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Abstract In this paper, on the condition of nonuniformly bounded growth,
we give the relationship between the nonuniform exponential dichotomy spec-
trum and the other two classical spectrums (the Lyapunov spectrum and
Sacker-Sell spectrum), present their stability under small linear perturbations.
The main goal of this paper is to discuss the theory for the computation of
these spectrums on the condition of nonuniformly bounded growth, and this
extends the work of Dieci and Vleck [22], which computes the Lyapunov spec-
trum and Sacker-Sell spectrum under the condition of bounded. Finally, the
numerical examples are given to illustrate and verify the theoretical results.
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1. Introduction

Lyapunov exponent was introduced by Lyapunov himself, reprinted in [28]. In this
paper, Lyapunov exponent was generalized for illustrating the characterization of
exponential growth rates of time varying matrix functions. For an n-dimensional
(time varying) differential equations, there are n Lyapunov exponents, Lyapunov
exponents are natural to be of our interest for the reason that Lyapunov spectrum
is discussed in this paper, which characterizes stability properties of the solution
trajectory of nonautonomous systems. Since then, different characterizations of
spectrums for linear nonautonomous differential equation have been proposed. A-
mong them, one of the most famous spectrums is dichotomy spectrum (or called
Sacker-Sell spectrum, dynamical spectrum), which was introduced by Sacker and
Sell in [34,35] defined by exponential dichotomies to study the linear skew product
flows. Afterwards, a lot of researches have been done to understand and extend
this fruitful concept in various ways. For example, a spectral theory about linear
difference equations has been studied in [2–5]. Reducibility and normal forms for
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nonautonomous differential equations by using dichotomy spectrum has been given
in [37, 38]. For more results about dichotomy spectrum, see [24, 25, 32, 33, 36] and
the references therein.

In the computation of spectral intervals, both for dichotomy spectrum ΣED(A)
and Lyapunov spectrum ΣL(A), SVD and QR methods have been proposed by Dieci
and Vleck [21, 22] to study the computation methods for these spectrums. After
that, further research on this topic has been proposed by Dieci and his collaborators
(see [18–20,23] for details). For more information about the theoretical and numeri-
cal analysis of dichotomy spectrum, one can refer to [26,27] and the references cited
therein.

Meanwhile, as Barreira and Valls mentioned in [10], the classical notion of expo-
nential dichotomy substantially restricts some dynamics, from the point of view of
ergodic theory, almost all linear variational equations have a nonuniform exponen-
tial behavior. During the last several years, a more generalized concept: nonuniform
exponential dichotomy has been introduced and investigated by Barreira and Valls
(see e.g., [7–9, 42]). Based on the study of exponential dichotomy, the nonunifor-
m dichotomy spectral theory was introduced in [16, 40] for linear nonautonomous
system with the coefficients being nonuniformly bounded growth (see Definition 4.1
below).

Here we mention that the numerical methods proposed by Dieci and Vleck in
[21, 22] demand the coefficients of the linear systems to be bounded. Otherwise,
the numerical technique for computing Sacker-Sell spectrum, which is based on the
condition of integral separateness, is not quite right. For example, we consider the
following two dimensional diagonal system ẋ1

ẋ2

 =

ω1 0

0 ω2t sin t

x1

x2

 (1.1)

where, ω1 > ω2 > 0 are real paraments. One can see that the coefficients of (1.1)
are not bounded, and (1.1) is not integrally separated (see [41]). Moreover, one can
prove that the dichotomy spectrum ΣED of (1.1) is trivial, i.e., ΣED = R, and the
nonuniformly dichotomy spectrum is ΣNED = {ω1} ∪ [−ω2, ω2] (see Example 2.1
in [16] for details. Remark 4.1 below also presents an explanation from the point of
view of numerical analysis).

This work, inspired by both the classical notion of dichotomy spectrum [34, 35]
and the notion of nonuniform dichotomy spectrum introduced by [16, 40], is an at-
tempt to discuss the relationship of three different spectrums: ΣL(A), ΣED(A) and
ΣNED(A), and extend the numerical technique developed by Dieci and Vleck [21,22]
for studying linear nonautonomous system with the coefficients being nonuniformly
bounded growth.

An outline of the paper is as follows. In Section 2, the basic definitions and
properties of ΣL(A), ΣED(A) and ΣNED(A) will be presented. Section 3 discusses
the relationship of ΣL(A), ΣED(A) and ΣNED(A), and summarizes the stability of
these spectrums under small linear perturbations.

In Section 4, we first establish necessary and sufficient condition of Steklov func-
tion and weak integral separateness under the condition of nonuniformly bounded
growth, and then we can use this relationship to show the numerical methods for
ΣED(A) and ΣNED(A). An example will be given in Section 5 to illustrate and
verify the theoretical results.
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2. Lyapunov, exponential dichotomy, and nonuni-
form exponential dichotomy spectrum

Given an n-dimensional linear system

ẋ = A(t)x, (2.1)

where x(t) ∈ Rn and A(t): is an n × n matrix with real entries depending con-
tinuously on t ≥ 0. Considering the trivial solution of (2.1), it is well known that
if the matrix function A(t) is constant, i.e., A(t) = A for all t ≥ 0, then the zero
solution of (2.1) is asymptotically (and indeed, exponentially) stable if and only if
the real part of every eigenvalue of the matrix A is negative. A similar result holds
in the case when the matrix function A(t) is periodic by using the Floquet theory.
For the general (nonautonomous) case, we need to consider the spectral intervals
instead of eigenvalues, so in this section we first recall the definitions of the next
two classical concepts of spectrum: Lyapunov spectrum ΣL(A), and exponential di-
chotomy spectrum ΣED(A), then we introduce a third related one, the nonuniform
exponetial dichotomy spectrum, ΣNED(A).

2.1. Lyapunov spectrum.

Given a fundamental matrix solution Φ(t) of (2.1), define λj , j = 1, . . . , n, as

λj(Φ(t)) := lim sup
t→+∞

1

t
ln ‖Φ(t)ej‖,

where the vector norm is the 2-norm (invariant under orthogonal transformations),
and the ej is the unit column-vector in the xj direction, i.e.,

ej = (0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . . , 0)T .

When the sum of the numbers λj is minimized as we vary over all possible funda-
mental matrix solutions of the system, i.e.,

n∑
j=1

λsj := inf


n∑
j=1

λj(Φ(t)) : Φ(t) is a fundamental matrix of (2.1)


then the numbers λsj , j = 1, . . . , n are called (upper) Lyapunov exponents, and the
corresponding basis is called normal.

Now we consider the linear differential equation which is dual to (2.1)

ẏ = −AT (t)y. (2.2)

Similarly, one can have the upper Lyapunov exponents λij , j = 1, . . . , n of (2.2),
which are the lower Lyapunov exponents of (2.1) (see e.g., [22] for details). Let
λsj , λ

i
j be ordered: λs1 ≥ λs2 ≥ · · · ≥ λsn and λi1 ≥ λi2 ≥ · · · ≥ λin. Considering such a

fact that λij ≤ λsj , then the Lyapunov spectrum can be defined as

ΣL :=

n⋃
j=1

[λij , λ
s
j ].

Especially, the system is called regular while λij = λsj for all j = 1, . . . , n.
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2.2. Exponential dichotomy spectrum.

Recall that (2.1) admits an exponential dichotomy if there exists an invariant pro-
jection P , and constants α > 0, M > 0 such that

‖Φ(t)PΦ−1(s)‖ ≤Me−α(t−s), for 0 ≤ s ≤ t,

and

‖Φ(t)QΦ−1(s)‖ ≤Meα(t−s), for 0 ≤ t ≤ s,

where Q = In − P is the complementary projection. Furthermore, for any fixed
γ ∈ R, write a shifted system

ẋ = [A(t)x− γIn]x. (2.3)

Then the exponential dichotomy spectrum of (2.1) is given by the set

ΣNED(A) = {γ ∈ R : (2.3) admits no exponential dichotomy},

and the resolvent set ρED(A) = R \ ΣED(A) is its complements.

In [35,36], it has been shown that ΣED(A) is at most a disjoint union of n closed
intervals. This means that ΣED(A) = ∅ or ΣED(A) = R or ΣED(A) is in one of the
four cases

ΣED(A) =


[a1, b1]

or

(−∞, b1]

 ∪ [a2, b2] ∪ · · · ∪ [ak−1, bk−1] ∪


[ak, bk]

or

[ak,∞)


for some k : 1 ≤ k ≤ n.

2.3. Nonuniform exponential dichotomy spectrum.

In [7,8], Barreira and Valls propose a new notion called nonuniform, which extends
the notion of dichotomy of uniform. Later, [16] presents a new spectrum for (2.1)
based upon the nonuniform exponential dichotomy.

Recall that (2.1) admits a nonuniform exponential dichotomy if there exists an
invariant projection P , constants α > 0, M > 0, and ε ∈ [0, α) such that

‖Φ(t)PΦ−1(s)‖ ≤Me−α(t−s)eεs, for 0 ≤ s ≤ t, (2.4)

and

‖Φ(t)QΦ−1(s)‖ ≤Meα(t−s)eεs, for 0 ≤ t ≤ s, (2.5)

where Q = In − P is the complementary projection. Then the nonuniform expo-
nential dichotomy spectrum of (2.1) is given by the set

ΣNED(A) = {γ ∈ R : (2.3) admits no nonuniform exponential dichotomy},

and the resolvent set ρNED(A) = R \ ΣNED(A) is its complements.
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Similarly, it has been shown in [16] that ΣNED(A) is at most a disjoint union of
n closed intervals. This means that ΣNED(A) = ∅ or ΣNED(A) = R or ΣNED(A)
is in one of the four cases

ΣNED(A) =


[a1, b1]

or

(−∞, b1]

 ∪ [a2, b2] ∪ · · · ∪ [ak−1, bk−1] ∪


[ak, bk]

or

[ak,∞)


for some k : 1 ≤ k ≤ n.

3. Relationship of spectrums ΣL(A), ΣED(A) and
ΣNED(A).

It is well known that the notion of Lyapunov exponents, exponential dichotomy
together with some of their variants, extensions, and modifications, plays a central
role in the study of general theory of dynamical systems. To gain insight into the
behavior of the dynamical approaches of (2.1), several aspects are discussed in this
section to illustrate the relationship of spectrums ΣL(A), ΣED(A) and ΣNED(A).

We first present the relation of the inclusion of these three spectrums.

Proposition 3.1. For an n-dimensional linear system (2.1), we have the following
chain of implications

ΣL(A) ⊂ ΣNED(A) ⊂ ΣED(A).

Proof. Clearly ΣNED(A) ⊂ ΣED(A) due to the fact ε ≥ 0 in (2.4)-(2.5) (see [16] for
details). Now we prove that ΣL(A) ⊂ ΣNED(A). Obviously, ΣL(A) ⊂ ΣNED(A) if
ΣNED(A) = R. Conversely, if ΣNED(A) = ∅, then ρNED(A) = R. This means that
for any λ ∈ R, there exists an invariant projection P , constants α > 0, M > 0, and
ε ∈ [0, α) such that

‖Φλ(t)PΦ−1
λ (s)‖ ≤Me−α(t−s)eεs, for 0 ≤ s ≤ t,

or equivalently,

‖Φ(t)PΦ−1(s)‖ ≤Me(λ−α)(t−s)eεs, for 0 ≤ s ≤ t.

Set s = 0, the inequality above implies that

‖Φ(t)PΦ−1(0)x0‖ ≤M‖x0‖e(λ−α)t for 0 ≤ t.

with any initial point (t, x(t))|t=0 = (0, x0) ∈ R×Rn. It is easy to see that λs1 → −∞
since λ is arbitrary one in R, then we have ∅ = ΣL(A) = ΣNED(A).

Now, we prove the theorem for the nontrivial case (ΣNED(A) 6= ∅ and ΣNED(A) 6=
R). Choosing γ ∈ ρNED(A), define

Sγ :=

{
(τ, ξ) ∈ R× Rn : sup

t≥τ
{‖Φ(t, τ)ξ‖e−γt}e−ετ <∞

}
,

and

Uγ :=

{
(τ, ξ) ∈ R× Rn : sup

t≤τ
{‖Φ(t, τ)ξ‖e−γt}e−ετ <∞

}
.
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Then for any γj ∈ ρNED(A), i.e.,

bj < γj < aj+1, for j = 1, · · · , n− 1,

the intersection
Wj = Uγj−1

∩ Sγj , for j = 1, · · · , n− 1

forms a linear integral manifold of (2.1) with dimWj ≥ 1 (see [16] for details). Let λ
be an arbitrary point in (bj , aj+1), thus λ ∈ ρNED(A), and there exist an invariant
projection P , constants α > 0, M > 0, and ε ∈ [0, α) such that

‖Φλ(t)PΦ−1
λ (s)‖ ≤Me−α(t−s)eεs, for 0 ≤ s ≤ t,

or equivalently,

‖Φ(t)PΦ−1(s)‖ ≤Me(λ−α)(t−s)eεs, for 0 ≤ s ≤ t.

Set s = 0, the inequality above implies that

‖Φ(t)PΦ−1(0)x0‖ ≤M‖x0‖e(λ−α)t for t ≥ 0

with any initial point (t, x(t))|t=0 = (0, x0) ∈ Wj . Now we can prove that λsj ≤ bj
since λ is arbitrary one in (bj , aj+1).

Similarly, choosing λ ∈ (bj−1, aj), thus λ ∈ ρNED(A), and there exists an in-
variant projection Q = In − P , constants α > 0, M > 0, and ε ∈ [0, α) such
that

‖Φλ(t)QΦ−1
λ (s)‖ ≤Meα(t−s)eεs, for 0 ≤ t ≤ s,

or equivalently,

‖Φ(t)QΦ−1(s)‖ ≤Me(λ+α)(t−s)eεs, for 0 ≤ t ≤ s.

Set t = 0, the inequality above implies that

‖x0‖ = ‖Φ(0)QΦ−1(s)x(s)‖ ≤M‖x(s)‖e−(λ+α−ε)s, for s ≥ 0

with any initial point (t, x(t))|t=0 = (0, x0) ∈Wj . Then we have

‖x(s)‖ ≥ e(λ+α−ε)s‖x0‖, for s ≥ 0,

which means that λij ≥ λ+ α− ε ≥ λ due to the fact ε ∈ [0, α). Now we can prove

that λij ≥ aj since λ is arbitrary one in (bj−1, aj). �

The next connection concentrates on the perturbation results of spectrums
ΣL(A), ΣED(A) and ΣNED(A). It is well known that exponential dichotomy of
(2.1) remains unchanged with a small perturbation, which is called roughness (see
e.g., [17, pp. 34] for details), i.e., for a perturbed system

ẋ = (A(t) +B(t))x (3.1)

with ‖B(t)‖ ≤ δ for some sufficiently small δ > 0, the perturbed equation (3.1) has
also an exponential dichotomy. Thus, ΣED(A) is stable under small perturbation,
since the shifted system does not change the stability of exponential dichotomy.
In [9], Barreira and Valls show that the perturbation with the coefficient matrix
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being exponentially decaying, i.e., the linear perturbed system (3.1) has also a
nonuniform exponential dichotomy, while ‖B(t)‖ ≤ δe−εt for some sufficiently small
δ > 0, ε ∈ [0, α). Thus, ΣNED(A) is stable with the perturbation of the coefficient
matrix being exponentially decaying.

The stability theory of Lyapunov spectrum ΣL(A) is more complicated than
ΣED(A) and ΣNED(A), and we first mention that it is not enough to ensure the
stability of of Lyapunov exponents for a general system even if for a regular system
with different Lyapunov exponents. Example from [1, p. 171] shows that a two
dimension system

ẋ1 = (1 +
π

2
sin(π

√
t))x1, ẋ2 = 0

has distinct Lyapunov exponents λ1 = 1 and λ1 = 0. However, the Lyapunov
exponents of this system are not stable.

A general condition called integral separateness (see, e.g., [1]), which is intro-
duced and improved by Bylov, Vinograd, Izobov, Grobman, Millionščikov and sev-
eral others [6, 12–15, 29, 30, 39], is generally used to guarantee the stability of of
Lyapunov exponents. Now we introduce the definitions of weak integral separate-
ness, which extend the concept of integral ones.

Definition 3.1 (see [41, Def. 2.2]). The continuous functions gi, i = 1, . . . , n, are
said to be weakly integrally separated if for i = 1, . . . , n−1, there exist some costants
a, b ≥ 0 and d ∈ R such that∫ t

s

(gi+1(τ)− gi(τ))dτ ≥ a(t− s)− bs+ d, t ≥ s ≥ 0.

Definition 3.2 (see [41, Def. 2.3]). Let Φ(t) = (Φ1(t), . . . ,Φn(t)) be a fundamental
matrix solution of (2.1). Then, system (2.1) is said to be weakly integrally separated
if for i = 1, . . . , n− 1, there exist some constants a, b ≥ 0 and D > 0 such that

‖Φi+1(t)‖
‖Φi+1(s)‖

· ‖Φi(s)‖
‖Φi(t)‖

≥ Dea(t−s)−bs, t ≥ s ≥ 0. (3.2)

(2.1) is called integrally separated if a > 0 and b = 0 in (3.2) (see e.g. [1,
Definition 5.3.2] and [22]). Obviously, integral separateness implies week integral
separateness due to the fact b ≥ 0, but not vice versa. Indeed, (1.1) is weakly
integrally separated but not integrally separated.

The following two theorems present the necessary and sufficient conditions of
the stability of Lyapunov exponents, and therefore the corresponding stability of
ΣL(A).

Theorem 3.1 (see [1, Thm. 5.4.7] and [14]). Assuming that the system (2.1) has
distinct Lyapunov exponents λ1 > · · · > λn, they are stable if and only if there exists
a fundamental matrix solution with integrally separated columns.

Theorem 3.2 (see [41]). Assuming that the system (2.1) with nonuniformly bound-
ed growth has distinct Lyapunov exponents λ1 > · · · > λn, they are stable with the
perturbations of the coefficient matrix being exponentially decaying i.e., for a per-
turbed system (3.1) with ‖B(t)‖ ≤ δe−εt for some δ > 0, ε ∈ [0, α), the Lyapunov
exponents of system (2.1) are stable if and only if there exists a fundamental matrix
solution with weakly integrally separated columns.
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From the analysis above, we have the following perturbation results about
ΣL(A), ΣED(A) and ΣNED(A).

Proposition 3.2. For an n-dimensional linear system (2.1).

1. Given a sufficiently small parameter δ > 0, such that ‖B(t)‖ ≤ δ, then the
perturbed system (3.1) having the following properties:

(a) ΣED(A) is stable under the perturbation ‖B(t)‖ ≤ δ;
(b) (2.1) is integrable separated ⇔ ΣL(A) is stable under the perturbation
‖B(t)‖ ≤ δ;

2. Given a sufficiently small parameter δ > 0, and ε ∈ [0, α), such that ‖B(t)‖ ≤
δe−εt, then the purturbed system (3.1) having the following properties:

(a) ΣNED(A) is stable under the perturbation ‖B(t)‖ ≤ δe−εt;
(b) (2.1) is weakly integrable separated ⇔ ΣL(A) is stable under the pertur-

bation ‖B(t)‖ ≤ δe−εt;

From the Proposition 3.2, one can find perturbation results of ΣL(A), ΣED(A)
and ΣNED(A) and some connection among these three spectrums, which can be
used to assure the correctness of the numerical works in the next section. To further
explore the relationship of these three spectrums, we focus on a special case: full
spectrum. In [11], Bodine and Sacker presented that the system (2.1) with full
exponential dichotomy spectrum is integrally separated. The converse does not
hold (see [31, pp. 193] for details). Thus the following relationship holds:

ΣED(A) is full =⇒ Integral Separation

More recently, we have proved in [41] that the system (2.1) with full nonuniform
exponential dichotomy spectrum is weakly integrally separated, and the converse
can hold true if we consider some additional condition (see [41, Theorem 1.2] for
details), which can also be used to prove the converse part from integrally separated
to full exponential dichotomy spectrum. This means that

ΣNED(A) is full =⇒ Weakly integral Separation

Note that ΣNED(A) ⊂ ΣED(A), and integral separateness always implies week
integral separateness. Combine these relationship with the approaches above, we
will have the following chain of implications

ΣED(A) is full ⇒ Integral Separation

⇓ ⇓

ΣNED(A) is full⇒Weakly integral Separation

Remark 3.1. If ΣED(A) is full, the perturbation results of ΣL(A) and ΣED(A)
are the same. Similarly, if ΣNED(A) is full, the perturbation results of ΣL(A) and
ΣNED(A) are the same.
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4. Numerical computation of ΣED(A) and ΣNED(A)
without bounded condition.

Recall that (2.1) has bounded growth (see [36] and [17, pp. 8]) if and only if there
exist constants K > 0, ã > 0 such that

‖Φ(t)Φ−1(s)‖ ≤ Keã|t−s|, for t, s ≥ 0. (4.1)

However, the notion of bounded growth demands considerably from the dynam-
ics and it is of considerable interest to look for more general types of hyperbolic
behavior. We now present an en example without uniform bounded growth.

Example 4.1. The scalar equation

ẋ = t(sin t+ 1)x (4.2)

has no uniform bounded growth.

Proof. It is easy to verify that

exp

(∫ t

s

τ(sin τ + 1)dτ

)
=exp(−t cos t+ s cos s+ sin t− sin s+ t− s)

= exp(2(t− s)− t(cos t+ 1) + s(cos s+ 1) + (sin t− sin s)).

≤ exp(2(t− s) + 2s+ 2).

Furthermore, if t = 2kπ + π and s = 2kπ with k ∈ N, then

exp

(∫ t

s

τ(sin τ + 1)dτ

)
= exp(2(t− s) + 2s). (4.3)

Thus (4.2) has no uniform bounded growth due to the fact that the perturbation
2s in (4.3) can not be eliminated. This means that bounded growth (4.1) is not
satisfied. �

Remark 4.1. The numerical method proposed in [21,22] is not quite right without
bounded condition. In fact, the computational procedure to approximate dichotomy
spectrum is based on the separateness of Steklov function, which is equivalent to
integral separateness under the condition of bounded (See Lemma 5.4.1 in [1]).

For example, considering the following scalar equation

ẋ = a(t)x (4.4)

with a(t) is continuous, the computational procedure to approximate dichotomy
spectrum of (4.4) is as follows. Given H > 0, and T > t0 > 0. Let aH =
1
H

∫ t+H
t

a(τ)dτ for t ∈ [t0, T ]. One can compute

a = sup
t0≤t≤T−H

aH and a = inf
t0≤t≤T−H

aH

and use [a, a] as an approximation to dichotomy spectrum of (4.4).
Let a(t) = t(sin t+ 1) as in (4.2), t1 = 2k1π, and H1 = 2k2π+π with k1, k2 ∈ N,

it follows easily from (4.3) that

1

H1

∫ t1+H1

t1

τ(sin τ + 1)dτ = 2 +
t1
H1

.
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Similarly, let t1 = 2k1π + π, and H1 = 2k2π with k1, k2 ∈ N, we have

1

H2

∫ t2+H2

t2

τ(sin τ + 1)dτ = − t2
H2

.

Hence, the dichotomy spectrum of (4.2) is R, due to the fact that a(t) = t(sin t+ 1)
is not bounded.

In order to present the numerical computation of spectral intervals ΣED(A) and
ΣNED(A), we need to introduce the following definition to extend the known results
of bounded growth to nonuniformly bounded growth.

Definition 4.1 (see [16, Def. 2.9]). We say that (2.1) has a nonuniformly bounded
growth if there exist constants K > 0, ã > 0 and b̃ ≥ 0 such that

‖Φ(t)Φ−1(s)‖ ≤ Keã|t−s|eb̃s, for t, s ≥ 0,

where Φ(t) is a fundamental matrix of (2.1) .

Recall that the function

fH(t) =
1

H

∫ t+H

t

f(τ)dτ (4.5)

is defined as Steklov function or Steklov average (see [1, Def. 5.4.1]) with step
H > 0. Inspired by the result∫ t

s

τ(sin τ + 1)dτ ≤ 2(t− s) + 2s+ 2

in Example 4.1, the following lemma, unlike the work in [1, Lemma 5.4.1], is to
investigate the necessary and sufficient condition of weak integral separateness under
the condition of nonuniform bounded growth, i.e.,∫ t

s

|f(τ)|dτ ≤ ã|t− s|+ b̃s+ d̃ t, s ≥ 0, (4.6)

with ã, b̃ > 0 and d̃ ∈ R, since the fundamental matrix solution of ẋ = f(t)x satisfies

|Φ(t)Φ−1(s)| ≤ e
∫ t
s
|f(τ)|dτ ≤ ed̃eã|t−s|+b̃s.

Lemma 4.1. Assuming that f1(t) and f2(t) are nonuniformly bounded growth func-
tions, i.e., (4.6) holds true, then f1(t) and f2(t) are weakly integrally separated with
a, b > 0 if and only if for sufficiently large H >> t, the Steklov functions are
separated in the standard sence:

fH2 (t)− fH1 (t) ≥M (4.7)

for some constant M > 2b̃ > 0;

Proof. From the proof of Lemma 5.4.1 in [1], we know that the equality∫ t

s

fH(τ)dτ =

∫ t

s

f(τ)dτ + I(t)− I(s) (4.8)
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holds with

I(t) =
1

H

∫ t+H

t

f(y)dy

∫ t

y−H
dx.

Using (4.6), we have

|I(t)| ≤ 1

H

∫ t+H

t

(t− y +H)|f(y)|dy ≤ ãH + b̃t+ d̃.

Thus it follows from (4.7) and (4.8) that∫ t

s

(f2(τ)− f1(τ))dτ=

∫ t

s

(fH2 (τ)− fH1 (τ))dτ − I2(t) + I2(s) + I1(t)− I1(s)

≥ (M − 2b̃)(t− s)− 4b̃s− 4(ãH + d̃),

this implies that the functions f1(t) and f2(t) are weakly integrally separated.
Conversely, assuming that the functions f1(t) and f2(t) are weakly integrally

separated, then we have∫ t

s

(f2(τ)− f1(τ))dτ ≥ a(t− s)− bs+D, t ≥ s ≥ 0

for a, b > 0 and D ∈ R. Thus the difference of Steklov functions is

fH2 (t)− fH1 (t) =
1

H

∫ t+H

t

(f2(τ)− f1(τ))dτ ≥ a− b t
H

+
D

H
. (4.9)

Hence (4.7) holds with H >> t. �

Remark 4.2. From the proof of Lemma 4.1, H in Steklov function (4.5) must be
chosen such that H >> t, or else, t

H in (4.9) can not be ignored, which is completely
different from those in [1, Lemma 5.4.1].

Moreover, in the actual calculation process, we need the condition t >> H to
find the the effect of the nonuniform item. In fact, it follows from Definition 3.1
that

H

t

∣∣fH2 (t)− fH1 (t)
∣∣ =

1

t

∣∣∣∣∣
∫ t+H

t

(f2(τ)− f1(τ))dτ

∣∣∣∣∣ ≥ b− aHt − |D|t ≥ 0

with t >> H. This means that for sufficiently large t >> H, the Steklov functions
satisfy the inequality

H

t

∣∣fH2 (t)− fH1 (t)
∣∣ ≥ N (4.10)

for some constant N > 0 if the nonuniform term does exist, and this effect does not
appear in [1, Lemma 5.4.1] with f1(t) and f2(t) are bounded, or even if f1(t) and
f2(t) are uniformly bounded growth functions.

In this paper, we always assume that (2.1) is weakly integrally separated. Note
that a weakly integrally separated system is invariant under Lyapunov transforma-
tion, and a weakly integrally separated system is kinematically similar to a diagonal
one by using the Lyapunov transformation (see [41]). So for a diagonal system, or for
any system which can be reduced to a diagonal system through a Lyapunov trans-
formation, our approach for approximating ΣL(A) of (2.1) under the condition of
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nonuniform bounded growth is the same as A is bounded in [22]. Hence, on a finite
time interval, our computational procedure for ΣL(A) is as follows. Considering a
diagonal system

ẏ = diag[a1(t), . . . , an(t)]y, (4.11)

where T1, T2 > 0 are given constants, such that t ∈ [T1, T2] with T2 >> T1 > 0.

Let λj(t) = 1
t

∫ t
0
aj(τ)dτ , and compute

λj = sup
T1≤t≤T2

λtj and λj = inf
T1≤t≤T2

λtj

and use [λj , λj ] as an approximation to [λij , λ
s
j ].

However, under the condition of nonuniform bounded growth, the procedure
for approximation of ΣNED(A) is essentially different from the approximation of
ΣED(A) in [22]. Indeed, the nonuniform item can cause catastrophic failure in
the computation when the approximation scheme in [22] is applied here since the
nonuniform item can not be eliminated (see Remark 4.1 for details).

Definition 4.2. the weak integral separation spectrum is

ΣWIS =

n⋃
j=1

Λj ,

where Λj = Λ+
j

⋂
Λ−j is a closed interval, with Λ+

j corresponding to the jth diagonal
planar systems

ẏj =

λ 0

0 aj(t)

 yj , (4.12)

and Λ−j corresponding to the jth diagonal planar systems

ẏj =

aj(t) 0

0 λ

 yj (4.13)

for each j = 1, · · · , n, which are given by

Λ+
j = {λ ∈ R : (4.12) is not weakly integrally separated}

and
Λ−j = {λ ∈ R : (4.13) is not weakly integrally separated}.

The following theorem mimics the classical one about integral separation spec-
trum [21, Theorem 2.29], but for the variation of spectrum has been extended from
uniform item to the nonuniform ones.

Theorem 4.1. For (4.11), ΣWIS = ΣNED.

Proof. Given λ ∈ R, if λ /∈ ΣNED. It follows from (2.4)-(2.5) that there exist
constants α > 0, M > 0, and ε ∈ [0, α) such that either

e
∫ t
s
aj(τ)dτe−λ(t−s) ≤Me−α(t−s)eεs, for 0 ≤ s ≤ t, (4.14)

or
e
∫ t
s
aj(τ)dτe−λ(t−s) ≤Meα(t−s)eεs, for 0 ≤ t ≤ s. (4.15)



1114 H. Zhu & Z. Li

If (4.14) holds then (4.13) is weakly integrally separated. If (4.15) holds then (4.12)
is weakly integrally separated. This means that λ /∈ ΣNED ⇒ λ /∈ ΣWIS . Con-
versely, if λ /∈ ΣWIS , then for all j = 1, · · · , n, either (4.12) or (4.13) is weakly
integrally separated and hence either (4.14) or (4.15) holds. �

Theorem 4.2. Considering the diagonal system (4.11) with nonuniformly bounded
growth, i.e., for j = 1, . . . , n,∫ t

s

|aj(τ)|dτ ≤ ã(t− s) + b̃s+ d̃ t ≥ s ≥ 0, (4.16)

with ã, b̃ > 0 and d̃ ∈ R, let

αHj = inf
t

1

H

∫ t+H

t

aj(τ)dτ and βHj = sup
t

1

H

∫ t+H

t

aj(τ)dτ

with any given H > 0, then, for each j = 1, . . . , n, Λj ⊆ [αHj , β
H
j ]. Moreover,

assuming that (4.12) and (4.13) are weakly integrally separated respectively with
a, b > 0, then for H >> t sufficiently large, [αHj , β

H
j ] ⊆ Λj for j = 1, . . . , n.

Proof. First, let λ > βHj . Thus, there exists Mj > 0 such that∫ t+H

t

(λ− aj(τ))dτ ≥MjH, ∀ t. (4.17)

In order to prove that λ and aj are weakly integrally separated, it suffices to present
that there exist some costants a, b > 0 and D ∈ R such that∫ t

s

(λ− aj(τ))dτ ≥ a(t− s)− bs−D, t ≥ s ≥ 0. (4.18)

We will verify (4.18) with a = Mj , b = b̃, D = H(λ+ ã) + b̃H + d̃. In fact, because
of the inequality (4.17), it’s easy to see that (4.18) holds with a = Mj for all t and
s with t = s+H. Now considering the case with t < s+H, we can rewrite the left
hand side of (4.18) as∫ t

s

(λ− aj(τ))dτ =

∫ s+H

s

(λ− aj(τ))dτ −
∫ s+H

t

(λ− aj(τ))dτ,

and thus it follows from s ≤ t < s+H and (4.16) that∫ s+H

t

(λ− aj(τ))dτ ≤ (λ+ ã)(s+H − t) + b̃(s+H) + d̃

≤ bs+D,

and hence, ∫ t

s

(λ− aj(τ))dτ ≥ aH − bs−D ≥ a(t− s)− bs−D.

Next, let t > s+H. Then, for some integer k > 1, t = s+kH+ρ with ρ ∈ [0, H).
Then we have∫ t

s

(λ− aj(τ))dτ=

k∑
j=0

∫ t−jH

t−(j+1)H

(λ− aj(τ))dτ −
∫ s

t−(k+1)H

(λ− aj(τ))dτ
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≥ Mj(k + 1)H − ((λ+ ã)(H − ρ) + d̃)− b̃s
≥ a(t− s)− bs−D.

Therefore, λ and aj are weakly integrally separated, and this means that λ /∈ Λj .
Similarly, we can prove that λ /∈ Λj for any λ < αHj , and so Λj ⊆ [αHj , β

H
j ] for any

given H > 0.
Conversely, assuming that λ /∈ Λj , then λ and aj or aj and λ are weakly in-

tegrally separated. Supposing that λ and aj are weakly integrally separated with
constants a, b > 0 and D ∈ R, thus for any given t ∈ R, choose H >> t such that

1

H

∫ t+H

t

(λ− aj(τ))dτ ≥ a− b t
H
− D

H
>
a

2
> 0, (4.19)

and so λ > βHj . Similarly, we can prove that λ < αHj . Therefore, for H >> t
sufficiently large, [αtj , β

t
j ] ⊆ Λj for j = 1, . . . , n. �

Unlike the result of [22], [αHj , β
H
j ] ⊆ Λj does not hold in general for the nonuni-

form bounded case. In fact, it follows from (4.19) that αHj and/or βHj can be
unbounded if t >> H (see Remark 4.1 for details).

Now, to obtain a computational procedure on a finite time interval for ΣNED
out of Theorem 4.2, we need to verify whether the condition (4.10) holds or not.
If (4.10) holds with N > 0, then the nonuniform term in (4.11) does exist, and
this means that ΣED = R since the nonuniform term can not be eliminated (see
Example 2.1 in [16] for details). Otherwise, N = 0 in (4.10) means that there is no
nonuniform term in (4.11), that is, ΣNED = ΣED.

Hence, on a finite time interval, our computational procedure is as follows. First,
following the ideas in Remark 4.2, we compute the size of bias of nonuniform item b
in (4.18). Given any H > 0, there exist constants T1, T2 > 0, such that t ∈ [T1, T2]

and T1 >> H. Let btj = 1
t

∫ t+H
t

aj(τ)dτ for t ∈ [T1, T2]. Then we can compute

bj = sup
T1≤t≤T2

|btj |, (4.20)

and use bj to represent the bias of the nonuniform item b in (4.18). if 0 < bj < ε <<
1 for some ε > 0, there is no nonuniform term in (4.11), or else, the nonuniform
term in (4.11) does exist.

Now we compute the spectrum ΣNED. If the nonuniform item b in (4.18) is far
away from zero, otherwise, we can follow the idea in [22] to compute the spectrum
ΣED since there is no nonuniform item b in (4.18). Thus, it follows from Theorem
4.2 that a computational procedure for ΣNED on a finite time interval is as follows.
Given constants T1, T2 > 0, and H > 0, such that t ∈ [T1, T2] and H >> T2, let

atj = 1
H

∫ t+H
t

aj(τ)dτ for t ∈ [T1, T2], then we compute

aj = sup
T1≤t≤T2

atj and aj = inf
T1≤t≤T2

atj (4.21)

and use [aj , aj ] as an approximation to [αHj , β
H
j ].

5. Numerical Simulation

In this Section, we consider a planar problem, which satisfies the condition of
nonuniform bounded growth. In this case, we approximate the spectral intervals of
ΣL(A), ΣED(A) and ΣNED(A) and compute the bias of nonuniform item.
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Example 5.1. Consider a planar system ẋ1

ẋ2

 =

 sin(ln(t)) + cos(ln(t)) 0

0 ω1 − ω2t sin t

x1

x2

 (5.1)

with ω1 > ω2 > 0. The problem is designed so that the coefficient matrix of (5.1)
is nonuniform bounded growth. Note that the solution of (5.1) isx1

x2

 =

 exp(t sin(ln(t))− t0 sin(ln(t0))) · x1(t0)

exp(ω1(t− t0) + ω2t cos t− ω2t0 cos t0 − ω2 sin t+ ω2 sin t0) · x2(t0)

 .

Hence, ΣL = [−1, 1] ∪ [ω1 − ω2, ω1 + ω2]. Moreover, it follows from Example 6.2
of [22] and Example 2.1 of [16] that ΣED = [−

√
2,
√

2]∪R and ΣNED = [−
√

2,
√

2]∪
[ω1 − ω2, ω1 + ω2]. In the actual computation, here we choose ω1 = 4, and ω2 = 2
for (5.1).

Table 1. Approximation of ΣL

T1 T2 [λ1, λ1] [λ2, λ2]

1.E2 1.E4 [−1.0098, 1.0004] [2.0019, 6.0000]

1.E2 1.E6 [−1.0060, 1.0004] [2.0000, 6.0000]

1.E4 1.E6 [−1.0000, 0.9487] [2.0000, 6.0000]

Table 2. Bias of Nonuniform item

H T1 T2 b1 b2

1.E2 1.E4 1.E5 0.0013 1.0949

1.E3 1.E6 1.E7 1.2284× 10−4 1.8760

1.E4 1.E6 1.E7 1.2882× 10−5 1.0500

Table 3. Approximation of ΣED

H T1 T2 [a1, a1] [a2, a2]

1.E3 1.E6 1.E8 [−1.4142, 1.2645] [−1.8707× 105, 1.8707× 105]

1.E5 1.E6 1.E8 [−1.4142, 1.2323] [−3.9964× 103, 4.0044× 103]

1.E4 1.E5 1.E8 [−1.4142, 1.4142] [−3.9510× 104, 3.9511× 104]

Our numerical results of of ΣL are listed in Table 1. In this table we specify the
values of T1 and T2, and calculate the approximations of the two spectral intervals
of ΣL. The results in Table 1 show that the approximations are quite accurate for
these three time intervals [T1, T2].

In Table 2 we use the computational procedure outlined in Section 4, and report
on numerical results which calculate the bias of nonuniform item based on (4.20).
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Table 4. Approximation of ΣNED

H T1 T2 [a2, a2]

1.E4 1.E2 1.E3 [1.6649, 6.3694]

1.E6 1.E2 1.E3 [1.9999, 5.9985]

1.E8 1.E3 1.E4 [1.9998, 5.9986]

It can be seen that the nonuniform items are sufficiently small for the first equa-
tion of (5.1) and far away from zero in the second equation of (5.1), which means
that the first equation of (5.1) admits an uniform exponential dichotomy, while the
second equation of (5.1) admits a nonuniform ones. Then, by calculating the the
approximations of the two spectral intervals of ΣED in Table 3, we can find that the
second spectral interval of ΣED is large enough while time intervals [T1, T2] tend to
infinity, which agrees with the theoretical result. At last, we just present the second
spectral interval of ΣNED based upon (4.21) in Table 4, since the first one does not
have nonuniform one. The results in this table shows that spectral interval ΣNED
can be approximated accurately by letting H > 0 large enough such that H >> T2.
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