αCp

(∫ t′

t′′
(t′ − s)−

2p
p−2αe−2δ(t′−s)

) p−2
p

×
(∫ t′

t′′
e−2δ(t′−s)E ∥ F1(s) ∥pL0

2
ds

)
≤ 2p−1Mp

αCp ∥ T (t′ − t′′)− I ∥p
(∫ t′′

−∞
(t′′ − s)−

2pα
p−2 e−2δ(t′′−s)ds

) p−2
p

×
( ∞∑

n=1

∫ t′′−n+1

t′′−n

e−2δ(t′′−s)E ∥ F1(s) ∥pL0
2
ds

)

+ 2p−1Mp
αCp

(∫ t′

t′′
(t′ − s)−

2pα
p−2 e−2δ(t′−s)

) p−2
p

×
(∫ t′

t′′
e−2δ(t′−s)E ∥ F1(s) ∥pL0

2
ds

)
≤ 2p−1Mp

αCp ∥ T (t′ − t′′)− I ∥p
(
Γ(1− 2pα

p− 2
)(2δ)

2pα
p−2−1

) p−2
p

×
[ ∞∑
n=1

e−2δ(n−1)

∫ n

n−1

E ∥ F1(t
′′ − s) ∥p

L0
2
ds

]

+ 2p−1Mp
αCp

(∫ t′

t′′
(t′ − s)−

2pα
p−2

) p−2
p
(∫ t′

t′′
E ∥ F1(s) ∥pL0

2
ds

)
≤ 2p−1Mp

αCp ∥ T (t′ − t′′)− I ∥p

×
(
Γ(1− 2pα

p− 2
)(2δ)

2pα
p−2−1

) p−2
p e2δ

e2δ − 1
∥ F1 ∥pSp

+ 2p−1Mp
αCp

(
1− 2pα

p− 2

) 2−p
p

∥ F1 ∥pSp (t′ − t′′)
p−2−pα

p

< 2p−1Mp
αCp

δ̃2ε

2F̃1

(
Γ(1− 2pα

p− 2
)(2δ)

pα
p−2−1

) p−2
p e2δ

e2δ − 1
∥ F1 ∥pSp

+ 2p−1Mp
αCp

(
1− 2pα

p− 2

) 2−p
p

∥ F1 ∥pSp

[(
ε

2F̃1

) p
p−2−pα

] p−2−pα
p

= ε.
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For p = 2. Let ε > 0, there exists 0 < ξ < ( ε
2F̃1

)−
1
2α such that 0 < t′ − t′′ < ξ, we

have
∥ T (t′ − t′′)− I ∥p≤ δ̃2ε

2F̃1

,

where F̃1 = 2Mp
α ∥ F1 ∥2Sp , δ̃2 = [Γ(1 − 2α)(2δ)2α−1]−1. Similar to the above

discussion, one has

E ∥ Ψ1(t
′)−Ψ1(t

′′) ∥2α

≤ 2M2 ∥ T (t′ − t′′)− I ∥2
∞∑

n=1

(n− 1)−2αe−2δ(n−1)

×
∫ n

n−1

E ∥ F1(t
′′ − s) ∥2L0

2
ds+ 2M2(t′ − t′′)−2α

(∫ t′

t′′
E ∥ F1(s) ∥2L0

2
ds

)
< 2Mp

α ∥ F1 ∥pSp

δ̃2ε

5F̃1

Γ(1− 2α)(2δ)2α−1 + 2Mp
α ∥ F1 ∥2Sp

[(
ε

2F̃1

)−2α]− 1
2α

= ε.

Consequently, Ψ1 ∈ UPC(R, Lp(P,Hα)).
Step 2. Ψ1 ∈ APT (R, Lp(P,Hα)).
Consider for each n = 1, 2, . . . , the integrals

Ψ
(n)
1 (t) =

∫ t−n+1

t−n

T (t− s)F1(s)dW (s)

for each t ∈ (ti, ti+1), i ∈ N. Set

Ψ
(n)
1 (t) =

∫ t−n+1

t−n

T (t− s)F1(s)dWs) =

∫ n

n−1

T (s)F1(t− s)dW (s)

for each t ∈ (ti, ti+1), i ∈ N.
From (H4), Hölder’s inequality and the Itô integral, it follows that

E ∥ Ψ
(n)
1 (t) ∥pα ≤Mp

αCpE

[ ∫ n

n−1

s−2αe−2δs ∥ F1(t− s) ∥2L0
2
ds

]p/2
≤Mp

αCp

(∫ n

n−1

s−
2pα
p−2 e−2δsds

) p−2
p

×
(∫ n

n−1

e−2δsE ∥ F1(t− s) ∥p
L0

2
ds

)
≤Mp

αCp(n− 1)−2pα

(∫ n

n−1

e−2δsds

)p−1

e−2δ(n−1)

×
(∫ n

n−1

E ∥ F1(t− s) ∥p
L0

2
ds

)
≤Mp

αCp(n− 1)−2pαe−pδ(n−1) ∥ F1 ∥pSp .

Since the series
∞∑

n=1

∫ n

n−1

(n− 1)−2pαe−2pδ(n−1) <∞,
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we deduce from the well-known Weirstrass test that the series
∑∞

n=1 Ψ
(n)
1 (t) is

convergent in the sense of the norm ∥ · ∥Sp uniformly on R. Now let Ψ1(t) =∑∞
n=1 Ψ

(n)
1 (t), t ∈ R. Observe that

Ψ1(t) =

∫ t

−∞
T (t− s)F1(s)dW (s).

and hence Ψ1(t) ∈ PC(R, Lp(P,H)). Moreover, for any t ∈ R, we have

E ∥ Ψ1(t) ∥pα ≤
∞∑

n=1

E ∥ Ψ
(n)
1 (t) ∥pα≤ C2(Mα, p, α, δ) ∥ F1 ∥pSp ,

where C2(Mα, p, α, δ) depends only on the fixed constants M and δ.

Now we show that each Ψ
(n)
1 ∈ APT (R, Lp(P,Hα)). Indeed, by F b

1 ∈ APT (R,
Lp(0, 1), Lp(P,H))), given ε > 0, one can find l(ε) > 0 such that any interval of
length l(ε) contains at least s′ with the property that∫ t+1

t

E ∥ F1(s+ s′)− F1(s) ∥pL0
2
dW (s) < ε (3.5)

for all t ∈ (ti, ti+1), i ∈ N. On the other hand, using the inequality (3.5), exponential
stable of T (t)t≥0 and Höder’s inequality, we obtain that

E ∥ Ψ
(n)
1 (t+ s′)−Ψ

(n)
1 (t) ∥pα

≤Mp
αCpE

[ ∫ n

n−1

s−2αe−2δs ∥ F1(t+ s′ − s)− F1(t− s) ∥L0
2
ds

]p/2
≤Mp

αCp

(∫ n

n−1

s−
2pα
p−2 e−2δsds

) p−2
p

×
(∫ n

n−1

e−2δsE ∥ F1(t+ s′ − s)− F1(t− s) ∥2 ds
)

≤Mp
αCp(n− 1)−2pαe−2pδ(n−1)

(∫ t−n+1

t−n

E ∥ F1(s+ s′)− F1(s) ∥p ds
)

< Mp
αCp(n− 1)−2pαe−2pδ(n−1)ε.

Therefore, we deduce that Ψ
(n)
1 ∈ APT (R, Lp(P,Hα)).

Step 3. Ψ2 ∈ PAP 0
T (R, Lp(P,Hα)).

We will prove that Ψ
(n)
2 ∈ PAP 0

T (R, Lp(P,Hα)). It is obvious that Ψ
(n)
2 ∈

BC(R, Lp(P,H)), the left task is to show that

lim
r→∞

1

2r

∫ r

−r

E ∥ Ψ
(n)
2 (t) ∥p dt = 0

for each t ∈ (ti, ti+1), i ∈ N, and n = 1, 2, 3, . . . . Then, by using the exponential
stable of T (t)t≥0 and Höder’s inequality, it follows that

E ∥ Ψ
(n)
2 (t) ∥pα ≤ E

wwww∫ n

n−1

T (s)F2(t− s)ds

wwwwp

α

≤Mp
αCpE

[ ∫ n

n−1

s−2αe−2δs ∥ F2(t− s) ∥L0
2
ds

]p/2
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≤Mp
αCp

(∫ n

n−1

s−
pα
p−2 e−2δsds

) p−2
p

×
(∫ n

n−1

e−2δsE ∥ F2(t− s) ∥p
L0

2
ds

)
≤Mp

αCp(n− 1)−2pα

(∫ n

n−1

e−2δsds

) p−2
p

× e−2δ(n−1)

(∫ n

n−1

E ∥ F2(t− s) ∥p
L0

2
ds

)
≤Mp

αCp(n− 1)−2pαe−2pδ(n−1)

(∫ n

n−1

E ∥ F2(t− s) ∥p
L0

2
ds

)
.

Then, for r > 0, we see that
1

2r

∫ r

−r

E ∥ Ψ
(n)
2 (t) ∥pα dt

≤Mp
αCp(n− 1)−2pαe−2pδ(n−1) 1

2r

∫ r

−r

∫ n

n−1

E ∥ F2(t− s) ∥p dW (s).

Since F b
2 ∈ PAP 0

T (R, Lp((0, 1), Lp(P,Hα))), the above inequality leads to Ψ
(n)
2 ∈

PAP 0
T (R, Lp(P,Hα)) for each n = 1, 2, . . . . The above inequality leads also to

E ∥ Ψ
(n)
2 (t) ∥pα ≤Mp

αCp(n− 1)−2pαe−2pδ(n−1) ∥ F2 ∥Sp .

Since the series
∞∑

n=1

∫ n

n−1

(n− 1)−2pαe−2pδ(n−1) <∞,

we deduce from the well-known Weirstrass test that the series
∑∞

n=1 Ψ
(n)
2 (t) is

convergent in the sense of the norm ∥ · ∥Sp uniformly on R. Furthermore,

Ψ2(t) =

∞∑
n=1

Ψ
(n)
2 (t)

for (ti, ti+1), i ∈ N. Clearly, Ψ2(t) ∈ PCT (R,L
p(P,Hα)). Applying Ψ

(n)
2 ∈ PAP 0

T (R,
Lp(P,Hα)) and the inequality

1

2r

∫ r

−r

E ∥ Ψ2(t) ∥pα dt ≤
1

2r

∫ r

−r

E

wwwwΨ2(t)−
m∑

n=1

Ψ
(n)
2 (t)

wwwwp

α

dt

+

m∑
n=1

1

2r

∫ r

−r

E ∥ Ψ
(n)
2 (t) ∥pα .

We deduce that the uniformly limit Ψ2(t) =
∑∞

n=1 Φ
(n)
2 (t) ∈ PAP 0

T (R, Lp(P,Hα)).

Lemma 3.3. If the assumptions (H1) and (H6) hold and if Π is the function, for
x ∈ PAPT (R, Lp(P,Hα)), defined by

Π(t) :=
∑

σ<ti<t

T (t− ti)Ii(xti) (3.6)

for each t ∈ R, then Π ∈ PAPT (R, Lp(P,Hα)).
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Proof. Let x ∈ PAPT (R, Lp(P,Hα)). Setting γi = Ii(xti) and using (H6) and
Lemma 2.3, it follows that γi ∈ PAPSp

T (R, Lp(P,H)). Let γi = γ1,i + γ2,i, where
γ1,i ∈ AP (Z, Lp(P,Hα)) and γ2,i ∈ PAP 0(Z, Lp(P, Hα)). Hence,

Π(t) =
∑
ti<t

T (t− ti)γ1,i +
∑
ti<t

T (t− ti)γ2,i =: Π1(t) + Π2(t).

Next we only need to verify Π1(t) ∈ APT (R, Lp(P,Hα)) and Π2(t) ∈ PAP 0
T (R,

Lp(P,Hα)). Thus, the following verification procedure is divided into three steps.
Step 1. Π1 ∈ UPC(R, Lp(P,Hα)).
Let t′, t′′ ∈ (ti, ti+1), i ∈ Z, t′′ < t′. By {T (t)}t≥0 is an exponentially stable

analytic semigroup, for any ε > 0, there exists ξ > 0 such that 0 < t′ − t′′ < ξ, we
have

∥ T (t′ − t′′)− I ∥p≤ δ̃3ε

γ̃1
,

where γ̃1 =Mp
α ∥ γ1,i ∥p∞ γ−pα and δ̃3 = (1− e−δγ)p. Using Hölder’s inequality, we

have

E ∥ Π1(t
′)−Π1(t

′′) ∥pα

≤Mp
α ∥ T (t′ − t′′)− I ∥p

( ∑
ti<t′′

(t′′ − ti)
− p

p−1αe−δ(t′′−ti)

)p−1

×
( ∑

ti<t′′

e−δ(t′′−ti)E ∥ γ1,i ∥p
)

≤Mp
α ∥ T (t′ − t′′)− I ∥p γ−pα

( ∑
ti<t′′

e−δ(t′′−ti)

)p

sup
i∈Z

E ∥ γ1,i ∥p

< Mp
α ∥ γ1,i ∥p∞ γ−pα δ̃3ε

5γ̃1

1

(1− e−δγ)p
= ε.

Step 2. Π1 ∈ APT (R, Lp(P,Hα)).
For any ε > 0, by Lemma 2.7, there exists relative dense sets of real numbers

Ωε and integers Qε, for every τ ∈ Ωε, there exists at least one number q̃ ∈ Qε such
that |tq̃ − τ | < ε, i ∈ Z and E ∥ γ1,i+q − γ1,i ∥p< ε, q̃ ∈ Qε, i ∈ Z. Then,

E ∥ Π1(t+ τ)−Π1(t) ∥α

≤Mp
αE

[(∑
ti<t

(t− ti)
− p

p−1αe−δ(t−ti)

)p−1

×
(∑

ti<t

e−δ(t−ti) ∥ γ1,i+q − γ1,i ∥p
)]

≤Mp
αγ

−pα

(∑
ti<t

e−δ(t−ti)

)p

E ∥ γ1,i+q − γ1,i ∥p

≤ Mp
αγ

−pαε

(1− e−δγ)p
.

Hence, Π1 ∈ APT (R, Lp(P,Hα)).
Step 3. Π2 ∈ PAP 0

T (R, Lp(P,Hα)).
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In fact, for r > 0, one has
1

2r

∫ r

−r

E ∥ Π2(t) ∥pα dt ≤
1

2r

∫ r

−r

E

wwww∑
ti<t

T (t− ti)γ2,i

wwwwp

α

dt.

For a given i ∈ Z, define the function v(t) by v(t) = T (t− ti)γ2,i, ti < t ≤ ti+1,
then

lim
t→∞

E ∥ v(t) ∥pα = lim
t→∞

E ∥ T (t− ti)γ2,i ∥pα

≤ lim
t→∞

Mp
α(t− ti)

−pαe−pδ(t−ti) sup
i∈Z

E ∥ γ2,i ∥p

≤ lim
t→∞

Mp
αγ

−pαe−pδ(t−ti) sup
i∈Z

E ∥ γ2,i ∥p= 0.

Thus v ∈ PC0
T (R, Lp(P,Hα)) ⊂ PAP 0

T (R, Lp(P,Hα)). Define vj : R → Lp(P,Hα)
by

vj(t) = T (t− ti−j)γ2,i−j , ti < t ≤ ti+1, j ∈ N.
So vj ∈ PAP 0

T (R, Lp(P,Hα)). Moreover,
E ∥ vj(t) ∥pα = E ∥ T (t− ti−j)γ2,i−j ∥pα

≤Mp
α(t− ti−j)

−pαe−pδ(t−ti−j) sup
i∈Z

E ∥ γ2,i ∥p

≤Mp
αγ

−pαe−pδ(t−ti)e−pδγj sup
i∈Z

E ∥ γ2,i ∥p .

Therefore, the series
∑∞

j=0 vj is uniformly convergent on R. By Lemma 2.1, one has∑
ti<t

T (t− ti)γ2,i =

∞∑
j=0

vj(t) ∈ PAP 0
T (R, Lp(P,Hα)),

that is
1

2r

∫ r

−r

E

wwww∑
ti<t

T (t− ti)γ2,i

wwwwp

α

dt→ 0 as r → ∞.

Using the Lebesgue’s dominated convergence theorem, we have Π2 ∈ PAP 0
T (R,

Lp(P,Hα)).

Theorem 3.1. Assume that (H1)–(H6) are satisfied. Then system (1.1)–(1.2) has
at least one p-mean piecewise pseudo almost periodic mild solution on R, provided
that

2p−1[∥ Aα−β ∥p Lg$
p
0 +Mp

αγ
−pα 1

(1− e−δγ)p
sup
i∈Z

ci] < 1. (3.7)

Proof. Let Y = PAPT (R, Lp(P,Hα))∩UPC(R, Lp(P,Hα)). Consider the operator
Φ : Y → PC(R, Lp(P,Hα)) defined by

(Φx)(t) = (Φ1x)(t) + (Φ2x)(t),

where
(Φ1x)(t) = −g(t, B1x(t)) +

∑
ti<t

T (t− ti)Ii(x(ti)), t ∈ R.

(Φ2x)(t) =

∫ t

−∞
T (t− s)f(s,B2x(s))ds

+

∫ t

−∞
T (t− s)F (s,B3x(s))dW (s), t ∈ R.
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Let ρ1 > 0 be fixed. By (H4) it follows that there exist a positive constant % such
that, for all t ∈ R and ψ ∈ Lp(P,H) with E ∥ ψ ∥p> %,

E ∥ f(t, ψ) ∥pSp +E ∥ F (t, ψ) ∥pSp≤ ρ1Θ(∥ ψ ∥p).

Let
ν0 = sup

t∈R
{E ∥ f(t, ψ) ∥pSp , E ∥ F (t, ψ) ∥p

Sp :∥ ψ ∥p≤ %}.

Thus, we have for all t ∈ R,

E ∥ f(t, ψ) ∥pSp +E ∥ F (t, ψ) ∥pSp≤ ρ1Θ(E ∥ ψ ∥p) + ν0, ψ ∈ Lp(P,H). (3.8)

For Lg, ρ1 sufficiently small, we can choose r∗ > 0 such that

(1− L0)r
∗

(d̃1 + d̃2)[ρ1Θ($p
0r

∗) + ν0]
> 1 (3.9)

for p > 2, and for p = 2,

(1− L0)r
∗

(ã1 + ã2)[ρ1Θ($p
0r

∗) + ν0]
> 1, (3.10)

where L0 = 2p−1[∥ Aα−β ∥p Lg$
p
0+M

p
αγ

−pα 1
(1−e−δγ)p

supi∈Z ci], d̃1 = 4p−1Mp
α(Γ(1−

pα
p−1 ))

p−1 δp(1−α), d̃2 = 4p−1CpM
p
α(Γ(1 − 2pα

p−2 ))
p−2
p (2δ)

2(pα−p+1)
p for p > 2, and

ã1 = 4M2
α(Γ(1 − 2α)δ2(1−α), ã2 = 4M2

αΓ(1 − 2α)(2δ)2α−1 for p = 2. In order to
use Lemma 2.8, we will verify that Φ1 is a contraction while Φ2 is a completely
continuous operator. For better readability, we break the proof into a sequence of
steps.

Step 1. For every x ∈ Y, Φx ∈ Y.
Let x(·) ∈ Y, by (H2), (H4) and Lemmas 2.2, 3.1-3.3, we deduce that g(·, x(·)),

f(·, x(·)) ∈ PAPSp
T (R, Lp(P,Hα)) and Ii(x(ti)) ∈ PAP (Z, Lp(P,Hα)). Similarly as

the proof of Theorem 3.1, one has Φx ∈ Y.
Step 2. Φ1 is a contraction on Y.
For t ∈ R, and x∗, x∗∗ ∈ Y. From (H3) and (H6), we have

E ∥ (Φ1x
∗)(t)− (Φ1x

∗∗)(t) ∥pα
≤ 2p−1 ∥ Aα−β ∥p E ∥ Aβg(t, B1x

∗(t))−Aβg(t, B1x
∗∗(t)) ∥p

+ 2p−1E

wwww∑
ti<t

T (t− ti)[Ii(x
∗(t))− Ii(x

∗∗(t))]

wwwwp

α

≤ 2p−1 ∥ Aα−β ∥p Lg$
p
0 ∥ x∗(t)− x∗∗(t) ∥pα

+ 2p−1Mp
α

(∑
ti<t

(t− ti)
− p

p−1αe−δ(t−ti)

)p−1

×
(∑

ti<t

e−δ(t−ti)ci sup
t∈R

E ∥ x∗(t)− x∗∗(t) ∥pα
)

≤ 2p−1

[
∥ Aα−β ∥p Lg$

p
0 +Mp

αγ
−pα 1

(1− e−δγ)p
sup
i∈Z

ci

]
× ∥ x∗ − x∗∗ ∥pα,∞ .
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Taking supremum over t,

∥ Φ1x
∗ − Φ1x

∗∗ ∥pα,∞≤ L0 ∥ x∗ − x∗∗ ∥pα,∞,

where L0 < 1. Hence, Φ1 is a contraction on Y.
Step 3. Φ2 maps bounded sets into bounded sets in Y.
Indeed, it is enough to show that there exists a positive constant L such that

for each x ∈ Br∗ = {x ∈ Y :∥ x ∥pα,∞< r∗}, r∗ > 0, one has ∥ Φ2x ∥pα,∞≤ L. Then,
by (3.8), Hölder’s inequality and the Itôintegral, we have for x ∈ Br∗ and p > 2,

E ∥ (Φ2x)(t) ∥pα

≤ 2p−1E

wwww∫ t

−∞
T (t− s)f(s,B2x(s))ds

wwwwp

α

+ 2p−1E

wwww∫ t

−∞
T (t− s)F (s,B3x(s))dW (s)

wwwwp

α

≤ 2p−1Mp
α

(∫ t

−∞
(t− s)−

p
p−1αe−δ(t−s)ds

)p−1

×
( ∞∑

n=1

∫ t−n+1

t−n

e−δ(t−s)E ∥ f(s,B2x(s)) ∥p ds
)

+ 2p−1CpM
p
αE

(∫ t

−∞
(t− s)−2αe−2δ(t−s) ∥ F (s,B3x(s)) ∥2L0

2
ds

)p/2

≤ 2p−1Mp
α

(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1

×
( ∞∑

n=1

e−δ(n−1)

∫ n

n−1

E ∥ f(t− s,B2x(t− s)) ∥p ds
)

+ 2p−1Mp
α

(∫ t

−∞
(t− s)−

2p
p−2αe−2δ(t−s)ds

) p−2
p

×
( ∞∑

n=1

e−2δ(n−1)

∫ n

n−1

E ∥ F (t− s,B3x(t− s)) ∥p ds
)

≤ 2p−1Mp
α

(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1
eδ

eδ − 1
[ρ1Θ(∥ B2x(s) ∥p) + ν0]

+ 2p−1Mp
α

(∫ t

−∞
(t− s)−

2p
p−2αe−2δ(t−s)ds

) p−2
p

× e2δ

e2δ − 1
[ρ1Θ(∥ B3x(s) ∥p) + ν0]

≤ 2p−1Mp
α

(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1
eδ

eδ − 1
[ρ1Θ($p

0r
∗) + ν0]

+ 2p−1CpM
p
α

(
Γ(1− 2pα

p− 2
)(2δ)

pα
p−2−1

) p−2
p e2δ

e2δ − 1
[ρ1Θ($p

0r
∗) + ν0]

:= L.
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For p = 2, we have

E ∥ (Φ2x)(t) ∥2α ≤ 2M2
α(Γ(1− 2α)δ2(1−α) eδ

eδ − 1
[ρ1Θ($p

0r
∗) + ν0]

+ 2M2
αΓ(1− 2α)(2δ)2α−1[ρ1Θ($p

0r
∗) + ν0] := L.

Then for each x ∈ Br∗ , we have ∥ Φ2x ∥pα,∞≤ L.
Step 4. Φ2 is a compact operator.
(1) Φ2 maps bounded sets into equicontinuous sets of Y.
Since T (·) is analytic, the function t → AαT (t) is continuous in the uniform

operator topology in (0,∞). Let ti < ε < t ≤ ti+1, i ∈ Z, and δ̃ > 0 such that
∥ Aα[T (h̃) − I ∥p< ε for every with |h̃| < δ̃. For each x ∈ Br∗ , 0 < |η| < δ̃, t + η ∈
(ti, ti+1], i ∈ Z, we have for p > 2,

E ∥ (Φ2x)(t+ η)− (Φ2x)(t) ∥pα

≤ 4p−1E

wwww∫ t

−∞
T (t− s)[T (η)− I]f(s,B2x(s))ds

wwwwp

α

+ 4p−1E

wwww∫ t+η

t

T (t+ η − s)f(s,B2x(s))ds

wwwwp

α

+ 4p−1E

wwww∫ t

−∞
T (t− s)[T (η)− I]F (s,B3x(s))dW (s)

wwwwp

α

+ 4p−1E

wwww∫ t+η

t

T (t+ η − s)F (s,B3x(s))dW (s)

wwwwp

α

≤ 4p−1Mp ∥ Aα[T (η)− I] ∥p
(∫ t

−∞
(t− s)−αe−δ(t−s)ds

)p−1

×
( ∞∑

n=1

e−δ(n−1)

∫ n

n−1

E ∥ f(t− s,B2x(t− s)) ∥p ds
)

+ 4p−1Mp
α

(∫ t+η

t

(t+ η − s)−
p

p−1αe−δ(t+η−s)ds

)p−1

×
(∫ t+η

t

E ∥ f(s,B2x(s)) ∥p ds
)

+ 4p−1MpCp ∥ Aα[T (η)− I] ∥p

× E

[ ∫ t

−∞
(t− s)−2αe−2δ(t−s) ∥ F (s,B3x(s)) ∥2L0

2
ds

]p/2
+ 4p−1Mp

αCpE

[ ∫ t+η

t

(t+ η − s)−2αe−2δ(t+η−s)

× ∥ F (s,B3x(s)) ∥2L0
2
ds

]p/2
≤ 4p−1Mpε

(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1
eδ

eδ − 1
[ρ1Θ(∥ B1x(s) ∥p) + ν0]

+ 4p−1Mp
α

(∫ t+η

t

(t+ η − s)−
p

p−1αe−δ(t+η−s)ds

)p−1

× [ρ1Θ(∥ B2x(s) ∥p) + ν0]
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+ 4p−1MpCpε

(
Γ(1− 2pα

p− 2
)(2δ)

pα
p−2−1

) p−2
p e2δ

e2δ − 1
[ρ1Θ(∥ B3x(s) ∥p) + ν0]

+ 4p−1Mp
αCp

(∫ t+η

t

(τ2 − s)−
2p

p−2αe−2δ(t+η−s)ds

) p−2
p

[ρ1Θ(∥ B2x(s) ∥p) + ν0]

≤ 4p−1Mpε

(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1
eδ

eδ − 1
[ρ1Θ($p

0r
∗) + ν0]

+ 4p−1Mp
α

(∫ t+η

t

(t+ η − s)−
p

p−1αe−δ(t+η−s)ds

)p−1

[ρ1Θ($p
0r

∗) + ν0]

+ 4p−1MpCpε

(
Γ(1− 2pα

p− 2
)(2δ)

pα
p−2−1

) p−2
p e2δ

e2δ − 1
[ρ1Θ($p

0r
∗) + ν0]

+ 4p−1Mp
αCp

(∫ t+η

t

(t+ η − s)−
2p

p−2αe−2δ(t+η−s)ds

) p−2
p

[ρ1Θ($0r
∗) + ν0].

For p = 2, we have

E ∥ (Φ2x)(t+ η)− (Φ2x)(t)) ∥2α

≤ 4MpεΓ(1− 2α)δ2α−1 eδ

eδ − 1
[ρ1Θ($p

0r
∗) + ν0]

+ 4M2
α

(∫ t+η

t

(t+ η − s)−2αe−δ(t+η−s)ds

)
[ρ1Θ($p

0r
∗) + ν0]

+ 4p−1MpεΓ(1− 2α)(2δ)2α−1[ρ1Θ($p
0r

∗) + ν0]

+ 4p−1M2
αγ

−2α[ρ1Θ($p
0r

∗) + ν0].

The right-hand side of the above inequality is independent of x ∈ Br∗ and tends to
zero as η → 0, and sufficiently small positive number ε. Thus, Φ2 maps Br∗ into an
equicontinuous family of functions.

(2) Φ2 maps Br∗ into a relatively set in Lp(P,Hα).

For each x ∈ Br∗ , there exists 0 ≤ α < q < 1, we have for p > 2,

E ∥ Aq(Φ2x)(t) ∥p

≤ 2p−1E

wwww∫ t

−∞
AqT (t− s)f(s,B2x(s))ds

wwwwp

+ 2p−1E

wwww∫ t

−∞
AqT (t− s)F (s,B3x(s))dW (s)

wwwwp

≤ 2p−1Mp
q

(∫ t

−∞
(t− s)−

p
p−1 qe−δ(t−s)ds

)p−1

×
( ∞∑

n=1

e−δ(n−1)

∫ n

n−1

E ∥ f(t− s,B2x(t− s)) ∥p ds
)

+ 2p−1CpM
p
qE

(∫ t

−∞
(t− s)−2qe−2δ(t−s) ∥ F (s,B3x(s)) ∥2L0

2
ds

)p/2

≤ 2p−1Mp
q

(
Γ(1− pq

p− 1
)δ

pq
p−1−1

)p−1
eδ

eδ − 1
[ρ1Θ(∥ B2x(s) ∥p) + ν0]ds

)
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+ 2p−1CpM
p
q

(∫ t

−∞
(t− s)−

2p
p−2 qe−2δ(t−s)ds

) p−2
p

×
( ∞∑

n=1

e−δ(n−1)

∫ n

n−1

E ∥ F (t− s,B3x(t− s)) ∥p ds
)

≤ 2p−1Mp
q

(
Γ(1− pq

p− 1
)δ

pq
1−p−1

)p−1

[ρ1Θ($p
0r

∗) + ν0]

+ 3p−1CpM
p
q

(
Γ(1− 2pq

p− 2
)(2δ)

pq
p−2−1

) p−2
p

[ρ1Θ($p
0r

∗) + ν0].

For p = 2, we have

E ∥ (Φ2x)(t) ∥2q ≤ 2M2
q (Γ(1− 2q)δ2q−1 eδ

eδ − 1
[ρ1Θ($p

0r
∗) + ν0]

+ 2M2
q Γ(1− 2q)(2δ)2q−1[ρ1Θ($p

0r
∗) + ν0],

which implies Aq(Φ2x)(t) is bounded in H. It is known that A−q : H → Hα is
compact for 0 ≤ α < q < 1. Then (Φ2x)(t) is precompact in Hα for each t ∈ R.
Since {Φ2x : x ∈ Br∗} ⊂ PC0

h(R, Lp(P,H)), by Lemma 2.5 it suffices to show that
{Φ2x : x ∈ Br∗} is a relatively compact set. Therefore, we conclude that operator
Φ2 is also a compact map.

Step 5. Φ2 : Y → Y is continuous.
Let {x(n)} ⊆ Br∗ with x(n) → x(n → ∞) in Ỹ, then there exists a bounded

subset K ⊆ Lp(P,K) such that R(x) ⊆ K,R(xn) ⊆ K,n ∈ N. By the assumption
(H4), for any ε > 0, there exists ξ > 0 such that x, y ∈ K and E ∥ x − y ∥p< ξ
implies that

E ∥ f(s,B2x(s))− f(s,B2y(s)) ∥pSp< ε for all t ∈ R,

E ∥ F (s,B3x(s))− F (s,B3y(s)) ∥pSp< ε for all t ∈ R.

For the above ξ there exists n0 such that E ∥ x(n)(t) − x(t) ∥p< ε for n > n0 and
t ∈ R, then forn > n0, we have

E ∥ f(s,B2x
(n)(s))− f(s,B2x(s)) ∥pSp< ε for all t ∈ R,

E ∥ F (s,B3x
(n)(s))− F (s,B3x(s)) ∥pSp< ε for all t ∈ R.

Then, by Hölder’s inequality, we have that for p > 2,

E ∥ (Φ2x
(n))(t)− (Φ2x)(t) ∥pα

≤ 2p−1E

wwww∫ t

−∞
T (t− s)[f(s,B2x

(n)(s))− f(s,B2x(s))]ds

wwwwp

α

+ 2p−1E

wwww∫ t

−∞
T (t− s)[F (s,B3x

(n)(s))− F (s,B3x(s))]dW (s)

wwwwp

α

≤ 2p−1Mp
α

(∫ t

−∞
(t− s)−

p
p−1αe−δ(t−s)ds

)p−1

×
( ∞∑

n=1

e−δ(n−1)

∫ n

n−1

E ∥ f(t− s,B2x
(n)(t− s))
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− f(t− s,B2x(t− s)) ∥p ds
)

+ 2p−1CpM
p

(∫ t

−∞
(t− s)−2αe−2δ(t−s)E ∥ F (s,B3x

(n)(s))

− F (s,B3x(s)) ∥2L0
2
ds

)p/2

≤ 2p−1Mp

(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1
eδ

eδ − 1
ε

+ 2p−1CpM
p
α

(∫ t

−∞
(t− s)

2p
p−2 δe−2δ(t−s)ds

) p−2
p
( ∞∑

n=1

e−2δ(n−1)

×
∫ n

n−1

E ∥ F (t− s,B3x
(n)(t− s))− F (t− s,B3x(t− s)) ∥p

L0
2
ds

)
≤ 2p−1

[
Mp

α

(
Γ(1− pα

p− 1
δ

pα
p−1−1)

)p−1
eδ

eδ − 1

+ CpM
p
α

(
Γ(1− 2pα

p− 2
)(2δ)

2pα
p−2−1

) p−2
p e2δ

e2δ − 1

]
ε.

For p = 2, we have

E ∥ (Φ2x
(n))(t)− (Φ2x)(t) ∥2α

≤ 2

[
M2

αΓ(1− 2α)δ2(1−α) eδ

eδ − 1
+M2

αΓ(1− 2α)(2δ)2α−1

]
ε.

Thus Φ2 is continuous.
Step 6. We shall show the set G = {x ∈ Y : λΦ1(

x
λ ) + λΦ2(x) = x for some λ ∈

(0, 1)} is bounded on R.
To do this, we consider the following nonlinear operator equation

x(t) = λΦx(t), 0 < λ < 1, (3.11)

where Φ is already defined. Next we gives a priori estimate for the solution of the
above equation. Indeed, let x ∈ Y be a possible solution of x = λΦ(x) for some
0 < λ < 1. This implies by (3.11) that for each t ∈ R we have

x(t) = λ(Φx)(t) = −λg(t, B1x(t)) + λ

∫ t

−∞
T (t− s)f(s,B2x(s))ds

+ λ

∫ t

−∞
T (t− s)F (s,B3x(s))dW (s) + λ

∑
ti<t

T (t− ti)Ii(x(ti)).

Then, by (H1)-(H6), Hölder’s inequality and the Itô integral, we have for p > 2,

E ∥ x(t) ∥pα≤4p−1E ∥ g(t, B1x(t)) ∥pα +4p−1E

wwww∫ t

−∞
T (t− s)f(s,B2x(s))ds

wwwwp

α

+ 4p−1E

wwww∫ t

−∞
T (t− s)F (s,B3x(s))dW (s)

wwwwp

α
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+ 4p−1E

wwww∑
ti<t

T (t− ti)Ii(x(ti))

wwwwp

α

≤4p−1 ∥ Aα−β ∥p E ∥ Aβg(t, B1x(t)) ∥p

+ 4p−1Mp
α

(∫ t

−∞
(t− s)−

p
p−1αe−δ(t−s)ds

)p−1

×
( ∞∑

n=1

e−δ(n−1)

∫ n

n−1

E ∥ f(t− s,B2x(t− s)) ∥p ds
)

+ 4p−1CpM
p
αE

(∫ t

−∞
(t− s)−2αe−2δ(t−s) ∥ F (s,B3x(s)) ∥2L0

2
ds

)p/2

+ 4p−1Mp
αE

[(∑
ti<t

(t− ti)
− p

p−1αe−δ(t−ti)

)p−1

×
(∑

ti<t

e−δ(t−ti) ∥ Ii(x(ti)) ∥p
)]

≤4p−1 ∥ Aα−β ∥p Lg(E ∥ B1x(t) ∥p +1)

+ 4p−1Mp
α

(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1
eδ

eδ − 1
[ρ1Θ(∥ B2x(t) ∥p) + ν0]

+ 4p−1CpM
p
α

(∫ t

−∞
(t− s)−

2p
p−2αe−2δ(t−s)ds

) p−2
p

×
( ∞∑

n=1

e−2δ(n−1)

∫ n

n−1

E ∥ F (t− s,B3x(t− s)) ∥p
L0

2
ds

)
+ 4p−1Mp

αγ
−pα 1

(1− e−δα)p−1

(∑
ti<t

e−δ(t−ti)ci(E ∥ x(ti) ∥p +1)

)
≤4p−1 ∥ Aα−β ∥p Lg($

p
0 sup

t∈R
E ∥ x(t) ∥pα +1)

+ 4p−1Mp
α

(
Γ(1− pα

p− 1
)δ

pα
p−1−1

)p−1
eδ

eδ − 1

× [ρ1Θ($p
0 sup

t∈R
∥ x(t) ∥pα) + ν0]

+ 4p−1CpM
p
α

(
Γ(1− 2pα

p− 2
)(2δ)

2pα
p−2−1

) p−2
p e2δ

e2δ − 1

× [ρ1Θ($p
0 sup

t∈R
∥ x(t) ∥pα) + ν0]

+ 4p−1Mp
αγ

−pα 1

(1− e−δγ)p
[sup
i∈Z

ci sup
t∈R

E ∥ x(t) ∥pα +1].

For p = 2, we have

E ∥ x(t) ∥2α≤4 ∥ Aα−β ∥2 Lg$
p
0(sup

t∈R
E ∥ x(t) ∥2α +1)

+ 4M2
α(Γ(1− 2α)δ2α−1 eδ

eδ − 1
[ρ1Θ($2

0 sup
t∈R

∥ x(s) ∥2α) + ν0]
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+ 4M2
αΓ(1− 2α)(2δ)2α−1[ρ1Θ($2

0 sup
t∈R

∥ x(s) ∥2α) + ν0]

+ 4M2
αγ

−2α 1

(1− e−δγ)2
[sup
i∈Z

ci sup
t∈R

E ∥ x(t) ∥2α +1].

Consequently, we have for p > 2,

(1− L0) ∥ x ∥pα,∞
(d̃1 + d̃2)[ρ1Θ($p

0 ∥ x ∥pα,∞) + ν0]
≤ 1, (3.12)

and for p = 2,
(1− L0) ∥ x ∥pα,∞

(ã1 + ã2)[ρ1Θ($p
0 ∥ x ∥pα,∞) + ν0]

≤ 1. (3.13)

Then by (3.9) and (3.10), there exists r∗ such that ∥ x ∥pα,∞ ̸= r∗. This indicates
that G is bounded on R. As a consequence of Lemma 2.8, we deduce that Φ1 +Φ2

has a fixed point x(·) ∈ Y, which is a mild solution of the system (1.1)–(1.2).

4. Existence of stochastic optimal controls
In this section we consider a control problem and present a result on the existence of
stochastic optimal controls. let Y is a separable reflexive Hilbert space from which
the controls u take the values. Operator B ∈ L∞(R, L(Y,H)), ∥ B ∥L∞ stands for
the norm of operator B on Banach space L∞(R, L(Y,H)), where L∞(R, L(Y,H))
denote the space of operator valued functions which are measurable in the strong
operator topology. Let Lp

F (R, Y ) is the closed subspace of Lp
F (R × Ω, Y ), consist-

ing of all Ft-progressively measurable, Y -valued stochastic processes satisfying the
condition E

∫ t

−∞ ∥ u(s) ∥pY ds < ∞, and endowed with the norm ∥ u ∥Lp
F (R,Y )=

(supt∈RE
∫ t

−∞ ∥ u(s) ∥pY ds)1/p.

Let Ũ be a nonempty closed bounded convex subset of Y. We define the admis-
sible control set

Uad = {$(·) ∈ Lp
F (R, Y );$(t) ∈ Ũ a.e. t ∈ R}.

Consider the following controlled stochastic partial differential equations of the
form

d[x(t) + g(t, B1x(t))] =A[x(t) + g(t, B1x(t))]dt+ [f(t, B2x(t)) +B(t)u(t)]dt

+ F (t, B3x(t))dW (t), t ∈ R, u ∈ Uad, t ̸= ti, i ∈ Z, (4.1)

∆x(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i ∈ Z. (4.2)

We will assume that

(S) Bu ∈ PAPSp
T (R, Lp(P,H)) for u ∈ Uab.

By Theorem 3.1, we have the following result.

Theorem 4.1. Assume that assumptions of Theorem 3.1 hold and, in addition,
the assumption (S) is satisfied. For every u ∈ Uad, the system (4.1)–(4.2) has a



558 Z. Yan & X. Jia

pseudo almost periodic in distribution mild solution corresponding to u given by the
solution of the following integral equation

xu(t) = −g(t, B1x(t)) +

∫ t

−∞
T (t− s)f(s,B2x(s))ds

+

∫ t

−∞
T (t− s)B(s)u(s)ds+

∫ t

−∞
T (t− s)F (s,B3x(s))dW (s)

+
∑
ti<t

T (t− ti)Ii(x(ti)), t ∈ R.

Proof. Consider the space Y endowed with the uniform convergence topology and
define the operator Φ̃ : Y → Y by

(Φ̃x)(t) = −g(t, B1x(t)) +

∫ t

−∞
T (t− s)f(s,B2x(s))ds

+

∫ t

−∞
T (t− s)B(s)u(s)ds+

∫ t

−∞
T (t− s)F (s,B3x(s))dW (s)

+
∑
ti<t

T (t− ti)Ii(x(ti)), t ∈ R.

Using Hölder’s inequality, we have

E

wwww∫ t

−∞
T (t− s)B(s)u(s)ds

wwwwp

α

≤Mp
αE

[ ∫ t

−∞
(t− s)−αe−δ(t−s) ∥ B(s)u(s) ∥ ds

]p
≤Mp

α ∥ B ∥p∞
(∫ t

−∞
(t− s)−

p
p−1αe−

p
p−1 δ(t−s)ds

)p−1

E

∫ t

−∞
∥ u(s) ∥pY ds

≤Mp
α ∥ B ∥p∞

(
Γ(1− pα

p− 1
)(

p

p− 1
δ)

pα
p−1−1

)p−1

∥ u ∥p
Lp

F (R,Y )
.

Then from Bochner’s Theorem, it follows that T (t − s)B(s)u(s) are integrable on
(−∞, t), where ∥ B ∥∞ is the norm of operator B in Banach space L∞(R, L(Y,H)).
Hence we conclude that Φ̃ is a well-defined operator from Y into Y. The proofs of
the other steps are similar to those in Theorem 3.1. Therefore, we omit the details.

Let xu denote the mild solution of system (4.1)–(4.2) corresponding to the
control u ∈ Uad. We consider the Lagrange problem (P): find an optimal pair
(x0, u0) ∈ Y× Uad such that

J (x0, u0) ≤ J (xu, u) for all u ∈ Uad,

where the cost function

J (xu, u) = sup
t∈R

E

∫ t

−∞
ϑ(s, xu(s), u(s))ds.

We introduce the following assumptions on ϑ.
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(D1) The functional ϑ : R× Lp(P,H)× Y → R ∪ {∞} is Borel measurable.

(D2) ϑ(t, ·, ·) is sequentially lower semicontinuous on Lp(P,H) × Y for almost all
t ∈ R.

(D3) ϑ(t, x, ·) is convex on Y for each x ∈ Lp(P,H) and almost all t ∈ R.

(D4) There exist constants d1 ≥ 0, d2 > 0, ς̃0 is nonnegative and ς̃0 ∈ L1(R,R) such
that ϑ(t, x, u) ≥ ς̃0(t) + d1 ∥ y ∥ +d2 ∥ u ∥pY .

To prove the existence of solution for problem (P), we need the following impor-
tant lemma.

Lemma 4.1. Operator Φ̃ : Lp(R, Y ) → Y given by

(Ψ̃u)(·) =
∫ t

−∞
T (t− s)B(s)u(s)ds

is completely continuous.

Proof. Suppose that un ⊆ Lp
F (R, Y ) is bounded, we define Θn(t) = (Ψ̃un)(t), t ∈

R. Similar to the proof of Theorem 3.1, one can know that for any fixed t ∈ R
and, E ∥ Θn(t) ∥pα is bounded. By using (S), it is ease to verify that Θn(t) is
relatively compact in Lp(P,Hα) and is also equicontinuous. Due to Lemma 2.5
again, {Θn(t)} is compact in Lp(P,Hα). Obviously, Ψ̃ is linear and continuous.
Hence, Ψ̃ is a completely continuous operator.

Next we can give the following result on existence of optimal controls for problem
(P).

Theorem 4.2. If the assumptions (S), (D1)-(D4) and the assumptions of Theorem
3.1 hold. Then the Lagrange problem (P) admits at least one optimal pair on Y×Uad.

Proof. Without loss of generality, we assume that inf{J (xu, u)|u ∈ Uad} = ε <
+∞. Otherwise, there is nothing to prove. Using assumptions (D1)-(D4), we have

J (xu, u) ≥
∫ t

−∞
ς̃0(s)ds+ d1

∫ t

−∞
∥ xu(s) ∥ ds+ d2

∫ t

−∞
∥ u(s) ∥pY ds

≥ −η̃ > −∞,

where η̃ > 0 is a constant. Hence, ε ≥ −η̃ > −∞. On the other hand, by
using definition of infimum there exists a minimizing sequence of feasible pair
{(xm, um)} ⊂ Aad, where Aad = {(x, u)|x is an Stepanov-like pseudo almost pe-
riodic mild solution of system (4.1)–(4.2) corresponding to u ∈ Uad}, such that
J (xm, um) → ε as m → +∞. For {um} ⊆ Uad, {um} is bounded in Lp

F (R, Y ), so
there exists a subsequence, relabeled as {um}, and u0 ∈ Lp

F (R, Y ) such that

um
w−→ u0 in Lp

F (R, Y ) as m→ ∞.

Since Uad is closed and convex, by Mazur’s lemma, we conclude that u0 ∈ Uad.

Now we suppose that xm are the mild solutions of system (4.1)–(4.2) corre-
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sponding to um(m = 0, 1, 2, . . .), and xm satisfied the following integral equation

xm(t) = −g(t, B1x
m(t)) +

∫ t

−∞
T (t− s)f(s,B2x

m(s))ds

+

∫ t

−∞
T (t− s)B(s)um(s)ds+

∫ t

−∞
T (t− s)F (s,B3x

m(s))dW (s)

+
∑
ti<t

T (t− ti)Ii(x
m(ti)), t ∈ R.

Let fm(s) ≡ f(s,B2x
m(s)), Fm(s) ≡ F (s,B3x

m(s)). Then for each xm ∈ Br∗ ⊂ Y,
by (3.8), we obtain that fm : R → Lp(P,H), Fm : R → Lp(P, L0

2) are bounded
continuous operators. Hence, fm(·) ∈ PAPSp

T (R, Lp(P,H)), Fm(·) ∈ PAPSp
T (R,

Lp(P, L0
2)). Furthermore, {fm(·)}, {Fm(·)} are bounded in Lp(R, Lp(P,H)), in Lp(R,

Lp(P, L0
2)) and there are subsequences, relabeled as {fm(·)}, {Fm(·)}, and f̂(·) ∈

PAPSp
T (R, Lp(P,H)), F̂ (·) ∈ PAPSp

T (R, Lp(P, L0
2)) such that

fm(·) w−→ f̂(·) in PAPSp
T (R, L

p(P,H)) as m→ ∞,

Fm(·) w−→ F̂ (·) in PAPSp
T (R, L

p(P, L0
2)) as m→ ∞.

By Lemma 4.1, we have

Φ̃fm → Φ̃f̂ , Φ̃Fm → Φ̃F̂ .

Next we turn to consider the following controlled system

d[x(t) + g(t, B1x(t))] = A[x(t) + g(t, B1x(t))]dt

+[f̂(t) +B(t)u0(t)]dt+ F̂ (t)dW (t), (4.3)
t ∈ R, u ∈ Uad, t ̸= ti, i ∈ Z,

∆x(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i ∈ Z. (4.4)

By Theorem 4.1, it is easy to see that system (4.3)–(4.4) has a mild solution

x̂(t) = −g(t, B1x̂(t)) +

∫ t

−∞
T (t− s)f̂(s)ds+

∫ t

−∞
T (t− s)B(s)u0(s)ds

+

∫ t

−∞
T (t− s)F̂ (s)dW (s) +

∑
ti<t

T (t− ti)Ii(x̂(ti)), t ∈ R.

Then we have for all t ∈ R,

E ∥ xm(t)− x̂(t) ∥pα≤
4∑

j=1

ν(j)m (t),
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where

ν(1)m (t) = 5p−1E ∥ g(t, B1x
m(t)))− g(t, B1x̂(t))) ∥pα,

ν(2)m (t) = 5p−1E

wwww∑
ti<t

T (t− ti)[Ii(x
m(ti))− Ii(x̂(ti))]

wwwwp

α

,

ν(3)m (t) = 5p−1E

wwww∫ t

−∞
T (t− s)B(s)[um(s)− u0(s)]ds

wwwwp

α

,

ν(4)m (t) = 5p−1E

wwww∫ t

−∞
T (t− s)[fm(s)− f̂(s)]ds

wwwwp

α

,

ν(5)m (t) = 5p−1E

wwww∫ t

−∞
T (t− s)[Fm(s)− F̂ (s)]dw(s)

wwwwp

α

.

By (H3) and (H6), we can obtain

ν(1)m (t) + ν(2)m (t) ≤ L0 ∥ xm − x̂ ∥pα,∞,

where L0 as in Theorem 3.1. Let ε > 0, t ∈ (ti, ti+1), i ∈ Z and 0 < q < 1 such that
0 < α+ q < 1, By the compact operator property, there exists Ñ0 > 0 such that

E ∥ A−qB(s)[um(s)− u0(s)] ∥pSp < ε,

E ∥ A−q[fm(s)− f̂(s)] ∥pSp < ε,

E ∥ A−q[Fm(s)− F̂ (s)] ∥pSp < ε

for m > Ñ0. Using Hölder’s inequality, we have

ν(3)m (t) ≤ 5p−1E

[ ∫ t

−∞
∥ Aα+qT (t− s)A−qB(t− s)

× [um(t− s)− u0(t− s)] ∥ ds
]p

≤ 5p−1Mp
α+q

(∫ t

−∞
(t− s)−

p
p−1 (α+q)e−δ(t−s)ds

)p−1

×
( ∞∑

n=1

e−δ(n−1)

∫ n

n−1

E ∥ A−qB(s)[um(s)− u0(s)] ∥p ds
)

≤ 5p−1Mp
α+q

(
Γ(1− p(α+ q)

p− 1
)δ

p(α+q)
p−1 −1

)p−1
eδ

eδ − 1
ε,

and

ν(4)m (t) ≤ 5p−1E

[ ∫ t

−∞
∥ Aα+qT (t− s)A−q[fm(s)− f̂(s)] ∥ ds

]p
≤ 5p−1Mp

α+q

(∫ t

−∞
(t− s)−

p
p−1 (α+q)e−δ(t−s)ds

)p−1

×
( ∞∑

n=1

e−δ(n−1)

∫ n

n−1

E ∥ A−q[fm(t− s)− f̂(t− s)] ∥p ds
)

≤ 5p−1Mp
α+q

(
Γ(1− p(α+ q)

p− 1
)δ

p(α+q)
p−1 −1

)p−1
eδ

eδ − 1
ε.
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Using the Itô integral, we have for p > 2,

ν(5)m (t) ≤ 5p−1Cp

[ ∫ t

−∞
[Aα+qT (t− s)A−q ∥ [Fm(s)− F̂ (s)] ∥p

L0
2
]2/pds

]p/2
≤ 5p−1CpM

p
α+q

(∫ t

−∞
(t− s)−

2p
p−2 (α+q)e−2δ(t−s)ds

) p−2
p

×
( ∞∑

n=1

e−2δ(n−1)

∫ n

n−1

E ∥ A−q[Fm(s)− F̂ (s)] ∥p
L0

2
ds

)

≤ 5p−1CpM
p
α+q

(
Γ(1− 2pα

p− 2
)(2δ)

2pα
p−2−1

) p−2
p e2δ

e2δ − 1
ε.

For p = 2, we have

ν(5)m (t) ≤ 5

[ ∫ t

−∞
E ∥ Aα+qT (t− s)A−q[[Fm(s)− F̂ (s)] ∥2L0

2
]ds

]
≤ 5M2

αΓ(1− 2α)(2δ)2α−1ε.

This implies that
ν(j)m (t) → 0 as m→ ∞, j = 3, 4, 5.

Thus we can infer that
xm → x̂ in Y as m→ ∞.

Further, by (H4) and (H5), we can obtain

fm(·) → f(·, B2x(·)), Fm(·) → F (·, B3x(·)) in Y as m→ ∞.

Using the uniqueness of limit, we have

f̂(s) = f(s,B2x̂(s)), F̂ (s) = F (s,B3x̂(s)).

Therefore, x̂ can be given by

x̂(t) = −g(t, B1x̂(t)) +

∫ t

−∞
T (t− s)f(s,B2x̂(s))ds

+

∫ t

−∞
T (t− s)B(s)u0(s)ds+

∫ t

−∞
T (t− s)F (s,B3x̂(s))dW (s)

+
∑
ti<t

T (t− ti)Ii(x̂(ti)), t ∈ R,

which is just a mild solution of system (4.1)–(4.2) corresponding to u0. Since Y ↪→
L1(R, Lp(P,H)), using (D1)–(D4) and Balder’s theorem (see [2]), we can obtain

ε = lim
m→∞

sup
t∈R

E

∫ t

−∞
ϑ(s, xm(s), um(s))ds

≥ sup
t∈R

E

∫ t

−∞
ϑ(s, x̂(s), u0(s))ds = J (x̂, u0) ≥ ε.

This shows that J attains its minimum at (x̂, u0) ∈ Y× Uad.
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5. Applications
Consider following partial stochastic differential equations of the form

d

[
z(t, x) + ι1(t)

∫ π

0

b1(x, y)
∂2

∂y2
z(t, y)dy

]
=

∂2

∂x2

[
z(t, x) + ι1(t)

∫ π

0

b1(x, y)
∂2

∂y2
z(t, y)dy

]
dt

+ι2(t)

[ ∫ π

0

b2(x, y)
∂2

∂y2
z(t, y)dy +

1

2
u(t, x)

+

∫ π

0

b3(x, y)
∂2

∂y2
z(t, y)dydW (t)

]
, (5.1)

t ∈ R, t ̸= ti, i ∈ Z, u ∈ Ũab, x ∈ [0, π],

∆z(ti, x) = ι1(i)z(ti, x), i ∈ Z, x ∈ [0, π], (5.2)

z(t, 0) = z(t, π) = 0, t ∈ R, (5.3)

where W (t) is a two-sided standard one-dimensional Brownian motion defined on
the filtered probability space (Ω,F ,P,Ft). In this system, ti = i+ 1

4 | sin i+sin
√
2i|,

{tji}, i ∈ Z, j ∈ Z are equipotentially almost periodic and γ = infi∈Z(ti+1 − ti) > 0,
one can see [21] for more details.

Let H = Y = L2([0, π]) with the norm ∥ · ∥ and define the operators A : A(D) ⊂
H → H by Aω = ω′′ with the domain D(A) := {ω ∈ H : ω′′ ∈ H, ω(0) = ω(π) = 0}.
Then A is the infinitesimal generator of an analytic semigroup T (t) on H and
∥ T (t) ∥≤ e−t for t ≥ 0. Furthermore, A has a discrete spectrum with eigenvalues of
the form −n2, n ∈ N and normalized eigenfunctions given by en(ξ) := ( 2π )

1
2 sin(nξ).

The following properties hold:

(a) If ω ∈ D(A), then Aω = −
∑∞

n=1 n
2⟨ω, en⟩en.

(b) For ω ∈ H T (t)ω =
∑∞

n=1 e
−n2t⟨ω, en⟩en, (−A)−

1
2ω =

∑∞
n=1

1
n ⟨ω, en⟩en.

(c) The operator A 1
2 : D(A

1
2 ) ⊆ H → H given by A 1

2ω =
∑∞

n=1 n⟨ω, en⟩en on the
space D(A

1
2 ) = {ω(·) ∈ H :

∑∞
n=1 n⟨ω, en⟩en ∈ H}.

Moreover, ∥ A− 1
2 ∥= 1, and

∥ A 1
2T (t)ω ∥2= 1

t

∞∑
n=1

n2te−2n2t|⟨ω, en⟩en|2 ≤ 1

2et
∥ ω ∥2, ω ∈ H,

where we have used the property that the function µ̃(x) = xe−x takes its maximum
e−1 at x = 1. Therefore, we can choose M 1

2
= 1√

2e
. Let H 1

2
:= (D(A

1
2 ), ∥ · ∥ 1

2
),

where ∥ · ∥ 1
2
:=∥ A 1

2x ∥ for each x ∈ D(A
1
2 ). For d̃ > 0, we define the admissible

control set Uad = {u(·, y)|R → Y measurable, Ft-adapted stochastic processes, and
∥ u ∥Lp

F (R,Y )≤ d̃}. Find the control u(t, x) that minimises the performance index

J (z, u)(x) = sup
t∈R

E

∫ t

−∞

[ ∫
[0,π]

|zu(τ, x)|2dx+

∫
[0,π]

|u(τ, x)|2dx
]
dτ.
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Define the operators Bj by Bj = A with D(Bj) = D(A), then Bj : L
p(P,H) →

Lp(P,H) are bounded and ∥ Bj ∥L(Lp(P,H))= 1, j = 1, 2, 3.

We assume that the following conditions hold.

(i) The functions b1(·), ∂2

∂x2 b1(x, y), are (Lebesgue) measurable, b1(0, y) = b1(π, y)
= 0 for every y ∈ [0, π], and

L̃g = max

{(∫ π

0

∫ π

0

(
∂j

∂xj
b1(x, y)

)2

dxdy

)1/2

: j = 0, 1

}
<∞.

(ii) The functions bj : [0, π]× [0, π] → R, j = 2, 3, are continuous functions, and(∫ π

0

∫ π

0

b2j (x, y)dydx

)1/2

<∞.

(iii) The functions ι1 : R → R is piecewise pseudo almost periodic functions and
ι2 : R → R is piecewise Stepanov-like pseudo almost periodic functions, and
there exist l̃0, l̃1 > 0 such that |ι1(t) − ι1(s)|p ≤ l̃0|t − s| and |ι1(t)|p ≤ l̃0,
|ι2(t)|p ≤ l̃1 for all t, s ∈ R.

For t ∈ R, x ∈ [0, π]. Defining the maps g, f, F : R × Lp(P,H) → Lp(P,H),
Ii : L

p(P,H) → Lp(P,H) by

g(t, ψ)(x) = ι1(t)

∫ π

0

b1(x, y)
∂2

∂y2
ψ(y)dy,

f(t, ψ)(x) = ι2(t)

∫ π

0

b2(x, y)
∂2

∂y2
ψ(y)dy,

F (t, ψ)(x) = ι2(t)

∫ π

0

b3(x, y)
∂2

∂y2
ψ(y)dy,

and
Ii(ψ)(·) = βiψ(ti, ·), i ∈ Z.

For all u ∈ L2(R× [0, π]), we define an operator B as follows:

(Bu)(t)(x) = ι2(t)(
1

2
u(t, x)).

Then, the above equation (5.1)–(5.3) can be written in the abstract form as the sys-
tem (1.1)–(1.2). It is then easy see that g, Ii are piecewise pseudo almost periodic
functions and f, F piecewise Stepanov-like pseudo almost periodic functions. More-
over, assumption (i) implies that g is D(A

1
2 )-valued. In fact, for any ψ ∈ Lp(P,H),

we have by assumption (i)

⟨g(t, ψ), ωn⟩ =
∫ π

0

ωn(x)

(
ι1(t)

∫ π

0

b1(x, y)
∂2

∂y2
ψ(y)dy

)
dx

=
ι1(t)

n

〈∫ π

0

∂

∂x

(∫ π

0

b1(x, y)
∂2

∂y2
ψ(y)dy

)
dx,

√
2

π
cos(nx)

〉
,
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and
E ∥ g(t, ψ)− g(t1, ψ1) ∥p1

2

= E

[(
ι1(t)

∫ π

0

(∫ π

0

b1(x, y)
∂2

∂y2
ψ(y)dy

−
(
ι1(t1)

∫ π

0

(∫ π

0

b1(x, y)
∂2

∂y2
ψ1(y)dy

)2

dx

)1/2]p
≤ E

[(∫ π

0

∫ π

0

(
∂b1(x, y)

∂x

)2

dydx

)1/2

×
(
|ι1(t)− ι1(t1)|+ |ι1(t1)| ∥ ψ − ψ1 ∥

)]p
≤ 2p−1L̃p

g[|ι1(t)− ι1(t1)|p + |ι1(t1)|p ∥ ψ − ψ1 ∥p]
≤ Lg[|t− t1|+ ∥ ψ − ψ1 ∥p]

and E ∥ g(t, ψ) ∥p1
2

≤ Lg ∥ ψ ∥p for all t, t1 ∈ R, ψ, ψ1 ∈ Lp(P,H), where Lh =

2p−1L̃p
h l̃0. From assumption (ii), we have

E ∥ f(t, ψ)− f(t1, ψ1) ∥p +E ∥ F (t, ψ)− F (t1, ψ1) ∥p

≤ l̃1E

[(∫ π

0

(∫ π

0

b2(x, y)
∂2

∂y2
[ψ(y)− ψ1(y)]dy

)2

dx

)1/2]p
+ l̃1E

[(∫ π

0

(∫ π

0

b3(x, y)
∂2

∂y2
[ψ(y)− ψ1(y)]dy

)2

dx

)1/2]p
≤ l̃1

[(∫ π

0

∫ π

0

b21(x, y)dydx

)p/2

+

(∫ π

0

∫ π

0

b23(x, y)dydx

)p/2]
× ∥ ψ − ψ1 ∥p

= Lf,F ∥ ψ − ψ1 ∥p

and E ∥ f(t, ψ) ∥pSp +E ∥ F (t, ψ) ∥pSp≤ Lf,F ∥ ψ ∥p for all t, t1 ∈ R, ψ, ψ1 ∈
Lp(P,H), where Lf,F = l̃1[

∫ π

0

∫ π

0
b22(x, y)dydx)

p/2+
∫ π

0

∫ π

0
b23(x, y)dydx)

p/2]. Further,
ι1(i) ∈ PAP (Z,R) implies that Ii ∈ PAP (Z, Lp(P,H)), i ∈ Z, and E ∥ Ii(x1) −
Ii(x2) ∥p≤ ci ∥ x1 − x2 ∥p≤ ci ∥ x1 − x2 ∥p1

2

and E ∥ Ii(x1) ∥p≤ ci ∥ x1 ∥p1
2

for all
x1, x2 ∈ Lp(P,H 1

2
), where ci = |ι1(i)|p, i ∈ Z. Therefore, the assumptions (H2)-(H6)

all hold in Section 3. It is obvious that (Bu)(t)(x) is measurable in t ∈ R, x ∈ [0, π].
For u ∈ L2(R × [0, π]), we have ∥ Bu ∥pL2(R×[0,π])≤ Lu ∥ u ∥pL2(R×[0,π]), where
Lu = l̃1

2p . Then, we can conclude that B ∈ L∞(R, L(H)). Further, all the conditions
stated in Theorem 4.2 satisfied. Hence by Theorems 4.2, the system (5.1)–(5.3) has
at least one optimal pair.

6. Conclusion
In this paper, we studied the Stepanov-like pseudo almost periodic periodicity for
a class of impulsive partial stochastic differential equations in Hilbert spaces. More
precisely, by using stochastic analysis, analytic semigroup, fractional powers of
closed operators and the Krasnoselskii-Schaefer type fixed point theorem along
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with a new composition theorem, we discussed the existence of p-mean piecewise
Stepanov-like pseudo almost periodic mild solutions for these equations under non-
Lipschitz conditions. Then, we investigated the existence of optimal pairs of the
impulsive stochastic control system. Finally, an application is provided to illustrate
the applicability of the new results.

There are two direct issues which require further study. First, we will investigate
the p-mean piecewise Stepanov-like weighted pseudo almost periodicity in distribu-
tion and optimal control for impulsive partial stochastic differential equations with
infinite delay in Hilbert spaces. Second, we will devote our efforts to the study of
the time optimal control of impulsive partial stochastic differential equations and
inclusions.
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