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Abstract We establish a closing property for thin trapped (see Definition
1.2) homoclinic classes. Taking advantage of this property, we prove that if a
homoclinic class H(f, p) admits a dominated splitting TH(f,p)M = E ⊕< F ,
where the subbundle E is thin trapped with dimE =Ind(p) and all periodic
points homoclinically related to p are uniformly F -expanding at the period
(see Definition 1.1), then the subbundle F is uniformly expanding.

Keywords Homoclinic classes, dominated splitting, thin trapped, periodic
points, uniformly expanding.

MSC(2010) 37D20, 37D30, 37C29.

1. Introduction

In dynamical systems, a basic research method is to split the tangent bundle of
some invariant sets into invariant subbundle, such as dominated splitting, hyperbolic
splitting and Oseledec splitting (see [15, 17]). People often hope to prove uniform
hyperbolicity of a subbundle under dominated splitting. In our paper, uniform
hyperbolicity of a subbundle on a homoclinic class can be obtained under weak
conditions. Let f be a diffeomorphism on a compact manifold M with metric d.
A point is called hyperbolic periodic point, if there exists a hyperbolic splitting on
its periodic orbit. Given a hyperbolic periodic point p, denoted by W s(Orb(f, p)),
Wu(Orb(f, p)) the stable and unstable manifolds of the orbit of p, respectively. A
hyperbolic periodic point q is said to be homoclinically related to p, denoted by
p ∼ q, if

W s(Orb(f, p)) tWu(Orb(f, q)) 6= ∅, W s(Orb(f, q)) tWu(Orb(f, p)) 6= ∅.

The homoclinic class of a hyperbolic periodic point p is defined as

H(f, p) , {q : q ∈ P (f), q ∼ p},

where P (f) denotes the set of all hyperbolic periodic points of f .
Homoclinic classes were introduced by Newhouse in [18] as a generalization

of the basic sets in Smale Decomposition Theorem (see [22, Theorem 6.2]). For
Axiom A diffeomorphisms, homoclinic classes are exactly the hyperbolic basic sets in
Smale Decomposition Theorem. For generic C1 diffeomorphisms, Carballo, Morales
and Pacifico [3, Theorem A] proved that homoclinic classes are maximal transitive
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sets and pairwise disjoint. In general case, Dı́az and Santoro [8, Theorem A] gave
a example that distinct homoclinic classes may intersect each other. Therefore,
homoclinic classes may fail to cover the entire closure of the set of periodic points.
In general, the hyperbolicity of periodic points contained in a compact invariant set
is not enough to get that of the invariant set. For example, Kupka-Smale Theorem
[19, pp.91] affirms that every periodic orbit of Cr-generic (r ≥ 1) diffeomorphisms
is hyperbolic and that the stable and unstable manifolds of those periodic orbits
are pairwise transverse. It means that homoclinic class is usually not hyperbolic
although it contains many hyperbolic invariant sets: H(f, p) can be accumulated
by uniformly hyperbolic horseshoes (finite union of periodic orbits homoclinically
related to p).

Given a compact invariant set Λ, for a hyperbolic splitting TΛM = E⊕< F , the
subbundle E is uniformly contracting on Λ, the subbundle F is uniformly expanding
on Λ. For a hyperbolic periodic point p, the index Ind(p) is defined as the dimension
of the stable manifolds W s(Orb(f, p)) of the orbit of p.

Definition 1.1. Let H , {qn}n∈N be a sequence of hyperbolic periodic points of
a diffeomorphism f . For the dominated splitting THM = E ⊕< F , f is uniformly
F -expanding at the period on H if there are two constants C > 0, λ ∈ (0, 1) such
that for any qn ∈ H, one has that

π(qn)∏
j=1

∥∥∥Df−1 |Ffj(qn)

∥∥∥ ≤ Cλπ(qn),

where π(qn) is the period of the periodic point qn. The subbundle F is said to be
uniformly λ-expanding at the period on H.

For a dominated splitting TΛM = E ⊕< F , a plaque family tangent to the
subbundle E is a family of continuous maps W from the linear subbundle E to M
satisfying that:

(i) for each x ∈ Λ, the map Wx : Ex → M is a C1-embedding that satisfies
Wx(0) = x and whose image is tangent to Ex at x;

(ii) (Wx)x∈Λ is a continuous family of C1-embeddings.

Let W(x) be the image of embedding Wx. Fix ε > 0, denoted by Wε(x) the image
which is centered at x with size 2ε. A plaque family W is locally invariant, if
there is δ > 0 such that for every x ∈ Λ, one has that f ◦ Wx(B(0, δ)) ⊆ W(fx),
where B(0, δ) ⊆ Ex stands for the ball centered at 0 with radius δ. Plaque Family
Theorem [12, Theorem 5.5] shows that there always exists a locally invariant plaque
family tangent to E. A plaque family is called trapped, if for every x ∈ Λ, one has
that

f(W(x)) ⊆ W(fx).

The notion thin trapped was introduced by Crovisier in [4] and [5]. In the research
about C1 diffeomorphisms far away from tangencies and heterodimensional cycles,
Crovisier and Pujals [6, Section 3] studied the properties of thin trapped subbundles
(also see [23, Introduction]).

Definition 1.2. Assume that Λ is a compact invariant set which admits a dominat-
ed splitting TΛM = E⊕<F , the subbundle E is thin trapped if for any neighborhood
U of the section 0 in E, there is
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(i) a continuous family {ϕx}x∈Λ of C1-diffeomorphisms of the spaces {Ex}x∈Λ

supported in U ;

(ii) a constant δ > 0 such that f(Wx ◦ ϕx(B(0, δ))) ⊆ Wfx ◦ ϕfx(B(0, δ)) for any
x ∈ Λ.

Bonatti, Gan and Yang [2, Main Theorem] gave a sufficient criterion for the
hyperbolicity of a homoclinic class. They proved that if a homoclinic class H(f, p)
admits a partially hyperbolic splitting TH(f,p)M = E⊕<F , where the subbundle E
is uniformly contracting with dimE = Ind(p) and all periodic points homoclinically
related to p are uniformly F -expanding at the period, then H(f, p) is a hyperbolic
set. They also raised a question: Can we obtain the hyperbolicity of an invariant
compact set by using the hyperbolicity of those periodic orbits in the set? In
our paper, we consider a weak topological condition that the subbundle E is thin
trapped. Then, we get some “hyperbolicity”of H(f, p). The obvious difference is
that one can not get any differential nature in thin trapped of subbundles E. Now,
we introduce our main result.

Main Theorem. Let f be a diffeomorphism on a compact Riemannian manifold
M , p be a hyperbolic periodic point. Assume that H(f, p) admits a dominated
splitting TH(f,p)M = E⊕<F and the subbundle E is thin trapped with dimE = Ind
(p). If f is uniformly F -expanding at the period on all periodic points homoclinically
related to p, then the subbundle F is uniformly expanding on H(f, p).

The weak periodic points mean that they have a Lyapunov exponent arbitrarily
close to zero. Crovisier, Sambarino and Yang [7, Theorem 1.1 and Corollary 1.4]
proved that there exist weak periodic points in some homoclinic classes of generic
diffeomorphisms far from homoclinic tangencies. This Main Theorem also gives a
criterion for getting weak periodic points in some special homoclinic classes.

Theorem 1.1. Let p be a hyperbolic periodic point of a diffeomorphism f on a
compact Riemannian manifold M . If the homoclinic class H(f, p) satisfies that:

• the homoclinic class H(f, p) admits a partially hyperbolic splitting TH(f,p)M =
Es ⊕ Ec ⊕ Eu with that the subbundle Es is thin trapped, the subbundle Eu is
uniformly expanding and dimEc = 1;

• dimEs =Ind (p) and H(f, p) is not hyperbolic.

then for every ε > 0, one can find a periodic point q homoclinically related to p such
that

1

π(q)
log
(∥∥∥Dfπ(q)|Ec

q

∥∥∥) ≤ ε.
In Main Theorem, we do not perturb diffeomorphism f and assume any robust

property. Therefore, Liao’s selecting lemma [14] and Mañé’s ergodic closing lemma
[16] do not imply directly Main Theorem. Compare with the work of Bonatti, Gan
and Yang [2], that the subbundle E is thin trapped is weaker than that subbundle
E is uniformly contracting.

To prove Main Theorem, we should consider the question: how to establish the
relations between non-periodic points in the compact set and periodic points? The
Anosov Closing Lemma [13, pp.269, Theorem 6.4.15] implies that for any point
in a hyperbolic set whose orbit nearly returns to itself, there is a periodic orbit
closely shadowing this nearly-returning orbit. Gan [10, Theorem 1.1] showed that
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any quasi-hyperbolic pseudoorbit with recurrence can be shadowed by a periodic
orbit. But in our assumptions, the homoclinic class is not a hyperbolic set and
since subbundles E is thin trapped, we can not get the quasi-hyperbolic pseudoorbit
with respect to the dominated splitting on the homoclinic class. Even though the
recurrent orbits (non-periodic) can be shadowed by periodic orbits, we also need to
consider that: how to extend the property of periodic orbits to other non-periodic
orbits. Our paper is organized as follows. In Scetion 2, we introduce “hyperbolic
time”and find infinite periodic points with large period. In Scetion 3, for a thin
trapped homoclinic class, we find a dense subset which has long stable and unstable
manifolds. We establish a closing property for a thin trapped homoclinic class in
Scetion 4. The proof of Main Theorem and Theorem 1.1 is finished in Scetion 5.

2. Hyperbolic time

Let Λ be a compact invariant set with a dominated splitting TΛM = E ⊕< F .
By [1, pp.289, Appendix B], one can fix an admissible compact neighborhood U of
Λ such that the dominated spliting E⊕< F can be extended in a unique way to the
maximal invariant set M(f, U) ,

⋂
i∈Z f

iU ⊆ U . For every x ∈M and n ∈ N+, an
orbit segment (x, n) is defined as:

(x, n) , {x, f(x), · · · , fn−1(x)}.

Definition 2.1. Given λ ∈ (0, 1) and n ∈ N+, for x ∈ M(f, U), an orbit segment
(x, n) is a uniform λ-string, if

n∏
j=k+1

∥∥∥Df−1|Ffj(x)

∥∥∥ ≤ λn−k, for k = 0, 1, · · · , n− 1.

This n is called λ-hyperbolic time of x.

Denoted by HT (x, λ) the set of all λ-hyperbolic times of x and the n-th λ-
hyperbolic time of x is denoted by φn(x, λ). For a periodic point p, denoted by
Γ1(p, λ) the largest λ-hyperbolic time which is less than period π(p) and the small-
est λ-hyperbolic time which is larger than the period π(p) is denoted by Γ2(p, λ).
Lemma 2.1, given by Pliss ( [21, The preceding Lemma of Theorem 4.1]), gives us
a tool to find many hyperbolic times.

Lemma 2.1 (Pliss Lemma [21]). Given constants A, C2 < C1 < 0 with A ≥ |C2|,
there is θ = θ(C1, C2) ∈ (0, 1) such that for any real numbers {aj}Nj=1 with that:

(i) |aj | ≤ A, for j = 1, 2, · · · , N ;

(ii)
N∑
j=1

aj ≤ NC2,

there is an integer l ≥ θN and a sequence of numbers 1 ≤ n1 < n2 < · · · < nl ≤ N
such that

ni∑
j=n+1

aj ≤ (ni − n)C1, for any 0 ≤ n < ni, i = 1, 2, · · · , l.
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Lemma 2.2. Fix two numbers µ < λ < 0, for any sequence of numbers {ai}∞i=1

with
∑m
i=1 ai ≤ mµ and ai+m = ai, for every i ∈ N and some integer m, there are

θ = θ(µ, λ) ∈ (0, 1) and N ∈ N such that for any k ≥ N , there exists an integer
l ≥ kθ and a sequence of numbers 1 ≤ n1 < n2 < · · · < nl ≤ k such that

nj∑
i=n+1

ai ≤ (ni − n)λ, for any 0 ≤ n < nj , j = 1, 2, · · · , l.

Proof. Since ai+m = ai, for i ∈ N and some integer m, one has that |ai| ≤ A, for
i ∈ N, where A , max{|a1|, |a2|, · · · , |am|}. Therefore,

r , max

{
a1, a1 + a2, · · · ,

m∑
i=1

ai

}
≤ mA < +∞.

For any k ∈ N, there are integers n, r0 such that k = nm+ r0, where 0 ≤ r0 < m.
Hence,

k∑
j=1

aj ≤ nmµ+ r.

Therefore,

lim sup
k→∞

1

k

k∑
i=1

ai ≤ lim sup
k→∞

nmµ

k
+ lim sup

k→∞

r

k
= µ.

Thus, for η =
µ+ λ

2
, there is N ∈ N such that

k∑
i=1

ai ≤ nη, for any k ≥ N . By

Lemma 2.1, there is 1 ≤ n1 < n2 < · · · < nl ≤ k with l ≥ kθ, such that

nj∑
i=n+1

ai ≤ (nj − n) λ, for any 0 ≤ n < nj , j = 1, 2, · · · , l.

Definition 2.2. Given λ ∈ (0, 1] and x ∈M(f, U), an orbit segment (x, n) is called
a λ-obstruction orbit segment, if

k∏
j=1

∥∥∥Df−1|Ffj(x)

∥∥∥ ≥ λk, for k = 1, · · · , n.

The point x is a λ-obstruction point, if (x, n) is a λ-obstruction orbit segment for
any n ∈ N+.

For two consecutive hyperbolic times, we can not give the estimation as the
obstruction orbit segment. The following content is a simple fact that can help us
deal with the obstruction orbit segment.

Lemma 2.3. For any r ∈ (0, 1) and ε > 0, there exists N0 = N0(r, ε) such that for
some n ≥ N0, if (x, n) is an r-obstruction orbit segment, then

d(x,Λ(r)) < ε,

where Λ(r) is the set of all r-obstruction point.
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Proof. Let ΛN (r) be the set of points such that the orbit segment (x,N) is an
r-obstruction orbit segment. Then Λ(r) =

⋂
N>0 ΛN (r). By Definition 2.2, one

has that ΛN (r) ⊃ ΛN+1(r). Therefore, this is a decreasing intersection of compact
sets. For any ε > 0, taking N0 = N0(r, ε) such that ΛN0(r) is contained in the
ε-neighborhood of Λ(r). Then, d(y,Λ(r)) < ε, for any y ∈ ΛN0

(r). Given n ≥ N0,
if (x, n) is an r-obstruction orbit segment, by Definition 2.2, then (x,N0) is an
r-obstruction orbit segment. Thus, x ∈ ΛN0

(r). Hence,

d(x,Λ(r)) < ε.

If there is an obstruction point in homoclinic class, then one can find a sequence
of periodic points {qn} such that the first hyperbolic time of {qn} tend to infinity.
The precise statament is as Lemma 2.4.

Lemma 2.4. Let H(f, p) be a homoclinic class which admits a dominated splitting
TH(f,p)M = E

⊕
< F , where the subbundle F is uniformly λ-expanding at the period

on the set of all periodic points homoclinically related to p. For r ∈ (λ, 1), if there
is an r-obstruction point b ∈ H(f, p), then there exists a sequence of periodic points
{qn : n ∈ N+} ⊂ H(f, p) homoclinically related to p, such that for any µ ∈ (λ, r),
one has that

lim
n→∞

qn = b, φ1(qn, µ)→∞ when n→∞.

Moreover, Γ2(qn, µ)− Γ1(qn, µ) tends to infinity as n tends to infinity.

Proof. Since b ∈ H(f, p), by the definition of Homoclinic class, there is a sequence
of periodic points {qn : n ∈ N+} ⊂ H(f, p) homoclinically related to p such that
lim
n→∞

qn = b. Since the subbundle F is uniformly λ-expanding at the period on the

set of all periodic points homoclinically related to p, by Definition 1.1, there is a
constant C > 0, such that

π(qn)∏
j=1

∥∥∥Df−1 |Ffj(qn)

∥∥∥ ≤ Cλπ(qn), for every n ∈ N+.

Let ai , log
(∥∥∥Df−1|Ffi(qn)

∥∥∥), one has that

lim sup
m→∞

1

m

m∑
i=1

ai ≤ log λ.

For any µ ∈ (λ, r), by Lemma 2.2, one deduces that qn has infinitely many µ-
hyperbolic times.

Now, we prove that φ1(qn, µ) → ∞ when n → ∞ by contradiction. Otherwise,
suppose that there exists a constant C1 > 0 such that φ1(qn, µ) ≤ C1, for all n.
Then there is a subsequence {qnk

} of {qn}, such that φ1(qnk
, µ) are constant for all

k, denoted by L. Hence, one has that

L∏
i=1

∥∥∥Df−1|Ffi(qnk
)

∥∥∥ ≤ µL, for all qnk
.
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By the continuous of Df−1, one concludes that

L∏
i=1

∥∥∥Df−1|Ffi(b)

∥∥∥ = lim
k→∞

L∏
i=1

∥∥∥Df−1|Ffi(qnk
)

∥∥∥ ≤ µL ≤ rL.
This means that b is not an r-obstraction point which contradicts our assumption.
Since

Γ2(qn, µ)− Γ1(qn, µ) ≥ Γ2(qn, µ)− π(qn) ≥ φ1(qn, µ),

one has that
Γ2(qn, µ)− Γ1(qn, µ)→∞, when n→∞.

3. Exponential properties in homoclinic class

In this section, our goals are to find many hyperbolic periodic points (homoclinically
related to p) with long stable and unstable manifolds. At the begining, we introduce
some properties of C1 diffeomorphisms.

Lemma 3.1. Let f be a C1 diffeomorphism on a compact manifold M . For any
x ∈M , if there are C = C(x) > 0 and µ1, λ1 ∈ (0, 1) with µ1 < λ1, such that

Cµn1 ≤
n−1∏
i=0

∥∥Dffix

∥∥ ≤ Cλn1 , for every n ∈ N+,

then for any µ2, λ2 ∈ (0, 1) with µ2 < µ1 < λ1 < λ2, there are C0 = C0(x),
r = r(µ1, µ2, λ1, λ2) such that

C0µ
n
2 ≤

n−1∏
i=0

∥∥Dffiy

∥∥ ≤ C0λ
n
2 , for every y ∈ B(x, r) and any n ∈ N+.

Proof. Since f is C1 diffeomorphism, for 0 < µ2 < µ1 < λ1 < λ2 < 1, there is
r1 > 0 such that

µ2

µ1
≤ ‖Dfỹ‖
‖Dfx̃‖

≤ λ2

λ1
, for any points x̃, ỹ with d(x̃, ỹ) ≤ r1.

Given x ∈M which satisfies that

Cµn1 ≤
n−1∏
i=0

∥∥Dffix

∥∥ ≤ Cλn1 , for every n ∈ N+.

For any y ∈ B(x, r1), by Mean Value Theorem, there exists ξ ∈ B(x, r1) such that

d(f(x), f(y)) ≤ ‖Dfξ‖ · d(x, y).

Since ξ ∈ B(x, r1), one has that

d(f(x), f(y)) ≤ λ2

λ1
‖Dfx‖ · d(x, y) ≤ Cλ2

λ1
λ1r1 = Cλ2r1.
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Claim. Taking r = min{r1, r1/C}, C0 = max{C, 1/C}, one has that

d(f j(x), f j(y)) ≤ r1, for every y ∈ B(x, r) and every j ∈ N+.

Proof. We prove the claim by induction. Assume that

d(f j(x), f j(y)) ≤ r1, for any y ∈ B(x, r) and every j = 1, 2, · · · ,m.

Then, for any y ∈ B(x, r), by Mean Value Theorem, there is η ∈ B(x, r) such that

d(fm+1(x), fm+1(y)) ≤ ‖Dfm+1
η ‖d(x, y) ≤ ‖Dffmη‖‖Dffm−1η‖ · · · ‖Dfη‖d(x, y)

≤
(
λ2

λ1
‖Dffmx‖

)
·
(
λ2

λ1
‖Dffm−1x‖

)
· · ·
(
λ2

λ1
‖Dfx‖

)
· d(x, y)

≤ λm+1
2

λm+1
1

m∏
i=0

∥∥Dffix

∥∥ r ≤ Cλm+1
2

λm+1
1

λm+1
1 r = Cλm+1

2 r < r1.

Therefore, fm+1(B(x, r)) ⊂ B(fm+1(x), r1). This proves our claim.
Therefore, taking r as the claim, for y ∈ B(x, r) and n ∈ N+, one has that

µn+1
2

µn+1
1

≤
∏n
i=0‖Dffiy‖∏n
i=0‖Dffix‖

≤ λn+1
2

λn+1
1

.

Consequently, taking C0 as the claim, one has that

C0µ
n
2 ≤

n−1∏
i=0

‖ Dffiy ‖≤ C0λ
n
2 , for y ∈ B(x, r) and n ∈ N+.

Theorem 3.1. Let H(f, p) be a homoclinic class which admits a dominated splitting
TH(f,p)M = E ⊕< F with dimE =Ind (p). If f is uniformly F -expanding at the
period on all periodic points homoclinically related to p, then there exists constant
N ∈ N+ such that for any hyperbolic periodic points homoclinically related to p with
period larger than N , any plaque family tangent to the subbundle F are the unstable
manifolds.

Proof. Since f is uniformly F -expanding, by Definition 1.1, there are two con-
stants C > 0 and λ ∈ (0, 1) such that for any hyperbolic periodic point x homoclin-
ically related to p, one has that

π(x)∏
j=1

∥∥∥Df−1 |Ffj(x)

∥∥∥ ≤ Cλπ(x).

Let N , min{n ∈ N+ : Cλn < 1}, define the set U as

U , {x ∈ H(f, p) : x ∼ p with π(x) ≥ N}.

For the dominated splitting TH(f,p)M = E ⊕< F , by Plaque Family Theorem [12,
Theorem 5.5], there always exists an invariant plaque family tangent to the sub-
bundles E and F . For any x ∈ U , denoted by WF (x) the plaque family tangent
to the subbundle F at point x. For the hyperbolic splitting TxM = Es

⊕
Fu at
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hyperbolic periodic point x, there are constants C1 > 0, λ1 ∈ (0, 1) such that for
every n ∈ N+, one has that

‖Dfn |Es‖ ≤ C1λ
n
1 , ‖Df−n |Fu‖ ≤ C1λ

n
1 .

Since the plaque family tangent to the subbundle Fu are the unstable manifolds,
it suffices to prove that the hyperbolic splitting TxM = Es

⊕
Fu and dominated

splitting TxM = E
⊕

< F are coincide. Since dimE = Ind (p), one has that dimF =
dimFu. It is sufficient to show that F ⊆ Fu. Conversely, suppose that F * Fu.
Then there is a non-zero vector v ∈ F such that v /∈ Fu. Thus, one can obtain a
decomposition v = vs ⊕ vu, where 0 6= vs ∈ Es and vu ∈ Fu. Therefore, for any
m ∈ N+, one has that

C−1
1 λ

−mπ(x)
1 ‖vs‖ ≤ ‖Df−mπ(x)v‖ ≤

mπ(x)∏
j=1

‖Df−1 |Ffj(x)
‖

 ‖v‖ ≤ (Cλπ(x))m‖v‖.

Taking m large enough such that

C−1
1 λ

−mπ(x)
1 ‖vs‖ > 1, (Cλπ(x))m‖v‖ < 1.

Therefore,

1 < C−1
1 λ

−mπ(x)
1 ‖vs‖ ≤

mπ(x)∏
j=1

‖Df−1 |Ffj(x)
‖

 ‖v‖ ≤ (Cλπ(x)
)m
‖v‖ < 1.

This means that our assumption that F * Fu is fault. Consequently, F ⊆ Fu.
We introduce that for some special homoclinic class H(f, p), there is a dense

set such that every point in this set has stable manifolds of uniformly size. Given
ε > 0, a sequence of points {x0, · · · , xm} is called a periodic ε-orbit or periodic
pseudoorbit, if xm = x0 and

d(f(xi), xi+1) < ε, for i = 0, · · · ,m− 1.

Definition 3.1. Fix δ > 0 and k ∈ N+, a sequence of points {x0, x1, · · · , xk} is
called δ-shadowed by a periodic point x, if k = π(x) and

d(fn(x), xn) < δ, for every 0 ≤ n ≤ k.

Theorem 3.2 ( [13, Theorem 6.4.15], Anosov Closing Lemma). For a hyperbolic
set Λ of diffeomorphism f , there is an open neighborhood U of Λ and two constants
C > 0, ε0 > 0 such that for any ε ∈ (0, ε0), any periodic ε-orbit {x0, · · · , xm} ⊂ U
can be Cε-shadowed by a periodic point y ∈ U .

Crovisier and Pujals [6, Lemma 3.8 and Lemma 3.9] proved that a chain hyper-
bolic homoclinic class (see [6, Definition 2.10]) contains a dense set of hyperbolic
periodic points with long stable and unstable manifolds. Here, we prove that if a
homoclinic class H(f, p) admits a dominated splitting TH(f,p)M = E

⊕
< F , where

the subbundle E is thin trapped and dim(E) =Ind(p), then the homoclinic class
contains a dense set of hyperbolic periodic points with long stable manifolds.
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Theorem 3.3. Let H(f, p) be a homoclinic class which admits a dominated splitting
TH(f,p)M = E

⊕
< F , where the subbundle E is thin trapped and dim(E) = Ind(p).

For ε > 0 small enough, there is a ε-dense set P ⊆ H(f, p) of hyperbolic periodic
points homoclinically related to p, such that every point q ∈ P has stable manifolds
of uniformly size.

Proof. Assume that p is a hyperbolic fixed point (otherwise, consider g = fπ(p)).
Since dim(E) =Ind(p) and E is thin trapped, the dominated splitting TpM =
Ep
⊕

< Fp is the hyperbolic splitting of p. By [11, Theorem 1], taking suitable
Riemann norm, there exists λ1 ∈ (0, 1) such that

‖Df |Ep
‖ ≤ λ1, ‖Df−1|Fp

‖ ≤ λ1.

Hereafter, we fix the numbers 0 < λ1 < λ2 < λ3 < λ4 < 1. Since f is a C1

diffeomorphism, for λ2 ∈ (λ1, 1), there is r > 0 such that for any x, y ∈ H(f, p)
with d(x, y) < r, one has that

‖Df |Ex
‖

‖Df |Ey‖
≤ λ2

λ1
,

‖Df−1|Fx
‖

‖Df−1|Fy‖
≤ λ2

λ1
.

An equivalence definition of the homoclinic class [1, pp.199] is

H(f, p) ,W s(Orb(f, p)) tWu(Orb(f, p)).

By this characterization of H(f, p), for any ε < r, one can take a ε/2-dense subset

B , {x : x ∈W s(Orb(f, p)) tWu(Orb(f, p))}

of H(f, p).

Claim. For every x ∈ B, Λx , Orb(f, p)
⋃
Orb(f, x) is a hyperbolic set.

Proof. Since x ∈ W s(Orb(f, p)) t Wu(Orb(f, p)), there exists n0 ∈ N such that
for any n ≥ n0, one has that

d(fn(x), p) < r, d(f−n(x), p) < r.

Therefore,

‖Df |Efn(x)
‖

‖Df |Ep‖
≤ λ2

λ1
,
‖Df−1|Ff−n(x)

‖
‖Df−1|Fp‖

≤ λ2

λ1
, for any n ≥ n0.

Let C1 = max
z∈H(f,p)

{
‖Dfz‖
λ2

, · · · , ‖Df
2n0
z ‖

λ
2n0
2

,
‖Df−1

z ‖
λ2

, · · · , ‖Df
−2n0
z ‖
λ
2n0
2

}
, C2 = max{1, C1},

for any y ∈ Λx and any n ∈ N+, one has that

‖Dfn|Ey
‖ ≤ C2λ

n
2 , ‖Df−n|Fy

‖ ≤ C2λ
n
2 .

Hence, Λx = Orb(f, p)
⋃
Orb(f, x) is a hyperbolic set.

Fix x ∈ B, by Theorem 3.2, for the hyperbolic set Λx, there exist an open
neighborhood U of Λx and C3, ε0 > 0, such that for any ε1 ∈ (0, ε0), any periodic
ε1-orbit {x0, · · · , xm} ⊂ U can be C3ε-shadowed by a periodic point y ∈ U . It
means that

d(f i(y), xi) < C3ε1, for i = 0, 1, · · · ,m.
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Taking ε2 = min{ε/2C3, ε/2, r}, since x ∈ W s(Orb(f, p)) t Wu(Orb(f, p)), there
exists m0 ∈ N such that for any m ≥ m0, one has that

d(fm(x), p) < ε2/2, d(f−m(x), p) < ε2/2.

Let K = sup
z∈H(f,p)

{‖Dfz‖, 2, ‖Df−1
z ‖}, for λ2 < λ3 < 1, taking an integer m1 ≥

C

2 log(λ3/λ2)
, where C = (2m0 − 1) logK − (2m0 + 1) log λ2, one can obtain a

periodic ε2-orbit:

{fm1(x), f−m1+1(x), · · · , f−m0(x), f−m0+1(x), · · · , f−1(x), x, f(x), · · · ,
· · · , fm0(x), · · · , fm1(x)}.

By Theorem 3.2, this periodic ε2-orbit is ε/2-shadowed by a periodic point qx with
π(qx) = 2m1. Therefore,

π(qx)−1∏
i=0

∥∥∥Df |Efi(qx)

∥∥∥ ≤ K2m0−1 · λ2m1−2m0+1
2 ≤ λπ(qx)

3 .

Hence, for any n ∈ N, one has that

nπ(qx)−1∏
i=0

∥∥∥Df |Efi(qx)

∥∥∥ ≤ λnπ(qx)
3 .

One can deduce the similar estimation on the subbundle F . Next, we define the
set P , {qx : x ∈ B}, then P ⊆ H(f, p) is a set of hyperbolic periodic points
homoclinically related to p. For λ3 < λ4, any q ∈ P and any n ∈ N, by Lemma 2.1,
there are θ = θ(λ3, λ4) ∈ (0, 1) and positive integers n1 < n2 < · · · < nl ≤ n with
l ≥ θnπ(q), such that

nj−1∏
i=k

∥∥∥Df |Efi(q)

∥∥∥ ≤ λnj−k
4 , for any k = 0, 1, · · · , nj − 1, j = 1, 2, · · · , l.

Since q is a periodic point, if n→∞, then there is a point q′ which is a iteration of
q, such that

m−1∏
i=0

∥∥∥Df |Efi(q′)

∥∥∥ ≤ λm4 , for any m ∈ N.

Therefore, the point q′ has stable manifolds of δ-size, where δ is only related to λ4.
For this δ, since the subbundle E is thin trapped, for every y ∈ {q′, · · · , fπ(q′)−1(q′)},
one has that

f i(Ws
δ (y)) ⊂ Ws

δ (f iy) =Ws
δ (q′), for some i ∈ {0, 1, · · · , π(q′)− 1}.

Therefore, every point q ∈ P has stable manifolds of uniformly size.
For any b ∈ H(f, p), by the choice of B, there is x ∈ B such that d(b, x) < ε

2 .
For this point x, there is a qx ∈ P such that d(x, qx) < ε

2 . Then, d(b, qx) < ε.
Therefore, P is a ε-dense subset of H(f, p).
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4. The closing property in thin trapped homoclinic
classes

It is well-known that pseudoorbits near a hyperbolic set can be shadowed by a
real orbit. This is called Pseudo-Orbit Tracing Property. This property plays an
important role in the study of stability of dynamical systems (see [24], [9], [25]
and [20] ). Gan [10, Theorem 1.1] showed that quasi-hyperbolic pseudoorbits can
be shadowed by a real orbit. In this section, we introduce the Pseudo-Orbit Tracing
Property in thin trapped H(f, p). Before heading to the main block, we clarify some
notations and identify some constants.

Sun and Yang [23, Lemma 2.2] affirmed that chain hyperbolic homoclinic classes
have local product structures. Hereafter, we assume that H(f, p) admits a dom-
inated splitting TH(f,p)M = E

⊕
< F with dim(E) = Ind(p), the subbundle E is

thin trapped and f is uniformly F -expanding at the period on all periodic points
homoclinically related to p. Then the homoclinic class has local product structures.
What is important is that one can also choose dense hyperbolic periodic points,
which have long stable and unstable manifolds, from thin trapped homoclinic class.

Proposition 4.1. For ε > 0, there exists δ > 0 such that for any x, y ∈ H(f, p) with
d(x, y) < δ, Wcs

ε (x) and Wcu
ε (y) transversally intersect at a single point belonging

to H(f, p), where W∗ε (x) ⊂ W∗(x) is centered at x with length 2ε, ∗ = cs or cu.

Proof. From Sun and Yang [23, Lemma 2.2], the proof is completed by showing
that the homoclinic class H(f, p) is a chain hyperbolic homoclinic class. Under
our assumption, what is left is to show that the subbundle F is trapped for f−1.
By Theorem 3.1, for the hyperbolic periodic points with large enough period, any
plaque family tangent to F are unstable manifolds. Thus, the subbundle F at those
points is trapped for f−1. Since TH(f,p)M = E

⊕
< F is a dominated splitting, by

the uniqueness and continuity of dominated splitting, any plaque family tangent to
F are unstable manifolds. Thus, the subbundle F is trapped for f−1.

For a chain hyperbolic homoclinic class, Crovisier and Pujals [6, Lemma 3.9]
found that H(f, p) contains a dense set of “well”periodic points, which is defined
as Lemma 4.1.

Lemma 4.1 ( [6, Lemma 3.9]). For any small enough δ > 0, there is a dense set
P0 ⊂ H(f, p) of periodic points homoclinically related to p with the properties:

(i) The modulus of the Lyapunov exponents of any point q ∈ P0 are larger than
δ;

(ii) The plaques Wcs
q and Wcu

q for any point q ∈ P0 contained in the stable and
in the unstable manifolds of q respectively.

Furthermore, the ε-dense subset P in Theorem 3.3 can be the subset P0 when
choose a suitable δ. Hereafter, we always consider P0 when no confusion can arise.

Lemma 4.2. There exists a number α such that for any x ∈ P0, the plaque family
Wcs
α (x) and Wcu

α (x) are the stable and unstable manifolds of x, respectively.

Proof. By Theorem 3.3, there is a number α1 such that for any x ∈ P0, the plaque
family Wcs

α1
(x) are the stable manifolds of x. From Lemma 4.1, since the modulus

of the Lyapunov exponents of any point x ∈ P0 are larger than δ, there is constant
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C such that for any point x ∈ P0 and every n ∈ N+, one has that

‖Dfn|Fx
‖ ≥ Cenδ.

Thus, there is a number α2 such that for any x ∈ P0, the plaque family Wcu
α2

(x) are
the unstable manifolds of x. Taking α = min{α1, α2}, the lemma follows.

Definition 4.1. Let TΛM = E
⊕

< F be a dominated splitting on the compact
invariant set Λ. For x ∈ Λ, n ∈ N+ and λ ∈ (0, 1), an orbit segment (x, n) is called
λ-thin trapped, if subbundle E is thin trapped and subbundle F satisfies that

k∏
j=1

∥∥∥Df−1|Ffn−j(x)

∥∥∥ ≤ λk, for k = 1, · · · , n− 1.

Definition 4.2. Given λ ∈ (0, 1) and γ > 0, a finite number of λ-thin trapped
orbit segment {(xi, ni)}mi=0 is called a (λ, γ)-thin trapped closed pseudoorbit, if the
orbit segment (xi, ni) is λ-thin trapped and

d(fni−1(xi), xi+1) ≤ γ, for i = 0, 1, · · · ,m− 1 and d(fnm−1xm, x0) < γ.

Definition 4.3. Given n0 ∈ N, λ ∈ (0, 1) and γ > 0, a (λ, γ)-thin trapped closed
pseudoorbit {(xi, ni)}mi=0 is called an (n0, λ, γ)-closed pseudoorbit, if the integers
ni ≥ n0, for i = 0, 1, · · · ,m.

Sun and Yang [23, Theorem 1.7] gave a closing property for some special chain
hyperbolic homoclinic class. Here, we establish a closing property for the dense
subset P0 in thin trapped homoclinic class.

Theorem 4.1. For any η ∈ (0, α), where α is given by Lemma 4.2, there are
γ0 = γ0(η) and n0 = n0(η) ∈ N, such that for any γ ∈ (0, γ0), if a finite number
of orbit segment {(xi, ni + 1)}mi=0 ⊂ P0 is a (n0, λ, γ)-closed pseudoorbit, then the
(n0, λ, γ)-closed pseudoorbit can be η-shadowed by a periodic point.

Proof. For any η ∈ (0, α), by Proposition 4.1, there exists β ∈ (0, η) such that for
any x, y ∈ H(f, p) with d(x, y) < β, one has that

Wcs
η (x) tWcu

η (y) 6= ∅, Wcu
η (x) tWcs

η (y) 6= ∅.

Due to Lemma 4.2, for any x ∈ P0, the plaque Wcs
η (x) are the stable manifolds of

x, denoted by Ws
η(x) and the plaque family Wcu

η (x) are the unstable manifolds of
x, denoted by Wu

η (x).
According to Lemma 4.1, by the choice of P0, there is C > 0 such that for any

x ∈ P0 and any n ∈ N+, one has that

‖ Dfn|Ex ‖≤ Ce−nδ.

Let n0 , min{n ∈ N : Ce−nδη ≤ β/2} and γ0 , β/4, then for any γ ∈ (0, γ0),
if a finite number of orbit segment {(xi, ni + 1)}mi=0 ⊂ P0 is a (n0, λ, γ)-closed
pseudoorbit, then we can construct a sequence of points which are the intersection
points of some stable manifolds and Wcu plaques.

Since {(xi, ni + 1)}mi=0 ⊂ P0 is a (n0, λ, γ)-closed pseudoorbit, by Proposition
4.1, there exists

z1 ∈ Wcu
η (fn1x1) tWs

η(x2) 6= ∅.
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Therefore,

d(fn2(x2), fn2(z1)) ≤ Ce−n2δd(x2, z1) ≤ Ce−n0δd(x2, z1) ≤ Ce−n0δη ≤ β/2.

Consequently,

d(fn2(z1), x3) ≤ d(fn2(x2), fn2(z1)) + d(fn2(x2), x3) ≤ β.

Applying to Proposition 4.1 again, there exists

z2 ∈ Wcu
η (fn2z1) tWs

η(x3) 6= ∅.

Similarly, one obtains that

zi ∈ Wcu
η (fnizi−1) tWs

η(xi+1) 6= ∅, for i = 3, 4, · · · ,m− 1 ,

zm ∈ Wcu
η (fnmzm−1) tWs

η(x1) 6= ∅.
By the compactness of H(f, p), there is a point z ∈ H(f, p) such that

z = lim
k→+∞

f
k

(
m∑

i=1
ni

)
(zm).

Due to

f

m∑
i=1

ni

(z) = f

m∑
i=1

ni

(
lim

k→+∞
f
k

(
m∑

i=1
ni

)
(zm)

)
= lim
k→+∞

f
(k+1)

(
m∑

i=1
ni

)
(zm) = z,

the point z is a periodic point. From our construction, the sequence of points
are the intersection points of some stable manifolds and Wcu plaques. By the
properties of the (n0, λ, γ)-closed pseudoorbit, the (n0, λ, γ)-closed pseudoorbit can
be η-shadowed by the periodic point z.

5. Proof of Main Theorem and Theorem 1.1

We prove Main Theorem by contradiction under the assumptions that

• The point p is a hyperbolic periodic point;

• The homoclinic classH(f, p) admits a dominated splitting TH(f,p)M = E
⊕

< F
with dim(E) =Ind(p);

• The subbundle E is thin trapped and f is uniformly F -expanding at the period
on the set of all periodic points homoclinically related to p;

• The subbundle F is not uniformly expanding on H(f, p).

Building closed pseudoorbit. Bonatti, Gan and Yang [2, Lemma 3.1] proved
the existence of obstruction point. We give a similar conclusion for thin trapped
homoclinic class.

Lemma 5.1. There exists a point b in H(f, p), such that

n∏
j=1

∥∥Df−1|fj(b)

∥∥ ≥ 1, for any n ∈ N+.

Therefore, b is a 1-obstruction point.
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Proof. Suppose that the lemma were false. Then for any x ∈ H(f, p), there exists
n = n(x) > 0 such that

n∏
i=1

∥∥Df−1|F (fi(x))

∥∥ < 1.

Taking r(x) ∈ (0, 1) and the neighborhood U(x) of x such that

n(x)∏
i=1

∥∥Df−1|F (fi(y))

∥∥ < r(x)n(x), for any y ∈ U(x) ∩H(f, p).

By the compactness of H(f, p), there exist finite points {xj}mj=1 such that H(f, p) ⊂⋃m
i=1 U(xi). Let r , max1≤i≤m{r(xi)}, N , max1≤i≤m{n(xi)} and

C , max
1≤i≤m

{
max

{
‖Df−1|F (f(xi))‖

r(xi)
, · · · ,

∏N
j=1 ‖Df−1|F (fj(xi))‖

r(xi)N

}}
,

for any x ∈ H(f, p) and n ∈ N+, by splitting every orbit segment (x, fnx) in

segments of the form (f ix, fn(fix)(f ix)), one has that

n∏
i=1

∥∥Df−1|F (fi(x))

∥∥ ≤ Crn.
Hence, the subbundle F is uniformly expanding. This contradicts our assumption
that the subbundle F is not uniformly expanding on H(f, p).

Now we construct a closed pseudoorbit P as follows. Hereafter, we fix a sequence
of numbers 0 < λ < r4 < r3 < r2 < r1 ≤ 1, ε > 0 and dense subset P0 given by
Lemma 4.1. By Lemma 4.2, every point belonging to P0 has stable and unstable
manifolds of uniformly size. According to Lemma 5.1, there is an r1-obstruction
point b1 ∈ H(f, p). By Lemma 2.4, there is a sequence of periodic points homo-
clinically related to p such that the periods of these periodic points tend to infinity
and the first hyperbolic time of these also tend to infinity. Thus, without loss of
generality, we assume that the period of every periodic point in the dense subset
P0 ⊆ H(f, p) is large enough.

Step 1. One can find a sequence of points {qn : qn ∼ p} such that lim
n→∞

qn = b1.

For ε/2, r2 < λ1 < r1 ≤ 1, by Lemma 2.3, there exists N1 = N1(ε, λ1) such
that if (x, fN1(x)) is a λ1-obstruction segment, then d(x,Λ(λ1)) < ε/2. Taking
x1 ∈ P0 with Γ2(x1, λ1) − Γ1(x1, λ1) − 1 ≥ N1, we obtain uniform λ1-strings
(x1, f

φ1(x1,λ1)(x1)), (fφ1(x1,λ1)(x1), fΓ1(x1,λ1)(x1)) and λ1-obstruction segment
(fΓ1(x1,λ1)(x1), fΓ2(x1,λ1)−1(x1)). Then, there exists a λ1-obstruction point b2 ∈
H(f, p) such that d(b2, f

Γ1(x1,λ1)(x1)) < ε/2.

Step 2. For the λ1-obstruction point b2 ∈ H(f, p), one can find a sequence of
points {q′n : q′n ∼ p} such that lim

n→∞
q′n = b2. For ε/2, r2 < λ2 < λ1 < r1, by

Lemma 2.3, there exists N2 = N2(λ2, ε) such that if (x, fN2(x)) is a λ2-obstruction
segment, then d(x,Λ(λ2)) < ε/2. By Lemma 2.4, φ1(q′n, λ2) → ∞ as n → ∞. Let
B be the subset of P0 such that for every q′n ∈ B, one has that

r
φ1(q′n,λ2)−1
3 · ζ · ζΓ1(x1,λ1)−φ1(x1,λ1) ≥ rφ1(q′n,λ2)+Γ1(x1,λ1)−φ1(x1,λ1)

4 ,
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where ζ , inf
z∈H(f,p)

‖Df−1|F (z)‖. Take x2 ∈ B with Γ2(x2, λ2)−Γ1(x2, λ2)−1 ≥ N2,

we obtain uniform λ2-strings (x2, f
φ1(x2,λ2)(x2)), (fφ1(x2,λ2)(x2), fΓ1(x2,λ2)(x2))

and λ2-obstruction segment (fΓ1(x2,λ2)(x2), fΓ2(x2,λ2)−1(x2)). Therefore, there ex-
ists a λ2-obstruction point b3 ∈ H(f, p) such that d(b3, f

Γ1(x2,λ2)(x2)) < ε/2.

Step 3. For ε > 0, take λj with r4 < r3 < r2 < · · · < λj < λj−1 < · · · < λ2 <
λ1 < r1, where j = 1, 2, · · · , by repeating Step 2, we obtain a sequence of points
{xn} with properties:

• (xj , f
φ1(xj ,λj)(xj)), (fφ1(xj ,λj)(xj), f

Γ1(xj ,λj)(xj)) are uniform λj-strings;

• (fΓ1(xj ,λ2)(xj), f
Γ2(xj ,λj)−1(xj)) are λj-obstruction segment;

• d(xj , f
Γ1(xj−1,λj−1)(xj−1)) ≤ ε;

• rφ1(xj ,λj)−1
3 ·ζ·ζΓ1(xj−1,λj−1)−φ1(xj−1,λj−1)≥rφ1(xj ,λj)+Γ1(xj−1,λj−1)−φ1(xj−1,λj−1)

4 .

From the above step, we construct a pseudoorbit which is not closed. Since
H(f, p) is a compact set, there exist two positive integers m0 and k, such that

d(fφ1(xm0 ,λm0 )(xm0
), fφ1(xm0+k,λm0+k)(xm0+k)) < ε.

Let Kj , φ1(xm0+j , λm0+j), j = 1, 2, · · · , k and ym0+j , fφ1(xm0+j ,λm0+j)(xm0+j),

Lj , Γ1(xm0+j , λm0+j)−φ1(xm0+j , λm0+j), j = 0, 1, · · · , k−1. Therefore, we have
a closed pseudoorbit P which is the union of uniform λ1-strings as

(ym0
, fL0(ym0

)), (xm0+1, f
K1(xm0+1)), (ym0+1, f

L1(ym0+1)), (xm0+2, f
K2(xm0+2)),

· · · , (ym0+k−1, f
Lk−1(ym0+k−1)), (xm0+k, f

Kk(xm0+k)),

where ym0+j = fKj (xm0+j) and d(fLj (ym0+j), xm0+j+1) < ε, j = 0, 1, · · · , k − 1.

Estimation about periodic orbits. From the construction of closed pseudoor-
bit, by Theorem 4.1, for η ∈ (0, α), there exist γ0 = γ0(η) > 0, such that for any
γ ∈ (0, γ0], there exists a periodic point η-shadows (n0, λ, γ)-thin trapped closed
pseudoorbit.

Lemma 5.2. For the fixed r4 < r3 < r1, there is a constant δ0 > 0 such that
all those periodic points which δ0-shadows (n0, λ, γ)-thin trapped closed pseudoorbit
have stable and unstable manifolds of uniformly size.

Proof. For the dominated splitting TH(f,p)M = E
⊕

< F , by [11, Theorem 1], one
can take an suitable norm such that∥∥Df |E(x)

∥∥ · ∥∥Df−1|F (f(x))

∥∥ ≤ λ0,

where 0 < λ0 < λ < 1. For the fixed r4 < r3 < r1, by Lemma 3.1, there is a
constant δ1 such that for any x ∈ B(qn, δ1), one has that

Γ1(qn,λn)∏
i=1

∥∥Df−1|F (fix)

∥∥ ≥ rΓ1(qn,λn)
4 ,

Γ1(qn,λn)∏
i=1

∥∥Df−1|F (fix)

∥∥ ≤ rΓ1(qn,λn)
1 .
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By Theorem 4.1, let δ0 = min{ε, δ1, α}, then there exist γ0 = γ0(δ0) > 0, such
that for any γ ∈ (0, γ0], the (n0, λ, γ)-thin trapped closed pseudoorbit can be δ0-
shadowed by a periodic point y. This means that y ∈ B(qn, δ0) for any qn in
(n0, λ, γ)-thin trapped closed pseudoorbit. Therefore,

π(y)∏
i=1

∥∥Df−1|F (fi(y))

∥∥ ≥ rπ(y)
4 ,

π(y)∏
i=1

∥∥Df−1|F (fi(y))

∥∥ ≤ rπ(y)
1 .

Hence,
π(y)−1∏
i=0

∥∥Df |E(fi(y))

∥∥ ≤ λ
π(y)
0

π(y)∏
i=1

∥∥Df−1|F (fi(y))

∥∥ ≤
(
λ0

λ

)π(y)

.

Taking λ̃ = max{λ0/λ, r1}, one has that

π(y)−1∏
i=0

∥∥Df |E(fi(y))

∥∥ ≤ λ̃π(y),

π(y)∏
i=1

∥∥Df−1|F (fi(y))

∥∥ ≤ λ̃π(y).

Since the subbundle E is thin trapped with dimE = Ind (p) and f is uniform-
ly F -expanding at the period on all periodic points homoclinically related to p,
from Theorem 3.1 and Theorem 3.3, those periodic points have stable and unstable
manifolds of uniformly size.

According to Theorem 3.3, by the choice of P0, hyperbolic periodic points be-
longing to P0 have stable and unstable manifolds of uniformly size. By Lemma 5.2,
those periodic points which δ0-shadows (n0, λ, γ)-thin trapped closed pseudoorbit
have stable and unstable manifolds of uniformly size. Therefore, there is a δ′ > 0
such that if periodic point δ′-shadows (n0, λ, γ)-thin trapped closed pseudoorbit,
then periodic point is homoclinically related to the hyperbolic periodic points that
given in the construction of the closed pseudoorbit. Then, for η = min{δ0, δ′, ε, α},
where δ0 is given by Lemma 5.2, by Theorem 4.1, the closed pseudoorbit P can be
η-shadowed by a periodic point p̃ which satisfies that

W s
η (Orb(f, p̃)) tWu

η (Orb(f, p)) 6= ∅, W s
η (Orb(f, p)) tWu

η (Orb(f, p̃)) 6= ∅.

This means that p̃ is homoclinically related to p. By Lemma 5.2, one deduces that

π(p̃)∏
i=1

∥∥Df−1|F (fi(p̃))

∥∥ ≥ rπ(p̃)
4 .

This contradicts that f is uniformly F -expanding at the period on all periodic
points homoclinically related to p. Thus, the assumption that F is not uniformly
expanding on H(f, p), is invalid. Therefore, F is uniformly expanding on H(f, p).
Here, we finish the proof of Main Theorem.

Now, we give the proof of Theorem 1.1 under Main Theorem.
Proof. In the assumption of Theorem 1.1, for the dominated splitting TH(f,p) =
E⊕<F , we may assume that the splitting F splits in F = Ec⊕Eu. Therefore, Main
Theorem shows that f is not uniformly F -expanding at the period on all periodic
points homoclinically related to p.
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For every ε > 0, taking r < 1 such that log(r−1) < ε. Since f is not uniformly
F -expanding at the period on all periodic points homoclinically related to p, there
is a periodic point q homoclinically related to p such that

π(q)∏
i=1

∥∥Df−1|F (fi(q))

∥∥ ≥ rπ(q).

Since dimEc = 1, one has that

∥∥∥Dfπ(q)|Ec(q)

∥∥∥−1

=

π(q)∏
i=1

∥∥Df−1|Ec(fi(q))

∥∥ ≥ π(q)∏
i=1

∥∥Df−1|F (fi(q))

∥∥ ≥ rπ(q).

Therefore,
1

π(q)
log
(∥∥∥Dfπ(q)|Ec(q)

∥∥∥) ≤ ε.
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282.

[22] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 1967, 73,
747–817.

[23] W. Sun and Y. Yang, Hyperbolic periodic points for chain hyperbolic homoclinic
classes, Discrete Contin. Dyn. Syst., 2016, 36(7), 3911–3925.

[24] L. Wen, On the C1 stability conjecture for flows, J. Diff. Equations, 1996,
129(2), 334–357.

[25] L. Wen, On the preperiodic set, Discrete Contin. Dyn. Syst., 2000, 6(1), 237–
241.


	Introduction
	Hyperbolic time
	Exponential properties in homoclinic class
	The closing property in thin trapped homoclinic classes
	Proof of Main Theorem and Theorem 1.1

