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Abstract The article concerns output controllability and optimal output
control of positive fractional order discrete linear systems with multiple de-
lays in state, input and output. Necessary and sufficient conditions for output
reachability (output controllability from zero initial conditions) and null out-
put controllability (output controllability to zero final output) are given and
proven. We also prove that the positive system is output controllable if it
is output reachable and null output controllable with the output reachability
index is equal or less than the null output controllability index. Sufficient
conditions for the solvability of the optimal output control problem are given.
Numerical examples are presented to illustrate the theoretical results.
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1. Introduction

In positive systems state variables and outputs are constrained to be positive, or
at least nonnegative for all time whenever the initial conditions and inputs are
nonnegative [13]. Since the state variables and outputs of many real-world processes
represent quantities that may not have meaning unless they are nonnegative because
they measure concentrations of substances, population levels, and so on, positive
systems arise frequently in chemistry, biology, ecology, pharmacology, medicine,
management sciences, economics, social sciences, etc. An excellent survey of positive
systems with an emphasis on their applications in the areas of management and
social sciences is given by Luenberger in [28]. The more recent monographs by
Farina and Rinaldi in [9] and Kaczorek in [13] are devoted entirely to positive linear
systems and some of their applications. Since positive systems are confined within
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a cone located in the positive orthant rather than in the whole space [2,27,35], their
analysis and synthesis are more complicated and more challenging.

The notion of controllability due to Kalman [19] is important in the mathe-
matical control theory [5, 20, 22]. Controllability continually appears as a sufficient
condition for the existence of solutions to many control problems, for example, sta-
bilization of unstable linear system by feedback. Basically a system is controllable
if its state can be driven from any initial state to any final state using only certain
admissible controls.

The systems described by fractional order differential or difference equations
have been investigated in many areas in science and engineering [7,18,29–31,33,34].
The reachability and controllability of fractional discrete linear systems have been
considered in [12, 21]. The reachability and controllability of fractional discrete
linear systems with delayed state were analyzed in [4]. The minimum energy control
problem for fractional discrete linear systems with and without delays has been
formulated and solved in [4, 21, 23]. Works on reachability, controllability to zero
and minimum energy control of positive fractional order discrete linear systems has
been investigated in [16,17,36].

It is worthwhile to note that controllability is defined for states instead of out-
puts. In most engineering applications, it is needed to direct the output toward
some desired value. In fact, having control over the output of the system has a
significant importance if not more than the states. For example, the control of a
multilink cable-driven manipulator, where the task is typically defined in terms of
end effector pose, rather than the joint positions and velocities which can define
the system’s state [25]. Under such a situation, it is natural to consider output
controllability [1, 6, 8, 10,11,24,26].

Output controllability is a property of the impulse response matrix of a lin-
ear invariant-time system which reflects the dominant ability of an external input
to move the output from any initial condition to any final condition in a finite
time. The necessary and sufficient criterion for output controllability of linear
time-invariant systems is addressed in, for example, [10]. The output reachabili-
ty of positive linear discrete systems is discussed in [14]. The problem of output
reachability of positive discrete linear systems with state delay has been studied
in [15]. The output controllability of positive linear discrete systems with delays in
state, input and output was considered in [32].

In this paper the output reachability, null output controllability, output con-
trollability and optimal output control problems for the positive fractional order
discrete linear systems with multiple delays in state, input and output will be for-
mulated and solved.

The remainder of this paper is organized as follows. In the next section some
mathematical preliminaries of fractional order positive linear discrete systems with
delays in state, input and output are presented. We investigate the output control-
lability in Section 2. Section 3 gives the formulation and solution to the optimal
output control problem.

Notations. N the set of nonnegative integers, N+ the set of positive integers,
σks = {s, s+ 1, . . . , k} the finite subset of N with s ≤ k, Rn the set of real vectors
with n components, Rn+ the set of vectors in Rn with nonnegative components, i.e.,

Rn+ =
{
x = (x1, x2, . . . , xn)

T ∈ Rn : xi ≥ 0, i ∈ σn1
}
,
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where T denotes the transpose, Rn×m the set of real constant matrices of dimension
n×m

(
Rn = Rn×1

)
, In the identity matrix in Rn×n, A−1 the inverse of A ∈ Rn×n,

diag
[
a1 · · · an

]
the matrix formed with (ai)i∈σn

1
in the diagonal and zero else.

2. Positive fractional delay systems

Using Grünwald-Letnikov approach, a definition of fractional discrete approxima-
tion of the derivative is given as follows.

Definition 2.1 ( [30,33]). The discrete fractional difference is defined by

∆αxi =
1

hα

i∑
j=0

(−1)
j

α

j

xi−j , (2.1)

where 0 < α < 1 is the fractional order, h is the sampling time (taken equal to 1 in
all that follows) and i ∈ N is the number of sample for which the approximation of
the derivative is calculated.

The binomial coefficients

α

j

 can be obtained from the following relation

α

j

 =

1 for j = 0

α(α−1)···(α−j+1)
j! for j ∈ N+.

In this work we shall consider the fractional discrete linear delay system de-
scribed by 

∆Υxi+1 =
p∑
j=0

Ajxi−j +
q∑
j=0

Bjui−j ,

yi =
l∑

j=0

Cjxi−j +
v∑
j=0

Djui−j , i ∈ N,
(2.2)

the initial conditions for (2.2) are given by

u−j ∈ Rm for j ∈ σmax{q,v}
1 and x−j ∈ Rn for j ∈ σmax{p,l}

0 , (2.3)

where

∆Υxi+1 =


∆α1x1,i+1

...

∆αnxn,i+1

 , (2.4)

with 0 < αj < 1 for j ∈ σn1 , xi =


x1,i

...

xn,i

 ∈ Rn is the system state, ui ∈ Rm

the control, yi ∈ Rr the output, Aj , Bj , Cj and Dj real constant matrices with
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appropriate dimensions and p, q and v, and l the nonnegative integer maximal
values of delays on state, input and output, respectively.

Using Definition 2.1 we may write the equation (2.4) in the equivalent form

∆Υxi+1 =


∆α1x1,i+1

...

∆αnxn,i+1

 =



i+1∑
j=0

(−1)
j

α1

j

x1,i+1−j

...

i+1∑
j=0

(−1)
j

αn

j

xn,i+1−j


=

i+1∑
j=0

(−1)
j

Υjxi+1−j ,

(2.5)
with

Υj = diag

α1

j

 · · ·
αn

j

 .
By equations (2.5) and (2.2) we deduce that

xi+1 −
i+1∑
j=1

(−1)
1+j

Υjxi+1−j =

p∑
j=0

Ajxi−j +

q∑
j=0

Bjui−j . (2.6)

Let Āj = (−1)
1+j

Υj . Equation (2.6) can be rewritten as

xi+1 = (A0 + Υ1)xi +

p∑
j=1

Ajxi−j +

i+1∑
j=2

Ājxi+1−j +

q∑
j=0

Bjui−j ,

then

xi+1 = A0xi +

p∑
j=1

Ajxi−j +

i∑
j=1

Ā1+jxi−j +

q∑
j=0

Bjui−j , (2.7)

where A0 = A0 + Υ1.

Remark 2.1. The matrices Āj (j ∈ N) satisfy the relation

Ā1+j =
1

1 + j
(jIn − Ā1)Āj .

Now, we define the positivity of system (2.2) using the following

Definition 2.2. System (2.2) is said to be positive if xi ∈ Rn+ and yi ∈ Rr+, i ∈ N,

for any initial states x−j ∈ Rn+ (j ∈ σ
max{p,l}
0 ), for any initial inputs u−j ∈ Rm+

(j ∈ σmax{q,v}
1 ) and all inputs ui ∈ Rm+ , i ∈ N.

Definition 2.3. A matrix A = (aij) in Rn×m is said to be nonnegative, and denoted
by A ∈ Rn×m+ , if all of its elements are nonnegative, i.e., aij ≥ 0 for all i ∈ σn1 ,
j ∈ σm1 .
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Since 0 < αj < 1 (j ∈ σn1 ), then (−1)
1+i

αj

i

 > 0 for all i ∈ N+ (see [18]),

and consequently the diagonal matrix Āi (i ∈ N+) is composed of positive diagonal
elements. Hence, necessary and sufficient conditions for positivity of the retarded
system (2.2) are given by the following theorem.

Theorem 2.1. System (2.2) is positive if and only if

A0 ∈ Rn×n+ , Aj ∈ Rn×n+ (j ∈ σp1) , Bj ∈ Rn×m+ (j ∈ σq0) , (2.8)

Cj ∈ Rr×n+

(
j ∈ σl0

)
, Dj ∈ Rr×m+ (j ∈ σv0) . (2.9)

Proof. (Sufficiency) If the condition (2.8) is satisfied, then from (2.7), for i = 0,
we have

x1 = A0x0 +

p∑
j=1

Ajx−j +

q∑
j=0

Bju−j ∈ Rn+,

since x−j ∈ Rn+ (j ∈ σp0) and u−j ∈ Rm+ (j ∈ σq0) . Assume that xk ∈ Rn+ for k ∈ σi1.
From (2.7) we have

xi+1 = A0xi +

p∑
j=1

Ajxi−j +

i∑
j=1

Ā1+jxi−j +

q∑
j=0

Bjui−j ∈ Rn+,

since (2.8) holds, xi−j ∈ Rn+ (j ∈ σp0), u−j ∈ Rm+ (j ∈ σq1) and ui ∈ Rm+ , i ∈ N.
Hence xi ∈ Rn+ for any i ∈ N. Consequently, if the condition (2.9) is satisfied, we
get that yi ∈ Rr+ for every i ∈ N since x−j ∈ Rn+

(
j ∈ σl0

)
, u−j ∈ Rm+ (j ∈ σv1) and

ui ∈ Rm+ , i ∈ N.
(Necessity) Assuming that the system (2.2) is positive, let u−j = 0 for j ∈

σ
max{q,v}
0 . Then for i = 0, we have

x1 = A0x0 +

p∑
j=1

Ajx−j = Ax̄0 ∈ Rn+ and y0 =

l∑
j=0

Cjx−j = Cx̄1 ∈ Rr+,

with

A =
[
A0 A1 · · · Ap

]
∈ Rn×n(p+1), C =

[
C0 C1 · · · Cl

]
∈ Rr×n(l+1),

and

x̄0 =
[
x0 x−1 · · · x−p

]T
∈ Rn(p+1), x̄1 =

[
x0 x−1 · · · x−l

]T
∈ Rn(l+1).

Hence A ∈ Rn×n(p+1)
+ , i.e., A0 ∈ Rn×n+ , Aj ∈ Rn×n+ (j ∈ σp1) and C ∈ Rr×n(l+1)

+ ,

i.e., Cj ∈ Rr×n+

(
j ∈ σl0

)
since x̄0 ∈ Rn(p+1)

+ and x̄1 ∈ Rn(l+1)
+ are arbitrary.

Now, assume that x−j = 0 for j ∈ σmax{p,l}
0 , and for i = 0, we obtain

x1 =

q∑
j=0

Bju−j = Bū0 ∈ Rn+ and y0 =

v∑
j=0

Dju−j = Dū1 ∈ Rr+,
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with

B =
[
B0 B1 · · · Bq

]
∈ Rn×m(q+1), D =

[
D0 D1 · · · Dv

]
∈ Rr×m(v+1),

and

ū0 =
[
u0 u−1 · · · u−q

]T
∈ Rm(q+1), ū1 =

[
u0 u−1 · · · u−v

]T
∈ Rm(v+1).

Which implies thatB ∈ Rn×m(q+1)
+ , i.e., Bj ∈ Rn×m+ (j ∈ σq0) andD ∈ Rr×m(v+1)

+ ,

i.e., Dj ∈ Rr×m+ (j ∈ σv0) since ū0 ∈ Rm(q+1)
+ and ū1 ∈ Rm(v+1)

+ are arbitrary. This
completes the proof.

In all the sequel, we assume that the system (2.2) is positive.

3. Output Controllability

Definition 3.1. System (2.2) is said to be output controllable in N steps if, for any

desired final output yd ∈ Rr+, any initial state sequence x−j ∈ Rn+ (j ∈ σmax{p,l}
0 )

and any initial input sequence u−j ∈ Rm+ (j ∈ σ
max{q,v}
1 ), there exist an input

sequence ui ∈ Rm+ , i ∈ σN−1
0 , which steers the output of the system from x−j to

yd, i.e., yN−1 = yd. We say that system (2.2) is output reachable in N steps (null
output controllable in N steps) if it is output controllable in N steps from zero
initial conditions (if it is output controllable in N steps to zero final output).

Definition 3.2. System (2.2) is said to be output controllable if, for any desired

final output yd ∈ Rr+, any initial state sequence x−j ∈ Rn+ (j ∈ σmax{p,l}
0 ) and any

initial input sequence u−j ∈ Rm+ (j ∈ σmax{q,v}
1 ), there exist a positive integer N

and an input sequence ui ∈ Rm+ , i ∈ σN−1
0 such that the output of the system is

driven from x−j to yd, i.e., yN−1 = yd. We say that system (2.2) is output reachable
(null output controllable) if it is output controllable from zero initial conditions (if
it is output controllable to zero final output).

Clearly, if a system is output controllable then it is output reachable and null
output controllable. The aim of this section is to establish a sufficient condition for
the output controllability of system (2.2).

Similarly to the case of classical discrete system with delays (see [3]), we use the
Z-transform method to show that the general formula of the state of system (2.2)
has the form

xi = Gix0 +
p∑
j=1

p−j+1∑
k=1

Gi−kAk−1+jx−j +
q∑
j=1

q−j+1∑
k=1

Gi−kBk−1+ju−j

+
i−1∑
j=0

q∑
k=0

Gi−1−j−kBkuj , i ∈ N,
(3.1)

where the transition matrix Gi ∈ Rn×n (i ∈ N) is determined by the recurrence
relation

Gi =


In for i = 0,

A0Gi−1 +
p∑
k=1

AkGi−1−k +
i−1∑
k=1

Āk+1Gi−1−k for i ∈ N+,
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with the assumption
Gi = 0 for i < 0.

For any integer i, we put H0
i = Gi and, for all i ∈ N+, we pose

Hj
i =

p−j+1∑
k=1

H0
i−kAk−1+j , j ∈ σp1 ,

Lji =
q−j+1∑
k=1

H0
i−kBk−1+j , j ∈ σq1,

(3.2)

with Hj
i = 0 (j ∈ σp1) and Lji = 0 (j ∈ σq1) for i ≤ 0.

Remark 3.1. For all i ∈ N, we haveHj
i+1 = Hj+1

i +H0
i Aj , j ∈ σp−1

1 ,

Hp
i+1 = H0

i Ap,

and Lji+1 = Lj+1
i +H0

i Bj , j ∈ σq−1
1 ,

Lqi+1 = H0
i Bq.

Moreover, for i ∈ N, we put

Ki =

q∑
k=0

H0
i−kBk, (3.3)

with Ki = 0 for i < 0.
Clearly by (3.2) and (3.2), the solution (3.1) is given by the following new formula

xi = H0
i x0 +

p∑
j=1

Hj
i x−j +

q∑
j=1

Ljiu−j +

i−1∑
j=0

Ki−1−juj , i ∈ N.

In the remainder of this section, and without loss of generality, we assume that
p ≥ l, q ≥ v and l = v. Indeed, for example, if l > p we can set Aj = 0 for j ∈ σlp+1.

Now, we introduce a matrices sequence as follows

Hji =
l∑

k=0

CkH
j
i−k, j ∈ σp0 , i ∈ N,

H̃ji = Hji + Ci+j , j ∈ σl−i1 , i ∈ σl−1
0 ,

Lji =
l∑

k=0

CkL
j
i−k, j ∈ σq1, i ∈ N,

L̃ji = Lji +Di+j , j ∈ σl−i1 , i ∈ σl−1
0 ,

Ki =
l∑

k=0

CkKi−k, i ∈ N,

K̃i = Ki +Di+1, i ∈ σl−1
0 .

For 0 ≤ i < l, we have

yi =

i∑
k=0

Ckxi−k +

l∑
k=i+1

Ckxi−k +

i∑
k=0

Dkui−k +

l∑
k=i+1

Dkui−k
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=

i∑
k=0

CkH
0
i−kx0 +

i∑
k=0

Ck

p∑
j=1

Hj
i−kx−j +

i∑
k=0

Ck

q∑
j=1

Lji−ku−j +

l∑
k=i+1

Ckxi−k

+

l∑
k=i+1

Dkui−k +

i∑
k=0

Ck

i−k−1∑
j=0

Ki−k−1−juj +

i∑
k=0

Dkui−k

=

l∑
k=0

CkH
0
i−kx0 +

l∑
k=0

Ck

p∑
j=1

Hj
i−kx−j +

l∑
k=0

Ck

q∑
j=1

Lji−ku−j +

l∑
k=i+1

Ckxi−k

+

l∑
k=i+1

Dkui−k +

i−1∑
k=0

Ck

i−k−1∑
j=0

Ki−k−1−juj +

i∑
k=0

Dkui−k

=

(
l∑

k=0

CkH
0
i−k

)
x0 +

p∑
j=1

(
l∑

k=0

CkH
j
i−k

)
x−j +

q∑
j=1

(
l∑

k=0

CkL
j
i−k

)
u−j

+
l∑

j=i+1

Cjxi−j+

l∑
j=i+1

Djui−j +

i−1∑
j=0

(
i−j−1∑
k=0

CkKi−j−1−k

)
uj+

i−1∑
j=0

Di−juj+D0ui

= H0
i x0 +

p∑
j=1

Hjix−j +

q∑
j=1

Ljiu−j +

l−i∑
j=1

Ci+jx−j +

l−i∑
j=1

Di+ju−j

+

i−1∑
j=0

(Ki−j−1 +Di−j)uj +D0ui

= H0
i x0 +

l−i∑
j=1

(Hji + Ci+j)x−j +

p∑
j=l−i+1

Hjix−j +

l−i∑
j=1

(Lji +Di+j)u−j

+

q∑
j=l−i+1

Ljiu−j +

i−1∑
j=0

K̃i−j−1uj +D0ui

= H0
i x0 +

l−i∑
j=1

H̃jix−j +

p∑
j=l−i+1

Hjix−j +

l−i∑
j=1

L̃jiu−j +

q∑
j=l−i+1

Ljiu−j

+

i−1∑
j=0

K̃i−j−1uj +D0ui.

Hence

yi = Qi+1x̃0 +Ri+1u
i+1
0 , (3.4)

with

Qi+1 =
[
Mi+1 Oi+1

]
∈ Rr×(n(p+1)+mq)

+ ,

where

Mi+1 =
[
H0
i H̃1

i · · · H̃
l−i
i Hl−i+1

i · · · Hpi
]
∈ Rr×n(p+1)

+ ,

and

Oi+1 =
[
L̃1
i · · · L̃

l−i
i Ll−i+1

i · · · Lqi
]
∈ Rr×mq+ ,
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x̃0 =



x0

x−1

...

x−p

u−1

...

u−q



∈ Rn(p+1)+mq
+ ,

Ri+1 =
[
D0 K̃0 K̃1 · · · K̃i−2 K̃i−1

]
∈ Rr×(i+1)m

+ ,

and

ui+1
0 =



ui

ui−1

...

u0


∈ R(i+1)m

+ .

For i ≥ l, we have

yi =

l∑
k=0

CkH
0
i−kx0 +

l∑
k=0

Ck

p∑
j=1

Hj
i−kx−j +

l∑
k=0

Ck

q∑
j=1

Lji−ku−j

+

l∑
k=0

Ck

i−k−1∑
j=0

Ki−k−1−juj +

l∑
k=0

Dkui−k

=

(
l∑

k=0

CkH
0
i−k

)
x0 +

p∑
j=1

(
l∑

k=0

CkH
j
i−k

)
x−j +

q∑
j=1

(
l∑

k=0

CkL
j
i−k

)
u−j

+

i−l−1∑
j=0

(
l∑

k=0

CkKi−j−1−k

)
uj +

i−1∑
j=i−l

(
i−j−1∑
k=0

CkKi−j−1−k

)
uj +

l∑
j=0

Djui−j

=

(
l∑

k=0

CkH
0
i−k

)
x0 +

p∑
j=1

(
l∑

k=0

CkH
j
i−k

)
x−j +

q∑
j=1

(
l∑

k=0

CkL
j
i−k

)
u−j

+

i−1∑
j=0

(
l∑

k=0

CkKi−j−1−k

)
uj +

l∑
j=0

Djui−j

= H0
i x0 +

p∑
j=1

Hjix−j +

q∑
j=1

Ljiu−j +

i−1∑
j=0

Ki−j−1uj +

l∑
j=0

Djui−j

= H0
i x0+

p∑
j=1

Hjix−j+
q∑
j=1

Ljiu−j+
i−l−1∑
j=0

Ki−j−1uj+

i−1∑
j=i−l

(Ki−j−1+Di−j)uj+D0ui

= H0
i x0 +

p∑
j=1

Hjix−j +

p∑
j=1

Ljiu−j +

i−l−1∑
j=0

Ki−j−1uj +

i−1∑
j=i−l

K̃i−j−1uj +D0ui.
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Then, we get

yi = Qi+1x̃0 +Ri+1u
i+1
0 , (3.5)

with

Qi+1 =
[
H0
i H1

i · · · H
p
i L1

i · · · L
q
i

]
∈ Rr×(n(p+1)+mq)

+ ,

and

Ri+1 =
[
D0 K̃0 · · · K̃l−1 Kl · · · Ki−2 Ki−1

]
∈ Rr×(i+1)m

+ .

A column with exactly one of its components is positive and all the others
are zero is called monomial or i-monomial if the positive component is in the ith
position. A monomial matrix consists of linearly independent monomial columns.

Lemma 3.1 ( [13]). Let A ∈ Rn×n+ . Then A−1 exists and is nonnegative if and
only if A is a monomial matrix. Furthermore, A−1 is equal to the transpose matrix
AT in which every nonzero element is replaced by its inverse.

Then, a necessary and sufficient condition for the output reachability of system
(2.2) is given by

Theorem 3.1. The system (2.2) is output reachable if and only if for some N ∈
N+, the output reachability matrix RN contains a r × r monomial submatrix (so
r ≤ Nm).

Proof. (Sufficiency) Let yd ∈ Rr+ be the desired output to be reached. From (3.4)
or (3.5), we have

yN−1 = QN x̃0 +RNuN0 .

With x̃0 = 0, this gives

yN−1 = RNuN0 .

The matrix RN includes a r × r monomial submatrix, and without loss of gen-
erality, we can assume that

RN =
[
R1 R2

]
such that R1 ∈ Rr×r+ is a monomial matrix and R2 ∈ Rr×(Nm−r)

+ . Hence by Lemma

3.1, we have R−1
1 ∈ Rr×r+ . Thus for

uN0 =

R−1
1 yd

0

 ∈ RNm+ ,

we get

yN−1 =
[
R1 R2

]R−1
1 yd

0

 = yd,

i.e., the system (2.2) is output reachable.
(Necessity) If the system (2.2) is output reachable, then, in particular for yd = ek

with ek being the kth column of Ir, there exists Nk ∈ N+ and an input uNk
0 ∈ RNkm

+

such that

ek = RNk
uNk

0 ,
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with RNk
= (rij)i∈σr

1 ,j∈σ
Nkm

1

and uNk
0 = (µj)j∈σNkm

1

. Hence

Nkm∑
j=1

rkjµj = 1, (3.6)

and for i ∈ σr1 with i 6= k, we have

Nkm∑
j=1

rijµj = 0. (3.7)

So by (3.6), there exists s ∈ σNkm
1 such that µs 6= 0, and consequently by the

equation (3.7) we have ris = 0 for all i ∈ σr1 with i 6= k. Hence, if rks 6= 0, then the
sth column of RNk

is monomial. If rks = 0, then the sth column of RNk
is null,

which implies that 
Nkm∑
j=1

rkjµj = 1, j 6= s,

Nkm∑
j=1

rijµj = 0, i ∈ σr1 with i 6= k.

The same reasoning gives the existence of a k-monomial column or another null
column of RNk

. Since the columns of RNk
are not all null, then RNk

has at least
one k-monomial column. Let N = max

k∈σr
1

Nk. Since every column vector of RNk
is

also a column vector of RN , then RN contains a r × r monomial submatrix. The
theorem is proved.

Corollary 3.1. System (2.2) is output reachable in N steps if and only if the output
reachability matrix RN includes a monomial submatrix of order r × r (r ≤ Nm).

Proof. It follows directly from the proof of Theorem 3.1.

Definition 3.3. If the system (2.2) is output reachable, then the minimum positive
integer N such that RN contains a r × r monomial submatrix is said the output
reachability index.

Example 3.1. Suppose that we are given the fractional system
∆Υxi+1 =

p∑
j=0

Ajxi−j +
q∑
j=0

Bjui−j ,

yi =
l∑

j=0

Cjxi−j +
v∑
j=0

Djui−j , i ∈ N,

with p = q = l = v = 2 and the matrices

A0 =


−0.5 0 0

0 −0.4 0

1 0 0.3

 , A1 =


0 0 0

0 1 0

0 1 0

 , A2 =


1 0 1

0 0 0

1 0.8 0

 ,
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B0 =


0

1

0

 , B1 =


1

0

0

 , B2 =


0

0

1

 ,

C0 =

0 0 0

0 0 0.3

 , C1 =

1 0 0

0 0.7 0.2

 , C2 =

 0 0 1

0.5 0 0

 ,

D0 =

1

0

 , D1 =

0.5

1

 , D2 =

 1

0.3

 .
If α1 = 0.5, α2 = 0.4, α3 = 0.7, then for N = 5 we obtain the output reachability

matrix

R5 =
[
D0 K̃0 K̃1 K2 K3

]
=

1 0.5 1 1 0

0 1 1 0.9 1.14

 .
The matrix R5 includes a monomial submatrix. Therefore, by Theorem 3.1, the

system is output reachable, with 5 is the output reachability index.
Now, if we choose α1 = 0.8, α2 = 0.7, α3 = 0.7, then we obtain the following

output reachability matrix

R5 =

1 0.5 1 1 0.3

0 1 1 1.18 3.339

 .
Hence the system is not output reachable in 5 steps.

Remark 3.2. System (2.2) is output reachable if for some N ∈ N+, the matrix
RN has full row rank, i.e., rankRN = r and

RTN (RNRTN )−1 ∈ RNm×r+ . (3.8)

The nonnegative input sequence ui ∈ Rm+ , i ∈ σN−1
0 which steers the output of the

system from x−j = 0, j ∈ σp0 , to any desired output yd ∈ Rr+, with u−j = 0 for
j ∈ σq1, can be computed by the formula

uN0 = RTN (RNRTN )−1yd. (3.9)

Indeed, if rankRN = r then the matrix RNRTN is invertible and, if (3.8) holds
and yd ∈ Rr+, then uN0 ∈ RNm+ with

yN−1 = RNuN0 = RNRTN (RNRTN )−1yd = yd.

Now, a characterization of the null output controllability of system (2.2) is given
by the following theorem.
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Theorem 3.2. The system (2.2) is null output controllable if and only if for some
N ∈ N+, the null output controllability matrix QN is null.

Proof. (Sufficiency) From (3.4) or (3.5), at the step i = N − 1, we have

yN−1 = QN x̃0 +RNuN0 ,

since QN = 0, then for uN0 = 0, we have yN−1 = 0, i.e., the system (2.2) is null
output controllable.

(Necessity) If the system (2.2) is null output controllable, then, in particular for

x̃0 = (1, 1, . . . , 1)T ∈ Rn(p+1) +mq
+ , there exists N ∈ N+ and an input uN0 ∈ RNm+

such that
QN x̃0 +RNuN0 = 0,

with QN = (qij)i∈σr
1 ,j∈σ

n(p+1)+mq
1

, RN = (rij)i∈σr
1 ,j∈σNm

1
and uN0 = (µj)j∈σNm

1
.

Thus
n(p+1) +mq∑

j=1

qij = −
Nm∑
j=1

rijµj . But rijµj ≥ 0, implies that
n(p+1) +mq∑

j=1

qij ≤ 0.

Hence qij = 0 for i ∈ σr1, j ∈ σ
n(p+1)+mq
1 , which finishes the proof.

Corollary 3.2. System (2.2) is null output controllable in N steps if and only if
the null output controllability matrix QN is null.

Proof. It follows directly from the proof of Theorem 3.2.

Lemma 3.2. For all i ≥ 2, the diagonal elements of H0
i are nonzero.

Proof. For all i ≥ 2, we have

H0
i = A0H

0
i−1 +

p∑
k=1

AkH
0
i−1−k +

i−2∑
k=1

Āk+1H
0
i−1−k + Āi,

with Āi = (−1)
1+i

Υi whose diagonal elements are nonzero.

Example 3.2. Consider the fractional system
∆Υxi+1 =

p∑
j=0

Ajxi−j +
q∑
j=0

Bjui−j ,

yi =
l∑

j=0

Cjxi−j +
v∑
j=0

Djui−j , i ∈ N,

with p = l = v = 1, q = 2 and the matrices

A0 =


−0.3 0 0

0 −0.3 0

1 0.5 −0.6

 , A1 =


0 0 0

0 0 1

1 0 0.4

 ,

B0 =


1

1

0

 , B1 =


0

1

0

 , B2 =


0

1

1

 ,
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C0 = 0, C1 =

 1 0 0

0.5 0 0

 , D0 =

 0

0.7

 , D1 =

1

0

 .
We first choose α1 = 0.3, α2 = 0.3, α3 = 0.6, then the system is null output

controllable because the null output controllability matrix in tree steps

Q3 =
[
H0

2 H1
2 L1

2 L2
2

]
is null.

Now, we choose α1 = 0.6, α2 = 0.5, α3 = 0.7, then H0
2 6= 0, and hence Q3 6= 0.

On the other hand, according to Lemma 3.2, the diagonal elements of H0
N−2 are

nonzero for all N ≥ 4, and since C1 6= 0, then H0
N−1 = C1H

0
N−2 6= 0, thus QN 6= 0,

which implies that system is not null output controllable.

Remark 3.3. The system considered in the above example is null output control-
lable in tree steps for α1 = α2 = 0.3, α3 = 0.6 but it is not in N ≥ 4 steps because
QN 6= 0. On the contrary, in the case of traditional discrete positive linear systems,
if the system is null output controllable in N steps then it is null output controllable
in every step Ñ ≥ N [32].

In the rest of this section, we assume that the matrices Cj (j ∈ σl0) are not all
null.

Lemma 3.3. If system (2.2) is null output controllable in N steps, then QK 6= 0
for all K > N.

Proof. The system (2.2) is null output controllable in N steps, then QN = 0. If
N ≤ l, we have

H̃jN−1 = HjN−1 + CN−1+j = 0 for j ∈ σl−N+1
1 ,

which implies that Cj = 0 for j ∈ σlN . On the other hand, we have

H0
N−1 =

N−1∑
j=0

CjH
0
N−1−j = CN−1 + CN−2H

0
1 + CN−3H

0
2 + · · ·+ C0H

0
N−1 = 0,

since the diagonal elements of H0
i are nonzero for all i ≥ 2, then Cj = 0 for j ∈ σN−1

0

with j 6= N − 2 which ensures that CN−2 6= 0. Thus H0
N−1+k = CN−2H

0
k+1 6= 0 for

all k ≥ 1, then QN+k 6= 0 for all k ≥ 1. Similarly, we prove that QK 6= 0 for all
K > N if N ≥ 1 + l.

Definition 3.4. If system (2.2) is null output controllable, then the positive integer
N such that QN = 0 is said the null output controllability index.

Theorem 3.3. The system (2.2) is output controllable if it is output reachable and
null output controllable with the null output controllability index is equal or greater
than the output reachability index.

Proof. Since the system (2.2) is output reachable, then according to Theorem
3.1, RN1

includes a monomial submatrix of order r × r, with N1 is the output
reachability index. On the other hand, the system (2.2) is null output controllable,
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hence according to Theorem 3.2, QN2
= 0, with N2 is the null output controllability

index. Then the matrix

RN2
=
[
RN1

R̃
]
,

contains a monomial submatrix of order r × r, with R̃ ∈Rr×(N2−N1)m
+ . Hence, by

proof of Theorem 3.1, for any yd ∈ Rr+, there exists a nonnegative input uN2
0 ∈ RN2m

+

such that
yd = RN2

uN2
0 .

And since QN2 = 0, then for any x̃0 ∈ Rn(p+1)+mq
+ , we get that

yN2−1 = QN2 x̃0 +RN2u
N2
0 = yd,

i.e., the system (2.2) is output controllable.

Example 3.3. The system in Example 3.2 is output reachable for α1 = α2 = 0.3,
α3 = 0.6, with 2 is the output reachability index since

R2 =
[
D0 K̃0

]
=

 0 1

0.7 0


is monomial and null output controllable with 3 is the null output controllability
index, so by Theorem 3.3, the system is output controllable.

4. Optimal output control

The optimal output control problem, considered in this section, consists of clarifying
the conditions for the existence of an optimal control u∗ ∈ RNm+ which will solve
the problem

P : min
u∈U+

J (u)

where U+ is the set of nonnegative controls which steer the output of system (2.2)
from zero initial conditions (2.3) to a desired final output yd ∈ Rr+ in N steps and
the objective functional J is defined by

J : U+ → R+

u = (ui)i∈σN−1
0
7→

N−1∑
i=0

uTi Pui
(4.1)

P ∈ Rm×m is a symmetric positive definite matrix.
To solve the problem we define the matrix

M = RNP−1
N R

T
N ∈ Rr×r,

with

PN = diag

P P · · · P︸ ︷︷ ︸


N-times

∈ RNm×Nm.
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Remark 4.1. If rankRN = r, i.e., a necessary condition of output reachability in
N steps of system (2.2), then the matrix M is invertible.

Now, we prove the following result.

Theorem 4.1. If system (2.2) is output reachable in N steps and

u∗ := P−1
N R

T
NM−1yd ∈ RNm+ , (4.2)

then u∗ is the solution of the problem P, where yd ∈ Rr+ is the desired output.

Proof. We have

yN−1 (u∗) = RNu∗ = RNP−1
N R

T
NM−1yd =MM−1yd = yd,

where yN−1 (u∗) is the output of system (2.2) corresponding to the control u∗ with
the initial conditions (2.3) equal to zero.

If u ∈ U+, then we have

yN−1 (u) = yN−1 (u∗) ,

thus
RN (u− u∗) = 0,

which implies
(u− u∗)TRTN = 0.

Hence, by (4.2), we have

(u− u∗)TPNu∗ = (u− u∗)TRTNM−1yd = 0. (4.3)

On the other hand, we have

(u− u∗)TPN (u− u∗) = (u− u∗)TPNu− (u− u∗)TPNu∗

= (u− u∗)TPNu = uTPNu− u∗TPNu.

According to (4.3), we obtain

u∗TPNu
∗ = uTPNu

∗ = u∗TPNu,

then
(u− u∗)TPN (u− u∗) = J (u)− J (u∗) ≥ 0,

which ends the proof.

Remark 4.2. Using (4.2) we establish that

J (u∗) = u∗TPNu
∗

= yTd (M−1)TRN (P−1
N )TPNP

−1
N R

T
NM−1yd

= yTd (M−1)TRN (P−1
N )TRTNM−1yd

= yTdM−1RNP−1
N R

T
NM−1yd

= yTdM−1MM−1yd

= yTdM−1yd.
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Remark 4.3. If system (2.2) is output reachable in N steps and

P−1
N R

T
NM−1 ∈ RNm×r+ ,

then the optimal output control u∗ which steers the output of the system from zero
initial conditions (2.3) to any desired output yd ∈ Rr+ is given by

u∗ = P−1
N R

T
NM−1yd.

Remark 4.4. If P = Im and (3.8) holds, then the nonnegative input uN0 computed
from (3.9) is an optimal output control with

J
(
uN0
)

=

N−1∑
i=0

uTi ui = yTd (RNRTN )−1yd.

Example 4.1. Suppose that we are given the fractional system
∆Υxi+1 =

p∑
j=0

Ajxi−j +
q∑
j=0

Bjui−j ,

yi =
l∑

j=0

Cjxi−j +
v∑
j=0

Djui−j , i ∈ N,

with p = q = l = v = 2 and the matrices

A0 =


−0.2 0 0

0 −0.5 0

0 0 0.4

 , A1 =


0.5 0 0

1 1 0

0 0 0

 , A2 =


1 0 0

0 1 1

0 0 0.5

 ,

B0 =


1 0

0 0

0 0

 , B1 =


0 0

0 1

0 0

 , B2 =


0 0

0 0

1 0

 ,

C0 =

0 0 1

0 0 0

 , C1 =

 0 1 0

0 0 1

 , C2 =

0 0 1

0 1 1

 ,

D0 = 0, D1 =

0 0

0 0.5

 , D2 =

 0 0

0.5 1

 .
In this example, for every 0<αi<1, i∈σ3

1 , such that A0 =A0+diag
[
α1 α2 α3

]
∈

R3×3
+ , we obtain the output reachability matrix in four steps

R4 =
[
D0 K̃0 K̃1 K2

]
=

0 0 0 0 0 0 1 1

0 0 0 0.5 0.5 1 0 0

 .
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The matrix R4 includes a monomial submatrix. Then the system is output
reachable in four steps.

Now, we shall find the optimal control u∗ that transfers the output of the system

from zero initial conditions to the final desired output yd =
[

1 1
]T

in four steps

and minimizes the functional (4.1) with

P =

 1 −1

−1 2

 .

We have P−1 =

 2 1

1 1

 and M = R4P
−1
4 RT4 =

5 0

0 2.75

. Consequently

P−1
4 RT4M−1 =

0 0 0 0 0 0 0.6 0.4

0 0 2
11

2
11

8
11

6
11 0 0

T ∈ R8×2
+ .

Hence the optimal control sequence has the form

u∗ =


u∗0

u∗1

u∗2

u∗3

 = P−1
4 RT4M−1yd,

with

u∗0 =

 0

0

 , u∗1 =

 2
11

2
11

 , u∗2 =

 8
11

6
11

 , u∗3 =

0.6

0.4

 ,
and

J(u∗) = 0.53.

5. Conclusion

The output controllability and optimal output control for fractional order positive
discrete linear systems with delays in state, input and output has been formulated
and solved. Necessary and sufficient conditions for the positivity have been estab-
lished (Theorem 2.1). Criteria for the output reachability (Theorem 3.1) and null
output controllability (Theorem 3.2) have been proved. Sufficient conditions for the
output controllability have been established and proved (Theorem 3.3). Solution to
the optimal output control problem has been given (Theorem 4.1). We verified the
theoretical results stated in this paper with numerical examples.

We think that the techniques used in this paper can be useful to investigate the
output controllability and optimal output control problems for different positive
dynamical systems such as switched systems, fractional switched systems, stochastic
systems, etc.
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