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ANALYSIS OF DYNAMICS IN A GENERAL
INTRAGUILD PREDATION MODEL WITH
INTRASPECIFIC COMPETITION*
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Abstract This paper is devoted to studying the dynamical properties of a
general intraguild predation model with intraspecific competition. We first
investigate the stability of all possible equilibria in relation to the ecological
parameters, and then study the long time behavior of the solution. Moreover,
we provide a detailed analysis of dynamics of a IGP model with linear function-
al response and intraspecific competition. Our results show that the impact
of the intraspecific competition essentially increases the dynamical complexity
of the system.
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1. Introduction

Competition and predator-prey interaction are two of interspecies relations for e-
cological and social models [5]. The interaction among different species will ex-
hibit the diversity and complexity, and generate the complex network of biological
species [1,27,32]. Intraguild predation (IGP) is a typical type of interaction between
three species, including top and intermediate predators termed as IG predator and
IG prey, respectively, and a basal resource [26]. The IG predator and IG prey share
the same resource while they are engaged in a predator-prey interaction.

A prototypical ODE system based on modeling framework for intraguild preda-
tion was made by Holt and Polis [13]. Their model was of form

R'(t) = R(¢(R) — a1 (R, N, P)N — as(R, N, P)P),

N/(t) :N(blal(R,N,P)R—(lg(R7N7P)P—m1)7 (11)
Pl(t) = P(bgag(R, N, P)R + b3a3(R, N, P)N — mg),

where R(t), N(t) and P(t) are the densities at time ¢ of the basal resource, IG prey,
and IG predator, respectively. The functions as(R, N, P)R and as(R, N, P)N are
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functional responses of the IG predator to the resource and IG prey, respectively;
a1 (R, N, P)R is the functional response of the IG prey to the basal resource; and
constants m, and mso are the death rates of the IG prey and predator, respectively.
The parameters b; and by convert resource consumption into reproduction for the
IG prey and IG predator, respectively; the parameter b3 scales the benefit enjoyed
by the IG predator from its consumption of IG prey; R¢(R) is recruitment of the
basal resource.
Usually a;(R, N, P)(i = 1,2, 3) satisfy that

O[Ray(R,N,P)] _  9[Rax(R,N,P)] _  O[Nay(R.N.P)] _
oR = oR = aN =

for R > O,N > 0,P > 0. Ra;(R,N,P) — M, Ray(R,N,P) — M, for some
Mi,Ms > 0 as R — oo and Nas(R,N,P) — Ms for some Ms > 0 as N — oo.
When ¢(R) is of a logistic growth, the dynamics of (1.1) has been considered in
many articles, see for example [3,11,14-17,21,29-31]. For (1.1) with logistic growth
on the basal resource and simplest linear functional response for the three predation
terms, a rigorous dynamical analysis can be obtained (see Hsu et al. [17]). (1.1)
with Holling type II functional response has been studied by Abrams and Fung
[3]. (1.1) with Holling type II and ratio-dependent functional responses have been
investigated by Verdy and Amarasekare [30] and Freeze et al. [11], respectively. And
two models have been established by Kang and Wedekin [21], one of which is called
IGP model with specialist predator and the other of which is called IGP model with
generalist predator, and both models considered Holling type III functional response
for predation on the IG prey by the IG predator. Many important phenomena have
been observed, such as extinction scenarios, permenence effect of the populations
in the IGP model (Freeze et al. [11]; Hsu et al. [17]; Kang and Wedekin [21]).

The role of intraspecific competition in shaping animal or plant communities
has formed one of the major issues in ecology for decades. The effect of intraspecif-
ic competition within and between the larval instars of the yellow fever mosquito,
Aedes aegypti, was investigated by Dye [8]. Hansen et al. [18] reported statisti-
cal results showing that both interspecific and intraspecific effects are important
in the direct year-to-year density dependence. Kleunen et al. [22] presented the
statistical results showing that intraspecific competition among clones of Ranun-
culus reptans is symmetric and increases the effective population size. Based on
ecological theory and a series of experiments, Bolnick [4] provided that intraspecific
competition drives disruptive selection and thus may be an important causal agent
in the evolution of ecological variation.

We observe that the impact of intraspecific competition for the IG prey and IG
predator has not been considered in (1.1) and other majority of works on IGP models
except [2], which provides the coexistence of a intraguild predation model with
intraspecific competition. In this paper, we shall consider the effect of intraspecific
competition in the population growth rate of IG prey and IG predator.

In this paper, based on the model of Holt and Polis [13], taking account of
the impact of intraspecific competition, we consider a general IGP model of the
following form:

R'(t) = R(¢(R) — a1(R)N — az(R)P),
N/(t) = N(blal(R)R—ag(N)P—ml 7d1N), (12)
Pl(t) = P(bgag(R)R + bgag(N)N — Mg — ng),
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where R(t), N(t) and P(t) are the densities at time t of the basal resource, IG
prey, and IG predator, respectively. The functions ¢(R),a1(R),a2(R),a3(N) €
C"(R),r > 3 and constants b;, m;,d;(i = 1,2,3; j = 1,2) are interpreted as follows:

(al) The function ¢(R) describes the specific growth rate of the basal resource in
the absence of IG prey and IG predator, and satisfies ¢(0) > 0,¢'(R) < 0
for R > 0 and ¢(K) = 0, where K > 0 is the carrying capacity of the basal
resource. A prototype is the logistic growth

¢(R)=T(1—I]§),

which satisfies above conditions.

(a2) The function as(R)R and a3z(N)N are functional responses of the IG predator
to the resource and IG prey, respectively; a1 (R)R is the functional response
of the IG prey to the basal resource. We assume that aq(R), a2(R) and as(V)
are positive, bounded and satisfy

d[Ray (R)]
dR

for R>0,N > 0,P > 0.

(a3) The constants m; and my are the death rates of the IG prey and predator,
respectively. The parameters by and by convert resource consumption into
reproduction for the IG prey and IG predator, respectively; the parameter
b3 scales the benefit enjoyed by the IG predator from its consumption of IG
prey. And d; and ds represent the effect of intraspecific competition in the
growth rate of IG prey and IG predator, respectively. All above parameters
are assumed to be positive.

d[Ray(R)]
dR

d[Nas(N)]
dN

>0, >0

>0,

Our primary purpose is to analyze and demonstrate the complexity of popula-
tion dynamics in the IGP model (1.2). We will show that the population function
(R(t), N(t), P(t)) remains positive as long as the initial population (R(0), N(0), P(0))
is positive. We also give some results on the ultimate upper bounds of the basal
resourse, IG prey and IG predator populations, as well as a extinction result when
the initial population R(0) is relatively smaller than N(0) and P(0). Sufficient con-
ditions of permanence (existence of a positive global attractor) are also given for
the model (1.2).

The rest of the paper is structured in the following way. In Section 2, we show the
boundedness of solutions of (1.2) and present all possible nonnegative equilibria. In
Section 3, we analyze the stabilities of trivial, semi-trivial and boundary equilibria.
In Section 4, the long time behavior of the solution (R(t), N(t), P(t)) of (1.2) is
investigated. Application to specific IGP model with simplest linear functional
response and detailed biological discussions are given in Section 5. Some concluding
remarks are given in Section 6.

2. Preliminaries

For (1.2), the domain of the phase space Q@ = {(R, N, P) € R3|R > 0,N >0, P > 0}
is invariant. The following lemma guarantees that the system (1.2) is dissipative.
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Lemma 2.1. Suppose that ¢(R),a1(R),a2(R) and az(N) satisfy (al)-(a2). Then
any solution of (1.2) with positive initial value is positive and bounded.

Proof. The first octant with boundary is an invariant region for (1.2) since {(R,N,P):
R =0L{(R,N,P) : N =0} and {(R,N,P) : P = 0} are invariant manifolds of
(1.2). Therefore the solutions of (1.2) with the initial values R(0) > 0, N(0) > 0
and P(0) > 0 are positive.
For any R(0) > K, we have that R' = R[¢(R) — a1(R

as R > K; along R = K,R' = —R[a1(R)N + a2(R )P]
equilibrium point in the region {(R,N,P) : R > K,N
positive solution satisfies

)N —az(R)P] < 0 as long
and there is no any
P > 0}. Hence any

< 0
>0,

R(t) < max{R(0), K} = J;, Vt > 0.
Then, we can see from (1.2) that

(b1R+ N)/ = blR[ (R) — GQ(R)P] — N[CLg(N)P+ mi + le]
S b1R¢( ) mlN
§b1J1¢(O)+m1b1J1 ml(b1R+N), t>0.

From Gronwall’s inequality, we obtain that

b1J16(0) + m1byJy

bLR(t) + N(1) < (b1R(0) + N(0))e ™" + - (1— e-mit),
1
Hence we have
N(t) < (R(O) + N(0)) + 2DQ tmibii 5 gy o

mi

Let 01 = Igagcal(R(t)). Similarly, for t > 0, we have

(b2R + b3N + P) =byR[$(R) — a1 (R)N] + bsN[brar(R)R — m1 — dyN]
— P(mg + do P)
<by J1$(0) + o1bibs 1Tz — by N — maP
<bo J16(0) + o1bibs i s + KbaJs — K(baR + by N + P),

where k = min{mj,ms}. Using Gronwall’s inequality again, we have that

baR(t) + bsN(t) + P(t) < (b2R(0) + bsN(0) + P(0))e " + J5(1 — =",

where J3 = szlf(O) + "1}’1st1‘]2 + by J1. Hence P(t) is also bounded. O
Then, we shall show the equilibria of system (1.2). There exist five possible
non-negative equilibria as follows.

(i) System (1.2) always has trivial equilibrium Ey := (0,0,0) and semi-trivial
equilibrium E; = (K,0,0).

(ii) The IG prey-only equilibrium FEj¢ := (Ry,N1,0) is a boundary equilibrium
of system (1.2) if and only if bya; (K)K > my, where Ry, Ny satisfy ¢(R1) —
al(Rl)Nl = blal(Rl)Rl —mi —diN; =0 with 0 < Rl,Nl <K.In fact, the
existence result of Eyq follows from the two case for the intersection of two
curves, C1 : ¢(R)—a1(R)N =0 and C5 : bya;(R)R—m1—d; N =0 (see Fig. 1).
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(iii) The IG predator-only equilibrium Ey; := (Rg, 0, P») is a boundary equilibrium
of system (1.2) if and only if beas(K)K > mgy, where Rg, P» satisfy ¢(Rz)—
a2(R2)P2 =bsas (RQ)RQ —mo—do Py =0 with 0< Ry, P, < K. Similarly, we can
obtain the existence result of Fy; from the two case for the intersection of two
curves, C3 : ¢(R)—az(R)P=0 and Cy : beas(R)R—mso—da P=0 (see Fig. 2).

(iv) If (R*, N*, P*) is the intersection point of

d(R) — a1 (R)N — az2(R)P =0,

blal(R)R - ag(N)P —mi — le = 0,

bQClQ(R)R + b36L3(N)N — Mg — do P = 0,
with 0 < R*, N*, P* < K, then system (1.2) admits a positive equilibrium:
E* := (R*,N*, P*).

N N
‘\ Ca ‘V
R R
K K
i Cl Cl
(a) bia1(K)K < my (b) brai1(K)K > ma

Figure 1. The two possible generic cases for the intersection of the two curves C; and Ca.

P P
\ Ca \/
R R
K K
i 03 03
(a) baaz(K)K < mao (b) beazx(K)K > mq

Figure 2. The two possible generic cases for the intersection of the two curves C3 and Cy.

3. Stability of Trivial, Semi-Trivial and Boundary
Equilibria

In this section, we provide some stability analyses for system (1.2) in the domain
Q. Without loss of generality, denote a non-negative equilibrium point of (1.2) as
E = (R,N, P) and define X (t) = (R(t), N(t), P(t))". Then the linearized equation
of (1.2) at equilibrium F is described as

X'(t) = AX (1),
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where A is a 3 X 3 matrix given by

a1l ai2 ai3
A= Qg1 @22 23 | »
az1 a3z ass
with

a1 = ¢(R) — a1 (R)N — ax(R)P + R[¢(R) — a} (R)N — ay(R)P),
a1 = —Ral(]:?), a13 = —R(J,Q(R), a1 = blN[a’l( )R-i— aq (R)],
ag9 = blal(R)R — CLS(N)P — my — le — N[ag(N) 2 + d1], ag3 = —Nag(N),
ag = by Plaj(R)R + az(R)), agy = b3 Pld (N)N + ag(N)),

a3z = bgag(R)R + bzaz(N )N my — 2do P
Thus, the characteristic equation of (1.2) at equilibrium FE is given by
A(E) £ det|]\ — A] = 0, (3.1)
where I is an 3 x 3 unit matrix and A denotes the characteristic root of Eq.(3.1).
We first give the stability conclusions of equilibria Fy and E; as follows.
Theorem 3.1. Consider system (1.2).

(i) The trivial equilibrium Eq is always unstable.

(ii) The semi-trivial equilibrium Ey is locally asymptotically stable if and only if
bra1 (K)K < my and byas(K)K < ms.

Proof. (i) Since
A(Eo) = (A= d(0)(A+m1)(A +m2) =0,

the characteristic roots are given by A\; = ¢(0),\a = —m; and A3 = —mg. Thus,
FE)y is unstable.
(ii) The characteristic equation about F; is given by

A(El) = ()\ — KQS/(K))(A +my — blal(K)K)()\—i—mg - bgag(K)K) = 0,

which gives the eigenvalues \y = K¢'(K), A2 = bya; (K)K—m; and A3 = baag(K)K—
mgy. Since ¢'(K) < 0, the conclusion is correct. O

Remark 3.1. If the trivial equilibrium F is stable, then neither of the two bound-
ary equilibria, F1o and FEy; exist, and when F; loses its stability, one or both bound-
ary equilibria emerge. In the case when either m; = bya1(K)K or ma = baas(K)K,
the characteristic equation of E; has an eigenvalue A = 0, and the remaining eigen-
values all have negative real parts. If m; = bya;(K)K and my = byaz(K)K, then
system (1.2) has only two equilibria, Fy and FE;.

Next, we study the stability of the IG prey-only equilibrium Fyy. The charac-
teristic equation corresponding to E1g will be

A(Er9) £ (N = Ty(di)A + Dy (dr)) (A — My) = 0, (3.2)
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where

Ti(d1) = Ri[¢'(R1) — @} (R1)N1] — Nudy,
Di(d1) = RiNi[brar(Ry)(ay(Ry) Ry + a1(Ry)) — di(¢'(R1) — aj (R1)N1)],
M1 = bQCLQ(Rl)Rl + b3(13(N1)N1 — Ma.

Theorem 3.2. Consider system (1.2) with byai (K)K > m;.

(i) When My >0 or T1(d1) > 0 or D1(d1) <0, the equilibrium Eqq is unstable.
(i1) When My < 0 and ¢'(R1) — aj(R1)N1 < 0, the equilibrium Eyg is locally
asymptotically stable.

Proof. (i) From the above definitions, we have that Eq.(3.2) has at least one root
with positive real part when M; > 0 or Ti(dy) > 0 or Di(dy) < 0. Hence, the
equilibrium F1q is unstable.

(ii) If ¢'(R1) — ay(R1)N1 < 0, then T1(d1) < and Dq(dy) > 0. That is, when
M; < 0 and ¢'(Ry) — af(R1)N1 < 0, all roots of Eq.(3.2) has negative real part.
Hence the conclusion is correct. O

For the IG predator-only equilibrium Ejy;, we have the following similar conclu-
sion.

Theorem 3.3. Consider system (1.2) with baaz(K)K > ma. Define

Ty(d2) = Ra[¢'(R2) — ab(Ry) Pa] — Pady,
Ds(dz) = Ry Pa[baas(Ra)(ay(R2)Ra + az(Ra2)) — da(¢'(Ra) — a5 (Rz2) Pa)],
M2 = blal(Rg)Rg — ag(O)PQ —mi.

(i) When Ms > 0 or Ta(ds) > 0 or Da(de) < 0, the equilibrium Egy is unstable.
(1)) When My < 0 and ¢'(Rs) — a4(Ra)P2 < 0, the equilibrium Egy is locally
asymptotically stable.

The proof of Theorem 3.3 is similar to that of Theorem 3.2, hence we omit it
here.

Remark 3.2. Given boas(K)K > mg, we note that if bja;(K)K < mp and
¢'(R2) — ab(Ra)Ps < 0, then the IG predator-only steady state, Eoi, is always
stable since in this case we can easily show that My < bya; (K)K —my < 0.

We finally give the conditions for global asymptotic stability of the semi-trivial
equilibrium F; and boundary equilibrium FEp;.

Theorem 3.4.
(i) If bia1 (K)K < mq and byas(K)K < ma, then the equilibrium FEy is globally
asymptotically stable.
(i) If brar (K)K < mq,baas(K)K > mg and ¢'(Ra) — ah(R2)Ps < 0, then the
equilibrium Eg is globally asymptotically stable.

Proof. (i) It follows from the proof of Theorem 2.1 that limsup R(t) < K, which

t——+oo
implies that for any € > 0, there exists 71 > 0 such that R(t) < K + ¢ in [T}, +00).
Then from the second equation of (1.2), we have

N/(t) < N[blal(K+E)(K+E) —ml] ,t e [T1,+OO).
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When byaq (K)K < my, we can choose € small enough such that bya; (K+¢€)(K+¢) <
my since % > 0. This means that 0 < N(t) — 0 as t — +oo. For any given
e > 0, there exists T, > T > 0, such that

0 < N(t) <e,t € [Tz, +00).

Similarly, if baas(K)K < ms, then we can choose £ small enough such that beag (K +
e)(K + €) + bzaz(e)e < mag, which leads to 0 < P(t) — 0 as t — +oo. The
equation of R(t) is now asymptotically autonomous (see [24]), and its limit behavior
is determined by the semiflow generated by the following equation:

R'(t) = Ro(R). (3.3)

It is well-known that every orbit of (3.3) converges to the unique positive constant
solution R = K (see [19]). Then from the theory of asymptotically autonomous
system [24], we can see that the solution ((R(t), N(t), P(t)) of (1.2) converges to
(K,0,0) as t — +oo. Since bya;(K)K < my and baaz(K)K < ma, it follows from
Theorem 3.1(ii) that F; is locally asymptotically stable. Thus the equilibrium F4
is globally asymptotically stable, which proves the part (i).

(ii) When bya; (K)K < my, from the proof of part (i), we know that the equa-
tions of (R(t), P(t)) are now asymptotically autonomous (see [24]), and their limits
behavior is determined by the semiflow generated by the following equations:

{ R'(t) = R($(R) — a2(R)P),

P’(t) = P(bgag(R)R — My — d2p) (34)

If boas(K)K > mg, then (Rg, P) is the unique positive constant solution to (3.4).
We construct a well known Lyapunov functional as follows:

[T baaa(§)§ — ma — da Py Py—p
V(R(t),P(t)) = /R N dé + /P .
Then
Vt(u7w) _ b2a2(R)Z(—‘R’;n]§ — d2P2 Rt n P ;PQ Pt
= (beaz(R)R — mgy — do P) <(i((];)) _ Pz) —dy(P — P2)2

(R)  ¢(Ry)

a2(R)  as(Ry)
Therefore, the definitions of Ra, P> and (al), (a2) imply that V; < 0 along an orbit
(R(t), P(t)) of subsystem (3.4) with any nonnegative initial condition (R(0), P(0)) #
(0,0) or (K,0). And V; = 0 if and only if (R(t), P(t)) = (Rz, P2), from which we
obtain that tlim (R(t), P(t)) = (R2,Py). Similarly, it follows that the boundary
— 00
equilibrium FEy; is globally asymptotically stable, which completes the proof of part
(ii). O

= (bgag(R)R — bzag(Rg)Rg) ( ) — d2(P — P2)2.

4. Dynamical Properties of the Solution

This section is devoted to investigating the long time behavior of the solution
(R(t), N(¢t), P(t)) of (1.2). We first focus on finding the upper-bound functions
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for the basal resource, IG prey, and IG predator populations R(t), N(¢) and P(t).
These bounds will provide us with crucial information on extinction, co-existence,
and exponential convergence of the species.

4.1. Exponential bounds and extinction scenarios

In this subsection, we study the ultimate bounds for the populations in model
(1.2). The following theorem concerns the exponential bounds of the IG prey and
IG predator, which leads to conditions for extinction of these populations.

Theorem 4.1. Assume that (R(t), N(t), P(t)) is the solution of (1.2) with R(0) >
0,N(0) > 0 and P(0) > 0. Then (R(t), N(t),P(t)) satisfies
R(t) > 0 and limsup R(t) < K,
t—o00

N(O)e—(0'3J3+ml+d1J2)t S N(t) S N(O)e(bloljl_7n1)t7 (4.1)
p(o)e*(mfrdzh)t < P(t) < P(o)e(bzm-71+b303J2*m2)t’
where o; = max a;(R(t))(i=1,2),03 = max az(N(t)) and J;(i = 1,2,3) are defined
in Lemma 2.1. Moreover, -

(i) if bio1J1 < mq, then the IG prey population N(t) converges to 0 as t — 0o;
(i) if baoaJy + bsosJa < ma, then the IG predator population P(t) converges to 0
ast — oo.

Proof. Recall that the original equation for the basal resource population is
R'(t) = R(¢(R) — a1 (R)N — as(R)P).
From Lemma 2.1, we can directly get that R(¢) > 0 for R(0) > 0 and
limsup R(t) < K.

t—o0

Likewise, from the second and third equation in (1.2), we have

dN
N(—O’3J3 —mi — dljg) S E S N(b10'1J1 — ml),

and

dpP
P(—mg — ngg) < E < P(b202J1 + bzogJy — mg).

The comparison argument also implies that N(¢) and P(t) satisfy the inequalities

in (4.1) and remain positive at any finite time. The upper bound N (0)e(bro1/1=m1)t

for N(t) converges to 0 as t — oo when bjo1J; < mq, and the upper bound

P(O)e(b2"2‘]1+b3"3°72_m2)t for P(t) converges to 0 as t — oo when baoaJ; + byozJa <

mo. O
We observe from the above proof that

R'(t) > R(¢(R) — 012 — 02J3),

which implies that if 01 Jo+02J3 < ¢(0), then the basal resource species is persistent
with
liminf R(t) > ¢ > 0,
t—o00

where ¢ is the unique root of ¢(R) — o1J3 — 02J3 = 0. The following theorem
indicates that (1.2) is not persistent for larger o1.Js 4+ 02.J3.
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Theorem 4.2. If the following conditions hold:

bio1J1 < my, beoaJi + b3ozJy < ma, 012+ 02J3 > ¢(0),

my1 — abio1Js > max{ang + mq + diJa, ma + dzjg},

where a = 012 + 02J3 — $(0), then there exist positive solutions (R(t), N(t), P(t))
of (1.2) with
tli)m (R(t),N(t), P(t)) = (0,0,0).

Proof. Let v=min{o3J35+m;+d;Jo, ma+dsJ3} and denote F(t) :max{ %, %}.
Assume that 0 < %, % < a. We claim that F(t) < « and tlim R(t) =0 for all
t>0.

By contradiction, assume that F(T) = a and F(t) < a for 0 < ¢t < T. By
standard comparison argument, then we have

Rl(t) S CKN/(t) = aN(blal(R)R - (Lg(N)P —mi — le)
S Oébldlng — mlozN
S (Oéb10'1<]2 — ml)R

for 0 <t < T and R(t) < R(0)e~(mi—obio12)t for 0 < ¢ < T. From Theorem 4.1,
we also know that N(t) > N(0)e~(os/stmitdila)t and P(t) > P(0)e~(matd2Ja)t 1t
follows that

R(O) e(o3Jz+mi+di J2)t

N(O) e(ml—ablo'l Ja)t

R(t)
N()

<

and
R(t)
P(t)

R(O) e(matdaJs)t
P(O) e(ml—ablal Jz)t

<

on the interval 0 < ¢t < T. Since my — abyo1J2 > v, we have that F(t) < « for

0 <t < T, which contradicts with the assumption that F(T) = a. It follows that

R(t) < R(0)e~(mi—abiorl2)t for () < ¢ < oo, and we have tli)m R(t) = 0. From
o0

Theorem 4.1, we obtain lim N(¢) =0 and lim P(¢) =0. O
t—o0 t—o0

Remark 4.1. Under the assumption of Theorem 4.2 we have that tlim (R(t), N(t),
— 00

P(t)) = (0,0,0) when the initial population R(0) is relatively smaller than N(0)
and P(0). However, the restrictions on the ratio of initial population sizes required
in the proof of Theorem 4.2 do not allow us to obtain even local asymptotic stability
for the trivial equilibrium FEj.

4.2. Permanence

In order to investigate the permanence effect of the populations in the model (1.2)
when byo1J; > my and baogJy +bgozJy > ma, we apply the approach of Pao in [25],
defining a pair of upper-lower solutions (R, N, P) and (R, N, P) for system (1.2)
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satisfying the following differential inequalities:

dR

~ o~ ~

5 2 RO — ai(R)N — ax(R)P),

% > N(blal(ﬁ)ﬁ — a3(ﬁ)ﬁ —my — d1]\7)»

dP _ = = = A 5

—_— > P(bgag(R)R + b3a3(N)N — Mg — dgp),

dt (4.2)
dR _ 5 =

o S RO(R) — a1(R)N — ax(R)P),

% < ﬁ(blal(ﬁl)ﬁ — a3(ﬁ)ﬁ —my —dN),

apP

a S ]3(172(12(]%)]?3 + bgag(ﬁ)j\} — Mo — dgﬁ),

with (R(t), N(t), P(t)) > (R(t), N(t), P(t)) for all t > 0. It is well-known by com-
parison arguments in differential equation systems (see [25]) that if there exists a
pair of upper-lower solutions, then the solution of model (1.2) satisfies

(R(), N(2), P(t)) = (R(1), N(1), P(t)) = (R(t), N(), P(1))

for all ¢t > 0 as long as

~ ~ ~ ~ ~

(R(0), N(0), P(0)) = (R(0), N(0), P(0)) > (R(0), N(0), P(0)).

Y

The three inequalities in (4.2) for lower solutions can be easily satisfied by setting

~ o~

(R(t), N(t), P(t)) = (0,0,0),

which gives the nonnegativity of the populations. For ultimate upper bounds of the

populations, it suffices to suitably construct upper solutions (R(t), 1\7(75), P(t)) with
(R(0), N(0), P(0)) = (R(0), N(0), P(0)).

Lemma 4.1. Assume that bia;(K)K > my and boas(K)K + bzaz(Jy)Js > ma,
where J; = %. If (R(0),N(0), P(0)) > (0,0,0), then the population
function (R(t), N(t), P(t)) as solution of (1.2) remains nonnegative and satisfies

limsup R(¢t) < K,

t—o00
b KK —
lim sup N (1) < 2K =mi 43)
t— 00 dl :

baas(K)K -
limsup P(t) < 202(K)K + bsaz(Js4)Js me
t—o00 d2

Proof. By setting (R(t), N(t), P(t)) = (0,0,0), we can find an upper solution R
for R(t) in model (1.2) that satisfies

% — Ro(R), R(0) = R(0). (44)
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It is known through a simple stability analysis of (4.4) that

limsup R(t) < lim R(t) = K. (4.5)
—00

t—o0
For any € > 0, there exists a T5 > 0 such that

dN
W S N(blal(K)K—ml —le) +€

in (T3, 00). From the arbitrariness of ¢, we can find an upper solution N for N (t)
in (T3,00),

ST N(byay(K)K —mq — diN), N(Ts) = N(Ts). (4.6)
Seeing that for bya;(K)K > mq, the positive equilibrium W of (4.6) is
globally asymptotically stable, we can also conclude that
~ brar (K)K —
limsup N(¢) < lim N(t) = ha (KK = m 2 Jy. (4.7
t—00 t—o0 dl

Finally, by the ultimate upper bounds for R(t) and N(t) given in (4.5) and (4.7),
we see that for any € > 0, there exists Ty > T5 > 0 such that

dpP

E S P(bQQQ(K)K —+ b3a3(J4)J4 — M9 — dgp) + e

in (T4, 00). Again from the arbitrariness of e, we can find an upper solution P for
P(t) in (Ty, 00),
P
dt
When bya; (K)K > my and beag(K)K + bsag(Jy)Js > ma, the equation (4.8) has

bgaz(K)K+b3a3(J4)J4fm2
da

= P(byag(K)K + bsas(Js)Js —mg — doP), P(Ty) = P(Ty).  (4.8)

only one positive equilibrium
cally stable. This implies that

which is globally asymptoti-

_ boaz(K)K + bsaz(Jy)Jy —ma

O
do

. < . =
h{riségp P(t) < tlirgo P(t)
We next show the sufficient conditions when the IGP model (1.2) is permanent
with all populations ultimately bounded away from 0 provided that o1Js + 02J3 <
$(0).
Lemma 4.2. Assume that byai(c)c — az(Jy)Js > my,baas(c)c + bsaz(Js)Js > ma
and o1Ja+02J3 < ¢(0), where J;(i = 4,5,6) are defined in the proof of this lemma.
If (R(0),N(0), P(0)) > (0,0,0), then the population function (R(t), N(t), P(t)) as
solution of (1.2) satisfies

liminf R(t) > ¢,

t—o00
. . b1a1 (C)C — CL3(J4)J5 — ma
liminf N (t) > i 7 (4.9)
baas(c)e + byas(Jg)Js — ma
da '

liminf P(t) >
t—o0
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Proof. It is clear that the upper and lower solutions for model (1.2) are the upper
and lower bounds of the populations (R(t), N(¢)P(t)) in respective time intervals.
From the nonnegativity of the populations, we see that a lower solution for R(t)
can be obtained by the equation

% = R(¢(R) — 01J3 — 02.J3) in (0,00), R(0) = R(0). (4.10)

By the assumption that o1.Js + 023 < ¢(0), we have
. . > . fay — . .
hglogf R(t) > tli>nolc R(t)=¢>0 (4.11)

Using the nonnegativity of P(t), for any € > 0, there exists a T5 > 0 such that

dN
ﬁ > N(blal( )C — CL3(J4)J5 —my — le) — &

in (T5 ) Where J4 blal(K)K mi J _ bzag(K)K+b3a3(J4)J4—m.2
’ dy da

trariness of &, we can find a lower solution N for N(t) in (T5, 00),

. From the arbi-

dN

T N(brai(c)e — az(Jy)Js —my — diN), N(Ts) = N(T). (4.12)

Seeing that the nontrivial equilibrium 2(2e= a;(‘]“)‘]s L > 0 of (4.12) is globally
asymptotically stable when bya;(c)c — a3z(Js)J5 > my, we can also conclude that

har(c)e = as(Ja)Js —m1 o 4 (4.13)

it () 2 i N = d
Finally, by the ultimate lower bounds for R(t) and N(¢) given in (4.11) and (4.13),
we obtain that for any ¢ > 0, there exists T > T5 > 0 such that
dpP

E > P(bgag( )C+ bgag(Jg)Jﬁ — Mg — dQP) — &

. b - s— . .
in (Tg,00), where Jg = Laa(e)e a;l(‘]“)J‘) ™ From the arbitrariness of e, we can

also find a lower solution P for P(t) in (T, 0),

(iTIZ = P(bsas(c)c + byas(Js)Js — mo — d2P), P(T) = P(T). (4.14)

When biaq(c)e — az(Js)Js > my and baas(c)c + bzag(Js)Js > ma, the nonlinear
bgag(C)C+b3a3(J6)J6—m,2

equation (4.14) has only one positive equilibrium . which is
globally asymptotically stable. This implies that
liminf P(¢) > lim P( )= baaz(c)e + bsas(Js) Jo — 2
t—o0 t—o0 d2
The proof is completed. O

Remark 4.2. It can be seen in Section 3 that when boag(R;1) Ry +bsag(N1)N1 > mo
and byay(Rz)Ra — a3(0)P2 > my, both of the equilibria F1q and Ey; are unsta-
ble. Notice that (b(Rl) — ax (Rl)Nl = blal(Rl)Rl —my — d1N1 = 0 and ¢(R2) -
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a2(R2)P2 = bQ&Q(RQ)RQ —mo — do Py = 0, which 1mphes Rl,RQ > ¢, Js > P, and
Jy > N1 > Jg. Then we have that boas(R1) Ry +bsas(N1) N1 > baas(c)c+bsas(Jg)Js
and bja;(R2)Re — a3(0)Py > biai(c)e — az(Jy)Js. Therefore, the conditions in
Lemma 4.2 also imply the instability of the semi-trivial and boundary equilibria
discussed in Section 3.

Remark 4.3. Since K > ¢ and Jy > Jg, we have that bya (K)K > biai(c)c —
as(J4)Js and baas(K)K + bzas(Jy)Jy > baas(c)e + bsas(Js)Js. Therefore, the con-
ditions in Lemma 4.2 guarantee the existence of ultimate upper and lower bounds
of the populations (R(t), N(t)P(t)) of model (1.2).

When the conditions in Lemma 4.2 hold, the obtained ultimate lower bounds
and the ultimate upper bounds given in Lemma 4.1 form a positive global attractor
for the food-chain model (1.2) so that the ecological system is permanent. Define

E(O) =c,
E(O) - K,
N© _ bhaie)e —az(Ja)Js —m
N i 7
FO _ (K —my (4.15)
dy ’
pO) _ boas(c)c + bsas(Js)Jg — ma
Vi 7 7
P(O) bQQZ( )K + b3(l3(J4)J4 — Mo
ds ’

WheI‘e J4 blal(I;)K m1 J _ bzag(K)Ker;;lg(J;L).Llfmg and J6 — blal(C)C7(ld31(J4)J5fm1 .

It is already proven that

(RO, N POy <liminf(R(t), N(t), P(t))

t—o0

<limsup(R(t), N(t), P(t)) < (R”, N, P). (4.16)

t—o0

For any e there exists a T, > 0 such that in (7;, 00),

W < RG6(R) ~ (RN — ax(R)PO) <,

dR _ —

G 2 RO®R) —a(®N” —a(®)PY) -

N

ddt < N(biar(BRY — a3(N)P© —my — diN) + ¢

o o (4.17)
o = N (RORO — a3(N)P" —mq — dyN) —
apP _

< Plozax(R RORY 4 byas (NN — iy — doP) +

P

(;t > P(baaz(RP)RY + b3as(N )N —my — dyP) —e.

One can uniquely solve for the new values of ultimate bounds (R, NV, P} and
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(E(l),ﬁ(l),ﬁ(l)) from the following system:
o)~ ar(BV)NO — ay(®")PO =0,
d)(E(l)) —ay (R(l))N(O) B ag(ﬁ(l))f(o) —0,
brai (B HRY — as(N) PO —my — g, NV =0, (218
bray(RO)R© — as(N )P —my — i NO =,
boas(R VR + b3as (N YN — iy — dsP™ =0,
baaz(R)R + byaz(N V)N — my — dy PV = 0.

By the arbitrariness of € and the stability analysis of each single equation related
to the inequalities in (4.17), we see that each of the unique positive steady-state
value solved in (4.18) is globally asymptotically stable in the respective differential
equation. The comparison argument implies that

(R(l) N® P(l))
lt 1nf(R( ),N(t),P(t)) < 1imsup(R(t),N(t),P(t))

1

< @V FY V) < ®, ()P(O)). (4.19)

Through induction, it can be shown that two monotone sequences (E(") ,N™ B("))
and (E(n),ﬁ(n),?(n)) will be generated by

SRy —ay R )N® — 0y ®™TY )P — 0,

B(ED) —ar (RN — 0y (RO P <,
bray(R™)R™ — as(W" TP — iy — a, N =0, w20
brar (R™)R™ — ay( Mnm)p(n) my — dy N Z 0
boan(B™VE™ + byas (N YN — my — dy P — 0,
bgag(R("))R(”) + b3a3(N("))N(”) — g — d2p(7:+1) 0

Moreover, they are ultimate upper and lower bounds for (R(t), N(t), P(t)) in model
(1.2) and

(B, N, PM) < (RTHY, NI+, pot))

<

< liminf(R(£), N(2), P(®)) < lim sup(R(), N (£), P(2)
—00 t—00

< (E(n—i-l) 7 N(n—i—l) : ﬁ(n—kl)) < (E(n) 7 N(n) ’ F(n)) (421)

Since the non-decreasing sequence (R(”) N, p™) ) and non-increasing sequence

®R™, N™ P are both bounded by (B N(°>, POy and (B, N P,
(E("),ﬂ("),ﬂ(”)) converges to (R, N, P) and (R(n) AR P( )) converges to (R, N, P).
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By setting n — oo in 4.20 and (4.21) we can conclude that

¢(R) — a1(R)N — aa(R)P. = 0,

#(B) — a1(R)N — az(R)P =0,

bia1(R)R — ag(N)g my — dy N (4.22)
biay(R)R — a3(N)P —my —di N

boaz(R)R + bsaz(N)N —mgy — do P = 07

boaz(R)R + bsaz(N)N — mg — doP =0,

and

(R, N, P) <liminf(R(t), N(t), P(t)) < limsup(R(t), N(t), P(t)) < (R, N, P).

t—o0 t—00
(4.23)
From the existence-comparison theory in [25], there exists a positive equilibrium

bounded by (R,N,P) and (R,N,P). Thus, we have the following theorem on
permanence.

Theorem 4.3. Assume that byai(c)c—ag(Jy)Js > my, baaz(c)c+bsas(Js)Js > ma
and o1Js + 09J3 < ¢(0), where J;(i = 4,5,6) are defined in the proof of Lemma

4.2. Let (R, N, P) and (R, N, P) be the respective limits of the monotone sequences

(R™ N™ p™) and (R(n) N P(n)) generated in (4.20). Then the IGP model
.2) 1s permanent, with a global attractor |R, X |N, x | P, which contains
1.2 h lobal R R N, N Pfiiih ;

a positive equilibrium (R*, N*, P*). Moreover, if (R,N,P) = (R, N, P), then the
positive equilibrium (R*, N*, P*) is unique and globally asymptotically stable.

Remark 4.4. We observe that positive equilibrium for model (1.2) need not be
stable. And Theorem 4.3 also implies that there is no periodic solution of (1.2) if
(R,N,P)=(R,N,P).

5. Model with the Linear Functional Response

In this section we apply the results obtained in Sections 3 and 4 to studying the
IGP model with simplest functional and numerical responses as follows:

R(t)=R(r(l—£)—a;N — axP),
N/(t) =N(b1a1R—a3P—m1 —le), (51)
P'(t) = P(baazaR + bzazN — my — do P),

where basal resource is described as logistic growth with carrying capacity K. The
parameters a;,7 = 1,2, 3 represent the pradation rates for the three predator-prey
interactions mentioned above. The parameters b;,7 = 1, 2, 3 represent the conversion
rates of prey to predator for the three interactions, and the parameters m; and mo
are the death rates of the IG prey and predator, respectively. And d; and dy scale
the effect of intraspecific competition in the growth rate of IG prey and IG predator,
respectively. We assume that all parameters are strictly positive.
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For the convenience of mathematical analysis, we can use new dimensionless
variables and parameters:

R alN agP i« " blalK bgagK
xTr = -, = 5 z = —_—, =T 5 = 5 = 5
K 4 r R n r 72 T
and
as bsas my Mo dq ds
cC=—, V3= , €1 = , €2 = 761:77 62:7'
as aq T r ai a2

But for simplicity, we keep the same notation for ¢. Then, we have

(mz —cz—e1 — 01y), (5.2)
= 2z(72% + 3y — e2 — 622).

w(l—z—y—2),
z

J:,
y/
Z/
Obviously, Eq. (5.2) has five possible equilibria in the domain 2, namely,

(i) trivial equilibrium: Ey := (0,0,0) and semi-trivial equilibrium: E; := (1,0,0),

(ii) IG prey-only equilibrium: Ejq := (%igi, 1;21,0) and IG predator-only e-

e2+3d2 0. X2=e2
Y2+027 7 Y2402 )7

quilibrium: Ey; := (
(iii) positive equilibrium: E* := (z*,y*, 2*) = (%, %, %),where
A =102 + 7201 + 0102 + 1173 + ¢v3 — Y2,
A1 = e10o + e261 + 5102 + y3€1 + ¢y3 — cea,
Ao = 7102 + 7162 + cea — €102 — Y2€1 — 2,
As = y173 + y2€1 + 7201 — y1€2 — Y3€1 — €201.
Proposition 5.1. The conditions for the existence of equilibria of system (5.2) are
following:
(i) the trivial equilibrium Eqy and semi-trivial equilibrium Ey always exist;

(i1) the IG prey-only equilibrium FEio exists if and only if v1 > e1, and the IG
predator-only equilibrium FEgyy exists if and only if vo > es;

(iii) the unique positive equilibrium E* exists if and only if A # 0 and AK > 0, for
1=1,2,3.

Remark 5.1. It is easy to check that the positive equilibrium E* exists but is
unstable when A < 0,A; <0,i=1,2,3.

5.1. Trivial, semi-trivial and boundary equilibria

We first recall some well-known one or two dimensional results.

Proposition 5.2 ( [19]). The subspaces H; = {(z,0,0) : z > 0}, Ho = {(z,,0) :
x,y > 0}, Hy = {(x,0,2) : 2,2 > 0} and Hy = {(0,y,2) : y,z > 0} are invariant.
Moreover, the following statements are true.
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(i) On Hy, system (5.2) is reduced to the one-dimensional subsystem

d
(Tf =2(1 - 2). (5.3)
Then the trivial equilibrium Fq is unstable and Ey is globally asymptotically
stable.
(i1) On Hsy, system (5.2) is reduced to the two-dimensional subsystem
d
(Tx =z(l—z—vy),
¢ (5.4)
dy _ (1 —e1 — d1y)
at Yy 1 1Y)-

If v1 < ey then Eyy doest not exist and Ey is globally asymptotically stable;
otherwise, if vy1 > e1 then the equilibria Fy, E1 are saddles and Fyq is globally
asymptotically stable.

(i1i) On Hs, system (5.2) is reduced to the two-dimensional subsystem

i—x:z(l—x—z),

t (5.5)
dz _ (y2x — eg — 022)

dt—Z”Yz 2 2Z).

If v < eq then Ey; doest not exist and Ey is globally asymptotically stable;
otherwise, if o > es then the equilibria Ey, Fy are saddles and Foy is globally
asymptotically stable.

(iv) On Hy, the trivial equilibrium Eq is globally asymptotically stable.
We next analyze the dynamics of all solutions of (5.2) near the boundary equi-

libria. According to Theorems 3.1, 3.2 and 3.3, we get the stability conclusions of
the trivial, semi-trivial and boundary equilibria.

Proposition 5.3. Consider system (5.2).
(i) The trivial equilibrium Eq is always a saddle with the unstable subspace H;
and the stable subspace Hy.

(i) The semi-trivial equilibrium Ey is locally asymptotically stable if and only if
71 < ep and y2 < es.

(iti) If v1 > e1, then Eyg exists and is locally asymptotically stable if and only if
Y2(e1 +01) | vs(n—er)

—e9 + + < 0. 5.6
2 7 + 01 " + 01 (5.6)

(i) If v5 > eq, then Epy exists and is locally asymptotically stable if and only if

yi(e2 +d2)  c(v2 —e2)
—e1+ — < 0. 5.7
! Yo + 02 Yo + 0 ( )

From Theorem 3.4, we have the following extinction results.

Proposition 5.4. Let (x(t),y(t), 2(t)) be a solution of system (5.2) with initial con-
dition (2(0),4(0),2(0)) where (0) > 0,y(0) > 0 and z(0) > 0. Then the following
statements are true.
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(i) If 1 < ey and 2 < eq, then the boundary equilibria Evg and Ey; do not exist
and we have the limits tlim y(t) = 0 and tlim z(t) = 0. Furthermore, E; is
—00 —00
globally asymptotically stable.

(i) If v1 < e1 and 2 > eq, then one boundary equilibrium Eig does not exist
but the other boundary equilibrium Foy exists. Moreover, we have the limit
tlim y(t) = 0 and the equilibrium Eo1 is globally asymptotically stable.

—00

These results can be easily interpreted in the biological point of view. If the
death rate ey of species y is greater than the conversion rate 7;, then y will die out
eventually and system (5.2) is reduced to the one-dimensional x subsystem (5.3)
or two-dimensional z—z subsystem (5.5). Thus classical two-dimensional results,
Proposition 5.2, can be applied. Therefore, from now on, we make the generic
assumption,

(L) 7> e,
which will be used in the rest of this section. However, for species z the dynamics
are more complicated. We consider this in the next subsection.

5.2. Existence, local stability and global dynamics of the e-
quilibria of system (5.2)

In this section, we always assume that assumption (L;) holds. Seeing Fig. 3, we
have six generic cases of classification of parameters based on the relation of 7
and 3 respect to the death rate, e, of species z. Similar to [17], we will classify
the dynamics of (5.2) according to es within regions (1)—(6) by the following four
categories,

(I) ez > max{vy2,73} (in region (3) and (6) of Fig. 3);
d

(IT) 2 > max{e2,v3} (in region (1) and (2) of Fig. 3);

)
(ITI) ex < 72 < 3 (in region (4) of Fig. 3);
(IV) 72 < e < 73 (in region (5) of Fig. 3).

(a) v2 > s () v2 <3

Figure 3. All generic possibilities of classification of parameters with varied ez in regions (1)—(6) with
Y1 > €1.

We will discuss the dynamics of each category in the following subsections.

5.2.1. Category (I): e > max{v2,v3}

In this category, since assumption (L;) and ez > max{~s,~v3} hold, the boundary
equilibrium F1g exists but the other boundary equilibrium FEy; does not exist. Then
we consider the possible existence of positive equilibria. To find the positive pos-
itive equilibrium E* = (a*,y*,2*) is to find the positive solution of the following
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equations
l—z—-—y—2=0,
mr—cz—e —dy=0,
Yo + Y3y — ea — da2z = 0.

With the substitution, x = 1 — y — z, we obtain two straight lines, L; and Lo,

Li:(m+0)y+(m+c)z=m—ei, (5.8)
Lo (v2 = 73)y + (2 +02)2 = 72 — ea. (5.9)

Hence the positive equilibrium exists if and only if these two straight lines L; and
L5 intersect in the interior of the first quadrant of the yz-plane. The only possibility
of existence of a positive equilibrium is that parameters satisfy inequalities v < 3
e2—v2 yi—el it ; ; : e2—v2

and e < T But, this is impossible since if v < 73 then Yo 1>
Ji—e€1

Y1+01 "
following extinction and globally stability results and the dynamics of category (I)

are summarized in Table 1.

Hence there is no positive equilibrium in category (I). However, we have the

Proposition 5.5. Let assumption (L1) and e3 > max{vyz,v3} hold. Then equilibria
Eo1 and E* do not exist. Moreover, we have that tlim z(t) = 0 and the equilibrium
— 00

FEq is globally asymptotically stable.

Proof. We first proof that the boundary equilibrium Fi is asymptotically stable.
Consider two subcases, v > y3 or vo < 3. If 79 > 3 then

y2(e1+61) | y3(n1 —e1) Yo(e1 +61) | v2(m —e1)
—eg + + < —egx + + =72 —ex <0
2 Y1+ 01 nAe T M + 01 M + 01 e

holds. On the other hand, if v5 < 73 then

Y€1 +01) +73(71—61) (y2 —3)(er + 1)

=3 —ex+ <0
7 + 61 7 + 01 78 ? 7 + 01

holds. Hence E; is locally asymptotically stable in R? by Proposition 5.3.
Without loss of generality, we assume that z(¢) < 1 for ¢ large enough. Define
v = max{~vs,v3} and consider
2! x!
;—i—y; = (yx+y3y —ea —022) +v(l —z—y — 2)
=v—ex+(r2—v)r+ (3 —v)y—(62+v)2
<v—ey <0,

which implies z(¢)(x(t))” — 0 as ¢ — oco. Then we should consider two possibilities,
one of which is that there exists a sequence of time {t,} such that ¢, — oo and
x(tn) — 0 as n — oo, the other of which is that there exists £ > such that x(t) > ¢
for all time ¢.

Assume that there is a sequence {t,} such that z(¢,) — 0 as n — oco. Since
the solutions of (5.2) are bounded, there is a point ¢ = (0,9,2) € Hy N w(p).
By Proposition 5.2, the solutions of (5.2) with initial condition g € Hy, ¢(t,q), will
approach Ey when t — co. Hence Ey € w(p). It is clear that w(p) # {Ep}. Applying
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Butler-McGehee Lemma [6,9], there is a point r = (Z,0,0) € H; Nw(p). Clearly,
r # Ey and ¢(t,r) approaches Fy as ¢ — oco. Similarly, F1 C w(p) and applying
Butler-McGehee Lemma again, we can find a point 8 € Hy Nw(p) since the unstable
manifold of F; is contained in Hy. Again, ¢(¢,s) approaches F1g, hence E1g € w(p).

Since Fyg is asymptotically stable in R3, we have the limit tlim o(t,p) = E1p.
— 00
On the other hand, if z(¢t) > & > 0 for all ¢ then we have z(t) — 0 as t — oo.
Similar to the previous arguments, we can find a point s; € Hy Nw(p). The rest of
the proof is almost the same as the previous one, so we omit it. We complete the
proof. O

5.2.2. Category (II): vo > max{es, 73}

In this category, since assumption (L;) and 5 > ey hold, the boundary equilibria
E1p and Fy; exist. Similarly, we solve (5.8) and (5.9) to find the positive equilibrium
E*. There are four generic cases of Category (II) as shown in Fig. 4.

z z z z
yi—e1 y2—€2 y2—e2 yi—e1
v1te v2+d2 v2+d2 y1+te
Ly L,y
y2—€2 Ly yi—e1 Lo
5
Y2402 Yy1+e y1—eq 72_22
vy1+c L1 Yy2+02 Lo
Yy Yy Yy Yy
y2—€2 y1—e1 Yi—e1 y2—e2 y2—e2 Y1—er yi—e1 y2—e2
v2—73 71+d1 v1+61 v2-73 v2—-73 v1+d1 Y1+061 v2-73

(a) (b) (c) (d)

Figure 4. The four possible generic cases for the intersection of the two straight lines L1 and Lo for
category (II).

In Fig. 4(a), the two straight lines do not intersect in the first quadrant if
Do > 222 and 257 > 2222 These two inequalities are equivalent to (5.6)
and the reversed (5.7). Hence in this case Fyq is stable, Ep; is unstable and E*
does not exist. The arguments of local dynamics in other three cases of category
(IT) are similar, so we omit them. And the results of local stability of the boundary
equilibria and existence of positive equilibrium of category (II) are summarized in
Table 1.

If £ exists then the the characteristic equation at E* is given by

A(E*) = N 4 A0% + A\ + Ay =0, (5.10)

where
Ao = 2% + 01y* + 022", A9 = 2¥y* 2" A,
Ay =2y (01 +71) + 272" (02 + 72) + ¥ 2" (0102 + ¢3).

By Routh-Hurwitz criterion, the real parts of three roots of the characteristic equa-
tion are all negative if and only if

A =7102 + 7201 + 6102 + M1z + vz — 72 >0 (5.11)
and

As Ay — Ao =2*2y" (01 +m1) + 27227 (02 + 2) + 2y (67 + 517m1)
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+ y*2z*(5fc52 + cy301) + x*z*Q(ég + 0272)

+y*2*%(8163 + cy302)

>0.

k ok sk

+ 2"y 2% (20102 + ¢y — 71773)

(5.12)

In this category, we obtain two extinction results and one bistability phenomenon.

Proposition 5.6. Let assumption (L1) and v2 > max{es,vy3} hold. Then the

following statements are true.

(i) In case (a) of Category (II), that is gt > 2=22 and =4 > 122,

Y1401 Y2—3 if

(5.11) holds, then the species z dies out eventually and the equilibrium Eyq is

globally asymptotically stable.

(i) In case (b) of Category (II), that is B3t < 22222 and T=2L < 2222 if
5.11) holds, then the species y dies out eventually and the equilibrium FEoi is
Y Y
globally asymptotically stable.
that 1s B2t > 12202 gpg JL_CL o 2262 " 4phe

(ii) In case (c) of Category (II),

Y1401 - yite Y2+0d2 7

equilibrium E* is a saddle point. Meanwhile, a bistability phenomenon occurs.

Proof. (i) Consider
2 omys o’ ey
z Y1+d6 T M+ y
Y1v3+8172

Hence we have z(t)(z(t))” n+5
similar, so we omit them.
(ii) Similarly, we consider

!

Yy cya — il 2

")/2+(SQ ;_

nte
")/2+6Q z

Y

If cyo—v102 > 0 then y(t) — 0 ast — oo; if cya—v192 < 0, then y(t)(z(t)) 72752

Y1Y3 + 0172
=(Yox + Y3y — eg — 0p2) + —— (1 —z
(727 + 3y — ez — 022) po—— (
Y2 — 73
—y—2z)— —cz—e1—90
y—z) leL(51(%373 cz —eyp —61y)
Y1y3 + 0172 e1(ya —3) A
—e2+ - z
Y1 + 01 Y1+ 61 Y1+ 61
5 _
<762+7173+ 172, €1(72 —73) <0
Y1 + 01 Y1 + 61

— 0 as t — oo. The remaining arguments are

cy2 — 7102

1—=x
Y2 + 92 (

=(nz—cz—e —dy) —

nte
—y—2z)— )
y—2z) po—— (Y2 + 73y — €2 — 622)
cya — 712 ez(y1+0) A
= — 61 —_ —_ y
Yo + 02 Yo + 2 2 + 62
e 2T 7162 | e2(y1+¢) <0
Yo + 0o Y2 + &g
y102—=cv2

—

0 as t — oco. The remaining arguments are similar, so we omit them.

(iii) It is easy to see that the assumptions

imply the inequality,

Y1—€1 Y2—e€2 yi1—€1 Je2—€2
Ji—¢1 J27€2 o =& Jo—¢C2
Y1+01 > Y2—"3 and Y1+c¢ < Y2402

v +c - Yo + d2

Y1+ 01

’72*73'



Intraguild predation model with intraspecific competition 1515

This inequality is equivalent to A < 0. Hence the positive equilibrium E* is un-
stable. Since Az > 0 and Ay < 0, the sum of all roots of (5.10) is less than 0 and
the product of all roots of (5.10) is large than 0, which implies the equilibrium E*
is a saddle point. Since ﬁ > ﬁ and 77111601 < Xlzg are equivalent to the
inequalities (5.6) and (5.7), respectively, it follows from Proposition 5.2 that Ejg
and Fjy; are both locally asymptotically stable. That is, a bistability phenomenon

occurs. We complete the proof. O

5.2.3. Category (ITI): ex < v2 < 73

In this category, since assumption (L;) and 5 > ey hold, the boundary equilibria
E1p and Ep; exist. Similarly, we solve (5.8) and (5.9) to find the positive equilibrium
E*. There are two generic cases of Category (III) as shown in Fig. 5.

z z

yi—e1 J2—e2
Y1+e v2+d2

y2—¢€2

Y2+02 Ly Lo
Lo
Y Yy
y2—€2 J1—eq Jy2—e2 Jy1—e1
Y2—73 71+01 Y2-73 Y1+81
. yi—e1 y2—¢€2 yi—e1 y2—¢€2
@) S+ > 2575 (b) T2 < %5,

Figure 5. The two possible generic cases for the intersection of the two straight lines L; and L2 for
category (III).

For category (III), it is obvious that Ej¢ is unstable, since

(73 - 72)(71 - 61)

’Yz(el + 51) ’73(’)’1 - 61)
+
Y1 —|—61

> 0.
Y1 + 01 Y1+ 61

—€2 +

=72 — €2+

Remaining arguments of local dynamics of category (III) are similar to the previ-
ous category, so we omit them and summarize the results on the local stability of
boundary equilibria and the existence of positive equilibrium of category (III) in
Table 1. We then have the following extinction result.

Proposition 5.7. Let assumption (L) and ea < o < 3 hold. In case (b) of

o Y1—e€1 Y2—é2 Yi—él J2—é€2 ; ;
category (III), that is e i —, and —= < 25, the species y dies out

Y2 =7 ¥ 7
eventually and the equilibrium Egyy is globally asymptotically stable.

Proof. We first show that inequality (5.11) holds in this case. Since 272+ >

Y1+91
;’j:ii‘; lelj::l < zz;gj and ey < v9 < 73, we have that

v +c - Yo + d2
Y1+ 61 Y2 — 3’

which is equivalent to (5.11). Moreover, the condition =2t < 222 holds if and

Y2+02
only if the inequality (5.7) holds, hence the equilibrium Ey; is asymptotically stable.
Consider
VBl MR (e o) - R0 a oy
Yy Y2+ x 2+ d2 2 Yo + 02
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Y1+c
— —ey— 0
Y2 T 02 (Yo + 73y — €2 — 622)
. ey — 7102 ez(y1 +¢) A
=—€ - - Y
Y2 + 02 Y2 + 02 Y2 + 02
< e cy2 =72 | e +o) <o.
Y2 + d2 Y2 + 62
. y192—cv2
If ¢yo —y102 > 0 then y(t) — 0 as t — oo; if ¢ya —y102 < 0 then y(¢)(x(t)) 2F2 —
0 as t — oo. The remaining arguments are similar, so we omit them. O

5.2.4. Category (IV): 72 < ez <73

In this category, since assumption (L) and 75 < es hold, the boundary equilibrium
F exist but the other boundary equilibrium Fy; does not exist. Similarly, we solve
(5.8) and (5.9) to find the positive equilibrium E*. There are two generic cases of
Category (IV) as shown in Fig. 6.

z z
yi—er | g, yi=e1
y1te 1 i y1te
L1
Ly
Yy Yy
ea—72 yi—el yi—el €272
3—=72 v1+61 v1+61 v3—=72
y2—eg y2—e2
v2+d2 Y2+d2
Ji—ey e2="72 y1—eq e2=72
(a) v1+91 Y372 (b) ETE=THAN v3—72

Figure 6. The two possible generic cases for the intersection of the two straight lines L; and Lo for
category (IV).

In Fig. 6(b), the inequality B3t < 22222 is equivalent to (5.6) hence Fig is

asymptotically stable. The other case of category (IV) is similar, so we summarize
the results in Table 1. The following theorem gives the extinction result in case (b).

Proposition 5.8. Let assumption (L) hold and parameters be in the case (b) of
category (IV). Then we have that tlim z(t) = 0 and the equilibrium Eyg is globally
— 00

asymptotically stable.

Proof. Inequality fx;gi < ﬁ implies that Eyq is asymptotically stable and is

equivalent to the following inequality,

1y + 0172 e1(y2 —73)

< 0.
7 + 01 Y1 + 01

—€9 +

Consider

7173 + 6172
v1 + 01

2 + 017v9 2’ — !
7 tiner -y

1—x
z m+dé T o+ y (

=(y2x + Y3y — €2 — 022) +

Y2 — 73
Y1+ 01

—y—2z)— (1x —cz —e1 — 01Y)
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+9 - A
— eyt 7173 T 0172 n e1(y2 — 7s) _ 2
v+ 6 Y1+ 61 Y1 + 61
5 _
< eyt I Toye e1(y2 —73) <0
Y1+ 01 7+ 01

ato -
Hence we have (z(t)) B (y(1)) Seh z(t) = 0 as t — oo. Similarly, we consider

two possibilities. One is that there exists a sequence of time ¢,, such that z(¢,) — 0
as n — o0o. The proof of this case is similar to the previous one, we can obtain that
Eyg is globally asymptotically stable. So we omit the details.

Another one is that 2(t) > ¢ for all time ¢. This implies that (y(t))%z(t) -0
as t — 0o. We also have two subcases, one of which is that there is a sequence of
time ¢, such that y(¢,) — 0 as n — oo, the other of which is that y(¢) > ¢ for
all time ¢. The remaining arguments of these two subcases are similar, so we omit
them. We complete the proof. OJ

Y2

= 73

(In (

)

e €2

Categ(

3

(Iv) (b)

Figure 7. A typical picture of the parameter space with varied ~2,~v3 and fixed ey, es, d1, 82,71, ¢
with 71 > e1. The dynamics in each region of the parameter space are indicated with different color.
First, in the yellow regions species z dies out eventually because of results in Propositions 5.5, 5.6(i) and
5.8. In the orange region, species y dies out eventually (Propositions 5.6(ii) and 5.7). Moreover, in the
green region, the bistability phenomenon occurs (Proposition 5.6(iii)). Finally, the positive equilibrium
appears in the cyan region and the permanence effect of the populations of the model (5.2) follows
(Proposition 5.11).

In the end of this subsection, we present a typical picture, Fig. 7, of the v2,v3
parameter space with fixed eq,es,d1,02,71 and ¢ and the restriction v1 > e; (see
Proposition 5.4 and assumption (L1)). We use different colors to clarify the dy-
namicas of solutions of (5.2) by the two inequalities of Table 1. One straight line,

ert

1 1—€e1 __ 3 3
Yoo+ :’—71 5 = €2, and one horizontal line,

ea(y1 +¢) 4+ d2(y1 —er)
c+ep

T2=s =

)

are obtained to separate regions (II)—(IV) into two or four subregions by the in-
equalities of Table 1.
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Table 1. Dynamics of equilibria of classifications categories (I)-(IV) (GAS means globally asymptoti-
cally stable).

Eno Eo E”

Category (I): ea > max{vy2,73} GAS does not exist does not exist
Category (II): 2 > max{ez,v3}

(a) i > 12222 2 > 2 GAS? unstable does not exist

(b) Tt < =22, T2 < 252 unstable  GAS® does not exist

(c) Bofr > =22 1= < 122 stable stable exists (saddle)

(d) o5 < 222,22 > 12222 unstable  unstable exists
Category (III): ez < 72 < 3

(a) jﬁ;gi > jy;:fg, ﬂ;l;fcl > 1;;2, unstable unstable exists

(b) 7{1;;1 > 32:%, Vi;:cl < Elgj, unstable GAS does not exist

Category (IV): 72 < ea < 73
Ji—er €2—72 Ji1—é€l J2—¢€2
(a) Y1401 > Ya—v2? 7Mite > Y2402’

Ji—€1 €2—7Y2 J1—€1 Y2—€2 .
(b) Do < R L > B GAS unstable does not exist

*With an extra inequality (5.11).

unstable does not exist exists

We indicate the dynamics in each region of the parameter space with different
colors of Fig. 7. Firstly, in the yellow regions species z dies out eventually because
of results in Propositions 5.5, 5.6(i) and 5.8. In the orange region, species y dies out
eventually (Propositions 5.6(ii) and 5.7). Moreover, in the green region, the bista-
bility phenomenon occurs (Proposition 5.6(iii)). Finally, the positive equilibrium
appears in the cyan region.

5.3. Dynamics of the positive equilibrium

Note that all global dynamics of (5.2) are clarified analytically except for cases of
parameters in (II)(d), (III)(a), and part of (IV)(a). Hence, in this subsection, we
would like to discuss the dynamics of (5.2) with parameters in these three regions.
We show an analytical result in which system (5.2) is permanence and present some
numerical simulations.

5.3.1. Permanence

For investigating the permanence phenomenon of system (5.2), we apply the result
of Section 4. In fact we can use the conditions of Theorem 4.3 to have the following
results.

Proposition 5.9. Assume that v, > e1 and vy + y3J4 > e, where Jy = %. If
(2(0),4(0),2(0)) > (0,0,0), then the population function (x(t),y(t), z(t)) as solution
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of (5.2) remains nonnegative and satisfies

limsup z(t) < 1,

t—o0
limsup y(t) < n— 61,
t—o0 61
Ty —
limsup 2(f) < 1210871~ €2
t— o0 62
Proposition 5.10. Let
_ T — —eJs —
g = 617 J5:72+73 4 62’ o=1—Js—Js. J6:710' ¢s —er
(51 (52 61

Assume that y10 —cJs > e1,720 +73Js > eq and Jy+J5 < 1. If (2(0),y(0), 2(0)) >
(0,0,0), then the population function (x(t),y(t),z(t)) as solution of (5.2) satisfies

liminfz(t) > 1 — Jy — Js,

t—o00

oc—cJs—e
>’71 5 1

llglolgf y(t) > 5 ,
liminf 2(t) > 720 +73J6 — €2 736 — 62.
t—o0 62

The proofs of Propositions 5.9 and 5.10 are similar to Lemmas 4.1 and 4.2,
respectively, hence we omit them here. When the conditions of Proposition 5.10
hold, the obtained ultimate lower bounds and the ultimate upper bounds given in
Proposition 5.9 form a positive global attractor for the food-chain model (5.2) such
that the ecological system is permanent. Define

_mo—cls—er (o) _ 720 +73Js — e
01 ’ 02 ’
O 5O N4 ) 02 +v3ds — e
o1 b2

2@ =1-Jy—J5, y

where Jy = 7'“561 ,Js = 77#73‘2]4*62 and Jg = 7’“"*;]5*61.

It is easy to verify that (z(9),5©, 2©) and (z(®,7(®,z®) are also coupled
lower and upper solution of system7(5.2) according to the conditions of Proposition
5.10. Thus we can define iterated sequences (z(™,y™, 2(") and (z™, 7™, z(")
satisfying B
1 — gt _ y(n) — 2 = 0,

1— gt g _z() — ¢

Nz — ez — e — 5,7 =0,

n+l) _ 0, (513)

nz™ — ezt — ey — 51y
’YQE(TL) + fygg(”) —eg — 523(71"‘1) = 07

Y2z™ + y5y™ — ey — 52" = 0.

Similarly, we can deduce from the induction method that

(2@, 4© 20y < (g(n)’g(n)&(n)) < @™, 5™ z) <z, 5 ),
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and that the limits

n—oo n— oo

lim (2™, y™, 2") = (z,9,2), lim @™, 7", 2") = (,7,%)

exist and satisfy the following equations

T—cz—e —0y=0,
T = 1 1Y (5.14)
Mz —cz—e; — o1y =0,
V2T + 73y — ex — 022 = 0,

Y2x + Y3y — €2 — 622 = 0.

Thus, we have the following conclusions on permanence.

Proposition 5.11. Assume that y10 — cJ5 > e1,720 + y3Jg > e and Jy + J5 <
1, where Ji(i = 4,5,6) are defined in the proof of Proposition 5.10. Let (z,y,z)
and (T,Y,z) be the respective limits of the monotone sequences (g(”)7g(”),g(”)) and
@™, 5™, 2™ generated in (5.13). Then the system (5.2) is permanent, with a
global attractor [z, T] X [y, 7] X [z, Z] which contains a positive equilibrium (z*,y*, z*).

If (z,y,2) = (T,7,%), then the positive equilibrium (z*,y*, 2*) is unique and globally
asymptotically stable.

Next, we investigate on a sufficient condition for (z,y,z) = (7,7,%), which
ensures the uniqueness and global stability of the positive equilibrium (z*, y*, z*).

Proposition 5.12. Assume that y10 — cJs > e1,v20 +7y3Jg > €9 and Jy+ J5 < 1,
where J;(i = 4,5,6) are defined in the proof of Proposition5.10. Denote
1 -1 -1
D= Y1 *51 c

Y2 vz —02

Ifdet D # 0, then the IGP model (5.2) has a unique positive equilibrium (x*,y*, z*).
When (x(0),y(0), 2(0)) > (0,0,0), the solution (z(t),y(t), z(t)) of (5.2) satisfies

lim (a(¢), y(¢), 2(8)) = (25", =").

t—o0

Proof. From Eq. (5.14) we see that

@-2)-U-y - (-2 =0,
N@T—z)—0(7—y) +c(Z-2) =0,
Y2 (T — ) + 73 (Y —y) — 02(z2 — 2) = 0.

If det D # 0, then we have (z,y,2) = (7,7, 2). This completes the proof. O
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5.3.2. Global stability of positive equilibrium

In the Subsection 5.2.2, we have shown that the positive equilibrium E* is local-
ly asymptotically stable if (5.11) and (5.12) hold. From the pervious subsection,
we know that the conditions of Theorem 5.11 can guarantee the permanence phe-
nomenon of the system (5.2). But these conditions are too strong according to the
discussion in Remark 4.2. Now we shall find some weaker conditions under which
the positive equilibrium E* is globally asymptotically stable.

Proposition 5.13. Assume that A # 0 and % > 0, fori = 1,2,3. Then the
positive equilibrium E* is globally asymptotically stable if

Aeyayzdr > (s — o). (5.15)

Proof. The proof of the global stability of the positive equilibrium E*(x*,y*, z*)
can be reached by constructing a Lyapunov function V' as follows:

ro=h (x(t) St ngt)) +1 (y(t) —y —y'In yy(t))
+ls (Z(t) —z"—2z"In Z;?) ’

where [;(i = 1,2, 3) are positive constants to be determined.
Calculating the derivative of V(¢) along positive solutions to (5.2), it follows
that

y'(t)
y(t)
—y") — (2(t) — 27)]

(2( t) —2") = 61y (t) — y")]
[v2(x(t) — %) +73(y(t) — y*) — da(2(t) — 27)].

Setting l1 = 7y2,lo = v3/¢,c3 = 1, then it is derived from above equation that

+a(y(t) —y")

Vi) = =22 BB () o) - (yl0) - )

e P

Denote
G={(z,y,2) ER}0<2<J,0<y<.Js,0<2< J3}

where J;(i = 1,2, 3) are defined in Lemma 2.1. If (5.15) holds, for any (z(t)
G, we have V’( ) <0, with equality if and only if z(t) = zhy( )=2z3,2(t
Then we look for the invariant subset M within the set

M = {(x(t), y(t), 2(t)) : V'(t) = 0}

Clearly, the only invariant set in M is M = {(z*,y*,2*)}. Using the LaSalle
invariant principle, the global asymptotic stability of E* follows. O

y(t), 2()) €
) =23.
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5.3.3. Hopf bifurcation

In this part, we investigate the existence of periodic solutions via the Hopf bifur-
cation in the cyan region of the parameter space. By the previous arguments, the
positive equilibrium E* is stable if and only if the inequalities (5.11) and (5.12) hold.
Since condition (5.11) is always true in this region, we manipulate the inequality
(5.12) and use similar arguments in Ruan [28] to establish the existence of periodic
solutions bifurcated from the equilibrium E*. Moreover, in this part we assume
that the inequality

Y173 + €Yz > 2
holds, which implies A > 0.

Let us reconsider the characteristic equation (5.10) at E* with a complex eigen-
value a + bi,

(a + bi)® + Ag(a +bi)*> + Ay (a + bi) + Ag = 0, (5.16)

where

Ao =" + 01y + 022", Ag=z"y" 2" A,
Ay =2y (61 +71) + 227 (02 + 72) + ¥y 2" (8102 + ¢y3)-

Solving (5.16), we have

(IS — 3ab2 + Ag(aQ — b2) —+ Ala —+ AO = 0,

5.17
3a%b — b3 + 2abAy + A1b = 0. ( )

If a = 0, then we get AsA; = Ay and E* loses its stability. Moreover, this is
equivalent to the reversed (5.12). Simultaneously, the characteristic equation (5.10)
can be rewritten as

A+ A)(\2 4+ 4y) =0.

Hence we obtain one negative real eigenvalue and two purely imaginary eigenvalues.

Let p be a parameter, 2*,y* and z* depend on u, and [ satisfies a(f) = 0.
We then establish the transversality condition which guarantees the existence of
periodic solutions bifurcated from E*. Differentiating (5.17) with respect to p and
solving linear system of %Z‘“:ﬁ and g—m#:ﬁ, we obtain

da (=307 + Ar)(—b2 %2 + 9o + 2024, 4

aa _ dup dp
i,y (—30% + A;)2 + 402 A2 o
1 d(Ag — Ay Ay)
T 212 4 242 du .
1 dF,_

*m@(u)» (5~18)

where the function
F(‘LL) = A1A2 — Ao.

Note that the inequality (5.12) holds if and only if F' > 0. Therefore we have the
following conclusion on the Hopf bifurcation at the positive equilibrium E*.
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Proposition 5.14. Assume that A; > 0(i = 1,2,3), 7173 +¢y3 > ¢y, F() =0 and
%(ﬂ) > 0 hold. Then the positive equilibrium E* is locally asymptotically stable
when > i and loses its stability when u = . When p < i, E* becomes unstable
and a family of periodic solutions bifurcates from E*.

From the biological point of view, we should consider the influence of intraspecies
competition on the dynamic behavior of the positive equilibrium E*. Then we
take d1, 02 as the bifurcation parameter to cause the existence of periodic solutions
bifurcated from the instability of positive equilibrium E*.

0.4
0.35F B
0.3F B

(I
0.25[ 4
< 02F 4
0.15F _A = i
/AZAI A(J 0
0.1 4
()
0.05- i
0 | | | | I | |
0 0.1 0.2 03 04 0.5 06 0.7 0.8

Figure 8. Hopf bifurcation curve of system (5.2) with parameter condition C;. When (41, d2) € (I),
F(61,52) = AsA; — Ap < 0. When (51,62) S (II), F(51,62) = AsA; — Ag > 0.

By the previous arguments, the positive equilibrium E* is stable if and only
if A > 0,A;(¢ =1,2,3) > 0 and F > 0. Referring to Li and Dai [23], we take
parameter values as follows:

(Cl) : Y1 = 67’}’2 = 3.57’)/3 = 2,61 = 0.10,62 = 0.776 =1.

Then the Hopf bifurcation curve F(d;,82) = A A — Ag = 0 of system (5.2) with
respect to 01, dy is depicted in Fig. 8. When (61, d2) € (I) in Fig. 8, F(d1,02) <0,
which means E* is unstable and indicates the existence of periodic solution. When
(61,02) € (II) in Fig. 8, F(d1,02) > 0, which means E* is locally asymptotically
stable.

We first fix the parameter do as 0.09 and the graph of F', Fig. 9(a), can be
obtained by varying ; from 0 to 0.6 and calculating the value of the function F
with respective to d;. Since the positive equilibrium E* is unstable if F' < 0, there
is a periodic solution bifurcated from the positive equilibrium E*. Numerical sim-
ulations of (5.2) at d; = 0.08,0.4 are performed and presented in Fig. 10(a) and
(b), respectively. We can see that the positive equilibrium E* is locally asymptot-
ically stable when §; = 0.4 (see Fig. 10(b)) and Hopf bifurcation will occur as the
bifurcation parameter d; decreases. When §; = 0.08, the positive equilibrium E*
loses its stability and a periodic solution bifurcates from it (see Fig. 10(a)). Next,
we fix the parameter d; as 0.08 and the graph of F', Fig. 9(b), can be obtained by
varying do from 0 to 0.6 and calculating the value of the function F' with respective
to d5. Then, similar results of numerical simulations about d> can be obtained and
we omit them here.
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Figure 10. Two numerical solutions of system (5.2) with parameter condition (C1). (a) A periodic
solution bifurcates from the positive equilibrium via Hopf bifurcation when §; = 0.08. (b) The positive
equilibrium E* is locally asymptotically stable when §; = 0.4. The initial condition is: (zo,yo,20) =
(0.19,0.5,0.3).

6. Conclusion

In this paper, we study a general intraguild predation (IGP) model (1.2), which
contains intraspecific competition in the growth of IG prey and IG predator, and
give a rigorous analysis for a special IGP model (5.1) with linear functional response.

For the general IGP model, we have obtained some conditions about stability for
trivial, semi-trivial and boundary equilibria. The long time behavior of the solution
(R(t),N(t), P(t)) of (1.2) is investigated. Under the assumption of Theorem 4.2
we get the extinction result of three species when the initial population R(0) is
relatively smaller than N(0) and P(0). Under the assumption of Theorem 4.3 the
IGP model (1.2) is permanent, with a global attractor [R, R] x [N, N| x [P, P] which
contains a positive equilibrium (R*, N*, P*). It is a pity that we can not find some
relatively weak conditions to ensure the permanence result.

For the case with the linear functional response, the conditions for local stability
and global stability of trivial, semi-trivial and boundary equilibria are rigorously
divided into four classes (see Fig. 7 and Table 1), which is similar to the results
of [17]. In the cyan region of Fig. 7, the positive equilibrium exists and the perma-
nence effect of the population of model (5.2) follows (Proposition 5.11). Compared
with the model in [17], the parameters i, ds, that are the intraspecific competi-
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tion coefficients among the populations of IG prey and IG predator, respectively,
can promote complex dynamical behavior. Numerical simulations are conducted to
show the potential role that intraspecific competition can play in the model (5.2).
By using 01 and J- as the bifurcation parameters, we numerically sketch the Hopf
bifurcation curves of system (5.2) with parameter condition Cj. Our results show
that intraspecific competition has a stabilizing effect and eliminates oscillations. If
the positive equilibrium is unstable and oscillations are observed in model (5.2),
then the intraspecific competition can have a stabilizing role, and as d; or d in-
creases, the oscillations disappear and the positive equilibrium gains its stability
(see Proposition 5.14 and Figs. 8, 9 and 10).
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