
Journal of Applied Analysis and Computation Website:http://jaac.ijournal.cn

Volume 9, Number 4, August 2019, 1470–1492 DOI:10.11948/2156-907X.20180281

GLOBAL ANALYSIS OF AN
AGE-STRUCTURED SEIR MODEL WITH
IMMIGRATION OF POPULATION AND

NONLINEAR INCIDENCE RATE∗

Ran Zhang1, Dan Li2 and Shengqiang Liu1,†

Abstract Epidemic models with infection age of infectious individuals have
been extensively studied, however, most of the existing works ignore the com-
bined effects of immigration and nonlinear incidence. In this paper, we in-
corporate both the effects of immigration and nonlinear incidence, based on
which we formulate an SEIR epidemic model. We give a rigorous mathemat-
ical analysis on some necessary technical materials. Then, by constructing a
Lyapunov functional, we show that the endemic equilibrium is globally asymp-
totically stable. Numerical simulations of an application are given to support
our theoretical results.
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1. Introduction

Mathematical modelling of natural phenomena in epidemiology has been widely
used in the last ten decades. In 1911, with the milestone foundations on the ap-
proach to epidemiology based on compartmental models, Ross proposed and studied
a malaria model [32]. In 1927, Kermack and McKendrick established the remark-
able epidemic model which is known as susceptible (S)-infectious (I)-recovered (R)
model [18]. After this research, a very large number of models have been studied,
which include SIS models, SEIR models with or without delays (see, for exam-
ple, [20, 24,35]).

The incidence rate in epidemic models plays an important role in the disease
dynamics [2]. Traditionally, the incidence rate of an infectious disease in most of
the literature is assumed to be of mass action form βS(t)I(t) [2]. But since the
disease transmission process is generally unknown [21], some nonlinear incidence
rates have been introduced and studied (to name a few, [9, 15, 27, 39]). For more
general cases, Capasso et al. [5] and Li et.al [23] considered an incidence rate with
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the form f(I)S; Korobeinikov and Maini studied models with incidence rate of the
form g(I)h(S) [21], where the global asymptotic stability of an SIR and an SEIR
model were shown by constructing suitable Lyapunov functions.

Infection age is also an important factor in epidemiology. Recently, Rost and
Wu [33] formulated an SEIR model with infection-age structure. They rewrote the
model as a delay differential equation and investigated the local stability of both
disease-free and endemic equilibria. In 2010, Magal et al. [28] prosed the following
SIR model with infection age:

dS(t)

dt
= Λs − µsS(t)−

∫ ∞
0

β(a)S(t)i(t, a)da,(
∂

∂t
+

∂

∂a

)
i(t, a) = −(µi(a) + δ(a))i(t, a),

i(t, 0) =

∫ ∞
0

β(a)S(t)i(t, a)da,

S(0) = S0 > 0, i(0, ·) = i0 ∈ L+
1 (0,+∞),

where S(t) is the numbers of susceptible populations at time t, while i(t, a) denote
the densities at time t of infectious individuals who have been infectious for duration
a. The biological interpretation of all coefficients are shown in Table 1. The authors
show that the unique endemic equilibrium of system (1) is globally stable amongst
solutions for which disease transmission occurs by a suitable Lyapunov functional.
For some recent works on models with infection age, we refer readers to the papers
[1, 7, 10–12,17,19,25,26,37,40,45] and the monographs [16,44].

Moreover, because of the rapid globalization during the last decades, movements
among different regions or countries have become more and more frequently. In-
deed, people can arrive at any place on this planet within days, which brings new
challenge of controlling the global spread of infectious diseases. For example, in-
ternational traveling significantly accelerated the transmission of the 2003 SARS
pandemic [31] and the outbreak of avian-origin influenza A(H7N9) [13]. Due to
these facts, some researchers introduced immigration into infectious disease model-
s [4, 41]. In these works, immigration of population was always supposed to be of
constant rates. However, in the real world, age-dependent immigration rate seems
more realistic [30, 43], for example, the children immigration rates of different ages
could not be constant. Thus it is meaningful for us to investigate the models that
consider the effects of immigration of infectious individuals.

Based on the above motivations, in this paper, we extend the model in [30] by
considering general nonlinear incidence rate. Mathematically, both age-dependent
immigration rate and general nonlinear incidence bring nontrivial challenges in anal-
ysis, especially in the well-posedness problem and in the construction of suitable
Lyapunov functionals. So it is worthwhile for us to study the properties of this kind
of models.

The rest of this paper is organized as follows. In Section 2, we formulate our
model and give the assumptions. In Section 3, we identify the dissipativeness and
positivity of the model. In Section 4, the asymptotic smoothness is established.
Section 5 is devoted to the existence and local stability of the equilibrium while its
global stability is established in Section 6 by employing the approach of Lyapunov
functionals. In Section 7, we introduce an age-structured SEIR model with satura-
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tion incidence rate and immigration, which can be regarded as special cases of the
general model studied in Section 2, and we perform numerical simulation to verify
the validity of our main theoretical results. The paper ends with a brief discussion.

2. The model and preliminaries

By considering nonlinear incidence rate, we study the following model (since we
have assumed that the recovered populations have gained permanent immunity),

dS(t)

dt
= Λs − µsS(t)−

∫ ∞
0

β(a)f(S(t))h(i(t, a))da,(
∂

∂t
+

∂

∂a

)
e(t, a) = Λe(a)− (µe(a) + γ(a))e(t, a),(

∂

∂t
+

∂

∂a

)
i(t, a) = Λi(a)− (µi(a) + δ(a))i(t, a),

(2.1)

with the boundary conditions
e(t, 0) =

∫ ∞
0

β(a)f(S(t))h(i(t, a))da,

i(t, 0) =

∫ ∞
0

γ(a)e(t, a)da

(2.2)

and the initial condition

x0 = (S(0), e(0, ·), i(0, ·)) = (S0, e0, i0) ∈ X+, (2.3)

where S(t) denotes the number of susceptible populations at time t, while e(t, a)
and i(t, a) denote the densities at time t of exposed and infectious individuals who
have been exposed and infectious for duration a, respectively. All coefficients are
assumed to be positive and the biological interpretation of coefficients is listed in
Table 1.

Table 1. The biological interpretation of coefficients of model (2.1).

Coefficient Interpretation

Λs Recruitment through birth and immigration for the susceptible
Λe(a) Recruitment into the exposed class at age a
Λi(a) Recruitment into the infectious class at age a
µs The per capita death rate of the susceptible

µe(a) The per capita death rate of the exposed at age a
µi(a) The per capita death rate of the infectious at age a
β(a) Disease transmission rate between the susceptible

and infectious at age a
γ(a) The rate of progression from the exposed to

the infectious occurring at age a
δ(a) The recovery rate of the infectious at age a
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Let X+ = R+ × L1
+(0,∞) × L1

+(0,∞), which is the nonnegative cone of the
banach space X = R× L1(0,∞)× L1(0,∞) equipped with the norm

‖(x, ϕ, φ)‖X = |x|+
∫ ∞

0

|ϕ(a)|da+

∫ ∞
0

|φ(a)|da, (x, ϕ, φ) ∈ X .

In the sequel, we always assume the initial condition (S0, e0, i0) satisfies

e0(0) =

∫ ∞
0

β(a)f(S0)h(i0(a))da and i0(0) =

∫ ∞
0

γ(a)e0(a)da.

Following the standard theory in [44], (2.1) has a unique nonnegative solution on R+.
Then we get a continuous semiflow associated with (2.1), that is, Φ : R+×X+ → X+

defined by
Φ(t, x0) = (S(t), e(t, ·), i(t, ·)), t ∈ R+, x0 ∈ X+.

To further the study, we make the following assumptions on the parameters and
the incidence rate.

Assumption 2.1. Assume that

(i) Λs, µs > 0; Λe, Λi ∈ L1
+(0,∞); µe, µi, β, γ, δ ∈ L∞+ (0,∞).

(ii) β and γ are Lipschitz continuous with Lipschitz constants Mβ and Mγ , re-
spectively.

(iii) The support of each β, γ, and Λe + Λi has a positive measure.

Assumption 2.2. For x ∈ R
(i) f(x) ≥ 0 and h(x) ≥ 0 with f(x) = 0 or h(x) = 0 if and only if x = 0.

(ii) f ′(x) > 0, h′(x) > 0 and f ′′(x) < 0, h′′(x) < 0.

Functions f and h satisfying Assumption 2.2 are quite general. Chen et al. [8]
gave a summary of such functions, which include the bilinear incidence rate with
f(S) = S and h(I) = I, the saturated incidence rate with h(I) = I

1+αI by [5], the

saturated nonlinear incidence rate with h(I) = I
1+αIp (0 < p < 1) by [27], and so

on. Assumption 2.2 also implies that f(x) and h(x) are Lipschitz continuous on
R+. Denote their corresponding Lipschitz constants by Mf and Mh, respectively.

We denote µ̄e, µ̄i, β̄, γ̄, and δ̄ to be the essential infimums of µe, µi, β, γ, and δ,
respectively, while µ̂e, µ̂i, β̂, γ̂, and δ̂ to be the corresponding essential supremums.
We also denote Λ̃e =

∫∞
0

Λe(a)da and Λ̃i =
∫∞

0
Λi(a)da.

3. Dissipativeness

For convenience, we define two notations

Ω(a) = e−
∫ a
0

(µe(θ)+γ(θ))dθ, (3.1)

Γ(a) = e−
∫ a
0

(µi(θ)+δ(θ))dθ. (3.2)

From equations 2.2 and (2.3), using the method in [22] to integrate the second and
the third equations in (2.1) along the characteristic lines t− a = const., we have

e(t, a) =


e(t− a, 0)Ω(a) +

∫ a

0

Λe(ε)
Ω(a)

Ω(ε)
dε, 0 ≤ a ≤ t,

e(0, a− t) Ω(a)

Ω(a− t)
+

∫ a

a−t
Λe(ε)

Ω(a)

Ω(ε)
dε, 0 ≤ t ≤ a,

(3.3)
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i(t, a) =


i(t− a, 0)Γ(a) +

∫ a

0

Λi(ε)
Γ(a)

Γ(ε)
dε, 0 ≤ a ≤ t,

i(0, a− t) Γ(a)

Γ(a− t)
+

∫ a

a−t
Λi(ε)

Γ(a)

Γ(ε)
dε, 0 ≤ t ≤ a.

(3.4)

Now, we concern with the boundedness of solutions to (2.1).

Proposition 3.1. Denote Λ = Λs + Λ̃e + Λ̃i and µ = min{µs, µ̄e, µ̄i}. For (2.1),
we have the following statements.

(i) d
dt‖Φ(t, x0)‖X ≤ Λ− µ‖Φ(t, x0)‖X for all t ∈ R+.

(ii) ‖Φ(t, x0)‖X ≤ max{Λ
µ ,

Λ
µ+e−µt(‖x0‖X−Λ

µ )} ≤ max{Λ
µ , ‖x0‖X } for all t ∈ R+.

(iii) lim supt→∞ ‖Φt(x0)‖X ≤ Λ
µ .

(iv) Φ is point dissipative, that is, there is a bounded set that attracts all points in
X+.

Proof. For any function g(τ, a), the following identity plays an important role in
the discussion,∫ t

0

∫ a

0

g(τ, a)dτda+

∫ ∞
t

∫ a

a−t
g(τ, a)dτda =

∫ ∞
0

∫ τ+t

τ

g(τ, a)dadτ, (3.5)

which is obtained by interchanging the order of integration.
Note that∫ ∞

0

e(t, a)da =

∫ t

0

e(t, a)da+

∫ ∞
t

e(t, a)da

=

∫ t

0

e(t− a, 0)Ω(a)da+

∫ ∞
t

e(0, a− t) Ω(a)

Ω(a− t)
da

+

∫ t

0

∫ a

0

Λe(ε)
Ω(a)

Ω(ε)
dεda+

∫ ∞
t

∫ a

a−t
Λe(ε)

Ω(a)

Ω(ε)
dεda.

Using (3.5) for the double integrals and making change of integration variable for
the two single integrals give∫ ∞

0

e(t, a)da =

∫ t

0

e(τ, 0)Ω(t− τ)dτ +

∫ ∞
0

e(0, τ)
Ω(t+ τ)

Ω(τ)
dτ

+

∫ ∞
0

∫ ε+t

ε

Λe(ε)
Ω(a)

Ω(ε)
dadε.

Then

d

dt

∫ ∞
0

e(t, a)da

= e(t, 0) +

∫ t

0

e(τ, 0)
d

dt
Ω(t− τ)dτ

+

∫ ∞
0

e(0, τ)
d
dtΩ(t+ τ)

Ω(τ)
dτ +

∫ ∞
0

Λe(ε)
Ω(ε+ t)

Ω(ε)
dε.
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With the help of [30, Equation 12], we get

d

dt

∫ ∞
0

e(t, a)da = e(t, 0)−
∫ ∞

0

(µe(a) + γ(a))e(t, a)da+ Λ̃e.

Similarly,

d

dt

∫ ∞
0

i(t, a)da = i(t, 0)−
∫ ∞

0

(µi(a) + δ(a))i(t, a)da+ Λ̃i.

Therefore,

d

dt
‖Φ(t,X0)‖X = Λs − µsS(t)−

∫ ∞
0

β(a)f(S(t))h(i(t, a))da

+e(t, 0)−
∫ ∞

0

(µe(a) + γ(a))e(t, a)da+ Λ̃e

+i(t, 0)−
∫ ∞

0

(µi(a) + δ(a))i(t, a)da+ Λ̃i

≤ Λ− µ‖Φ(t,X0)‖X .

This shows statement (i). Using the variation of constants formula yields

d

dt
‖Φ(t,X0)‖X ≤

Λ

µ
− e−µt

(
Λ

µ
− ‖X0‖X

)
.

Then the remaining three statements follow immediately and hence the proof is
complete.

From Proposition 3.1, we can easily get the following result.

Proposition 3.2. If x0 ∈ X+ and ‖x0‖X ≤ M with some constant M ≥ Λ
µ , then

the following statements hold for t ∈ R+.

(i) 0 ≤ S(t),
∫∞

0
e(t, a)da,

∫∞
0
i(t, a)da ≤M .

(ii) e(t, 0) ≤ β̂f ′(0)h′(0)M2, i(t, 0) ≤ γ̂β̂f ′(0)h′(0)M2.

The following proposition provides a positive asymptotic lower bound for S(t).

Proposition 3.3. If x0 ∈ X+ then

lim inf
t→∞

S(t) ≥ Λs

µs + β̂f ′(0)h′(0)Λ
µ

.

Proof. For any ε > 0, it follows from Proposition 3.1 that there exists a t0 ∈ R+

such that
∫∞

0
i(t, a)da ≤ Λ

µ + ε for t ≥ t0. Then, for t ≥ t0,

dS(t)

dt
= Λs − µsS(t)−

∫ ∞
0

β(a)f(S(t))h(i(t, a))da

≥ Λs −
(
µs + β̂f ′(0)h′(0)

(
Λ

µ
+ ε

))
S(t),

which implies that

lim inf
t→∞

S(t) ≥ Λs

µs + β̂f ′(0)h′(0)(Λ
µ + ε)

.



1476 R. Zhang, D. Li & S. Liu

Letting ε to 0 gives the required result.
The following result can be proved by similar arguments as those for Proposi-

tion 5 of McCluskey ( [30]).

Proposition 3.4. There exist T and ε > 0 such that e(t, 0), i(t, 0) > ε for all
t ≥ T .

4. Asymptotic smothness and global attractor

In order to show the existence of an attractor, it is necessary to obtain the asymp-
totic smoothness of the semiflow Φ. For this purpose, we need the following two
results.

Proposition 4.1. Let

J(t) =

∫ ∞
0

β(a)h(i(t, a))da and L(t) =

∫ ∞
0

δ(a)e(t, a)da,

then the functions J(t) and L(t) are Lipschitz continuous.

Proof. We only give the proof of J being Lipschitz continuous as that for L is
similar. Let β̃ =

∫∞
0
β(a)da. From Assumption 2.2, there exists a positive constant

Mh such that |h(i(t+ l, a))− h(i(t, a))| ≤Mh|i(t+ l, a)− i(t, a)|. Then

|J(t+ l)− J(t)|

=

∣∣∣∣∫ ∞
0

β(a)h(i(t+ l, a))da−
∫ ∞

0

β(a)h(i(t, a))da

∣∣∣∣
=

∣∣∣∣∫ ∞
0

β(a)(h(i(t+ h, a))− h(i(t, a)))da

∣∣∣∣
≤ Mh

∫ ∞
0

β(a)|i(t+ h, a)− i(t, a)|da

= Mh

(∫ h

0

β(a)i(t+ h, a)da+

∫ ∞
h

β(a)i(t+ h, a)da

−
∫ ∞

0

β(a)i(t, a)da

)
.

Then following the discussion in [30], we have

|J(t+ h)− J(t)| ≤ [Mh(β̂Cγ̂ + Cµ̂i + 2Λ̃i) +MhMβC]h.

Denoting ∆J = Mh(β̂Cγ̂ + Cµ̂i + 2Λ̃i) +MhMβC completes the proof.
The following lemma proposed in [36] provides us with the method to prove the

asymptotic smoothness of the semi-flow.

Lemma 4.1 (Theorem 3.2 [36]). The semiflow Φ : R+×X+ → X+ is asymptotically
smooth if there are maps Ψ, Θ : R+×X+ → X+ such that Φ(t, x) = Ψ(t, x)+Θ(t, x)
and the following hold for any bounded closed set C ⊂ X+ that is forward invariant
under Φ:

(i) limt→∞ diamΘ(t, C) = 0;
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(ii) There exists tC ≥ 0 such that Ψ(t, C) has compact closure for each t ≥ tC .

In order to verify the second condition of Lemma 4.1, we need the following
lemma.

Lemma 4.2 (Theorem B.2 [36]). A set C ∈ L1
+(0,∞) has compact closure if and

only if the following conditions hold:

(i) supf∈C
∫∞

0
f(a)da <∞;

(ii) limr→∞
∫∞
r
f(a)da→ 0 uniformly in f ∈ C;

(iii) limh→0+

∫∞
0
|f(a+ h)− f(a)|da→ 0 uniformly in f ∈ C;

(iv) limh→0+

∫ h
0
f(a)da→ 0 uniformly in f ∈ C.

Based on the above preparations, we are ready to show the asymptotic smooth-
ness.

Theorem 4.1. The semiflow Φ generated by (2.1) is asymptotically smooth.

Proof. We first define two maps Ψ and Θ such that Φ = Ψ + Θ, whereΨ(t, x0) = (S(t), ẽ(t, ·), ĩ(t, ·)),

Θ(t, x0) = (0, ϕ̃e(t, ·), ϕ̃i(t, ·)),

where

ẽ(t, a) =

 f(S(t− a))J(t− a)Ω(a) for 0 ≤ a ≤ t,

0 for 0 ≤ t ≤ a,
(4.1)

ĩ(t, a) =

L(t− a)Γ(a) for 0 ≤ a ≤ t,

0 for 0 ≤ t ≤ a,
(4.2)

ϕ̃e(t, a) =


∫ a

0

Λe(ε)
Ω(a)

Ω(ε)
dε for 0 ≤ a ≤ t,

ϕe(a− t)
Ω(a)

Ω(a− t)
+

∫ a

a−t
Λe(ε)

Ω(a)

Ω(ε)
dε for 0 ≤ t ≤ a,

(4.3)

ϕ̃i(t, a) =


∫ a

0

Λi(ε)
Γ(a)

Γ(ε)
dε for 0 ≤ a ≤ t,

ϕi(a− t)
Γ(a)

Γ(a− t)
+

∫ a

a−t
Λi(ε)

Γ(a)

Γ(ε)
dε for 0 ≤ t ≤ a.

(4.4)

Let C ⊂ X+ be any bounded closed set which is forward invariant under Φ.
We first verify that Θ satisfies condition (i) of Lemma 4.1. For x0 ∈ Ω satisfying

‖x0‖X ≤ r, we have

‖Θ(t, x0)‖X

=|0|+
∫ ∞

0

|ϕ̃e(t, a)|da+

∫ ∞
0

|ϕ̃i(t, a)|da



1478 R. Zhang, D. Li & S. Liu

=

∫ ∞
t

∣∣∣∣ϕe(a− t) Ω(a)

Ω(a− t)

∣∣∣∣da+

∫ ∞
t

∣∣∣∣ϕi(a− t) Γ(a)

Γ(a− t)

∣∣∣∣ da
=

∫ ∞
0

∣∣∣∣ϕe(ε)Ω(ε+ t)

Ω(ε)

∣∣∣∣dε+

∫ ∞
0

∣∣∣∣ϕi(ε)Γ(ε+ t)

Γ(ε)

∣∣∣∣dε
=

∫ ∞
0

∣∣∣ϕe(ε)e− ∫ ε+t
ε

(µe(τ)+γ(τ))dτ
∣∣∣dε+

∫ ∞
0

∣∣∣ϕi(ε)e− ∫ ε+t
ε

(µi(τ)+δ(τ))dτ
∣∣∣dε

≤e−µt
∫ ∞

0

|ϕe(ε)|dε+ e−µt
∫ ∞

0

|ϕi(ε)|dε

≤e−µt‖x0‖X
≤e−µtr, t ∈ R+.

This shows that ‖Θ(t, x0)‖X → 0 as t → ∞, which implies that ‖Θ(t, x0)‖X ap-
proaches 0 ∈ Y with uniform exponential speed. This completes the proof of (i) of
Lemma 4.1.

Now we prove that Lemma 4.2 holds. By using Proposition 3.2 it is easy to
verify conditions (i), (ii) and (iv) of Lemma 4.2 are satisfied since

0 ≤ ẽ(t, a) ≤ f ′(0)h′(0)β̄M2e−µ̄γ̄a.

It remains to show condition (iii). For sufficiently small u ∈ (0, t), we have∫ ∞
0

|ẽ(a+ u, t)− ẽ(a, t)|da

=

∫ t−u

0

|f(S(t− a− u))J(t− a− u)Ω(a+ u)− f(S(t− a))J(t− a)Ω(a)|da

+

∫ t

t−u
|0− f(S(t− a))J(t− a)Ω(a)|da

≤f ′(0)

∫ t−u

0

|S(t− a− u)J(t− a− u)Ω(a+ u)− S(t− a)J(t− a)Ω(a)|da

+ f ′(0)

∫ t

t−u
|S(t− a)J(t− a)Ω(a)|da

≤f ′(0)h′(0)β̂C2u+ f ′(0)

∫ t−u

0

S(t− a− u)J(t− a− u)|Ω(a+ u)− Ω(a)|da

+ f ′(0)

∫ t−u

0

|S(t− a− u)J(t− a− u)− S(t− a)J(t− a)|Ω(a)da

≤f ′(0)h′(0)β̂C2u+ Ξ + Π,

(4.5)

where

Ξ = f ′(0)β̂C2

∫ t−u

0

|Ω(a+ u)− Ω(a)|da,

Π = f ′(0)

∫ t−u

0

|S(t− a− u)J(t− a− u)− S(t− a)J(t− a)|Ω(a)da.

From (3.1) and (3.2), we have

0 ≤
∫ t−u

0

|Ω(a+ u)− Ω(a)|da
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=

∫ t−u

0

Ω(a)− Ω(a+ u)da

=

∫ u

0

Ω(a)da−
∫ t

t−u
Ω(a)da

≤
∫ u

0

Ω(a)da

≤u.

Finally, we deal with the last term in (4.5). Since∣∣∣∣dS(t)

dt

∣∣∣∣ ≤ Λs + µsC + β̂f ′(0)h′(0)C2,

S(t) is Lipschitz continuous with a Lipschitz coefficient MS , where Ms = Λs+µsC+

β̂f ′(0)h′(0)C2. Then

|S(t− a− u)J(t− a− u)− S(t− a)J(t− a)|
≤|S(t− a− u)− S(t− a)||J(t− a)|+ |S(t− a− u)||J(t− a− u)J(t− a)|

≤Msuh
′(0)β̂C + ∆JC.

Substituting the above two equations into (4.5), we have∫ ∞
0

|ẽ(a+ u, t)− ẽ(a, t)|da (4.6)

≤f ′(0)h′(0)β̂C2u+ f ′(0)β̂C2u+ f ′(0)Msuh
′(0)β̂C + f ′(0)∆JC.

The constant in (4.6) does not depend on the initial condition x0. Then Lemma 4.2
holds. Consequently, ẽ(t, a) remains in a pre-compact subset Ze in L1

+(0,∞). Sim-

ilarly ĩ(t, a) remains in a pre-compact subset Zi in L1
+(0,∞). This completes the

proof of asymptotic smoothness.
Because of the asymptotic smoothness, point dissipativeness, and boundedness

of orbits of bounded sets, the following result on the existence of global attractor
followes immediately from Theorem 3.4.6 of Hale [14].

Theorem 4.2. The semiflow Φ(t) has a global attractor A in X+, which attracts
all bound subsets of X+.

5. The equilibrium and its local stability

Because there is immigration into the second equation or the third equation of (2.1),
there is no disease-free equilibrium. An endemic equilibrium E∗ = (S∗, e∗(a), i∗(a))
satisfies 

0 = Λs − µsS∗ −
∫ ∞

0

β(a)f(S∗)h(i∗(a))da,

de∗(a)

da
= Λe(a)− (µe(a) + γ(a))e∗(a),

di∗(a)

da
= Λi(a)− (µi(a) + δ(a))i∗(a),

(5.1)
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and 
e∗(0) =

∫ ∞
0

β(a)f(S∗)h(i∗(a))da,

i∗(0) =

∫ ∞
0

γ(a)e∗(a)da.
(5.2)

Solving the last two equations of (5.1) gives
e∗(a) = e∗(0)Ω(a) +

∫ a

0

Λe(σ)
Ω(a)

Ω(σ)
dσ,

i∗(a) = i∗(0)Γ(a) +

∫ a

0

Λi(σ)
Γ(a)

Γ(σ)
dσ.

(5.3)

Now, we show the existence of endemic equilibrium to (2.1).

Proposition 5.1. System (2.1) only has an equilibrium E∗, which is endemic.

Proof. The first equations of (5.1) and (5.2) give

e∗(a) = (Λ− µsS∗)Ω(a) +

∫ a

0

Λe(σ)
Ω(a)

Ω(σ)
dσ. (5.4)

Then

i∗(0) = (Λ− µsS∗)
∫ ∞

0

γ(a)Ω(a)da+

∫ ∞
0

∫ a

0

γ(a)Λe(σ)
Ω(a)

Ω(σ)
dσda (5.5)

and

i∗(a) = i∗(0)Γ(a) +

∫ a

0

Λi(σ)
Γ(a)

Γ(σ)
dσ

= (Λ− µsS∗)Γ(a)

∫ ∞
0

γ(a)Ω(a)da

+Γ(a)

∫ ∞
0

∫ a

0

γ(a)Λe(σ)
Ω(a)

Ω(σ)
dσda (5.6)

+

∫ a

0

Λi(σ)
Γ(a)

Γ(σ)
dσ.

Let

P =

∫ ∞
0

γ(a)Ω(a)da, Q =

∫ ∞
0

β(a)Γ(a)da,

and

M =

∫ ∞
0

∫ a

0

γ(a)Λe(σ)
Ω(a)

Ω(σ)
dσda, N =

∫ ∞
0

∫ a

0

Λi(σ)
Γ(a)

Γ(σ)
dσda.

Then the first equation of (5.1) gives that S∗ is a zero of G in (0, Λ
µs

), where

G(S) = Λ− µsS −
∫ ∞

0

β(a)f(S)h((Λ− µsS)Γ(a)P + Γ(a)M +N)da.

Note that G(0) = Λ > 0 and G( Λ
µs

) < 0. By the Intermediate Vale Theorem,

G has a zero in (0, Λ
µs

). Moreover, since Λ−µsS
f(S) is decreasing and

∫∞
0
β(a)h((Λ −
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µsS)Γ(a)P + Γ(a)M + N)da is concave down, we easily see that G only has one
zero in (0, Λ

µs
). Denote this unique positive zero of G is (0, Λ

µs
) by S∗. Then we

get a unique endemic equilibrium E∗ = (S∗, e∗(a), i∗(a)) with e∗ and i∗ being given
by (5.4) and (5.6), respectively.

Next we consider the local stability of E∗.

Theorem 5.1. The endemic equilibrium E∗ is locally asymptotically stable.

Proof. Introduce the following perturbation variables

x1(t) = S(t)− S∗, x2(t, a) = e(t, a)− e∗(a), x3(t, a) = i(t, a)− i∗(a).

Linearizing (2.1) at E∗ and setting x1(t) = x∗1e
λt, x2(t, a) = x∗2(a)eλt, and x3(t, a) =

x∗3(a)eλt, we obtain the characteristic equation at E∗, which is∣∣∣∣∣∣∣∣∣
λ+ µS +$ 0 π

$ −1 π

0
∫∞

0
γ(a)e−λaΩ(a)da − 1

∣∣∣∣∣∣∣∣∣ = 0,

where $ =
∫∞

0
β(a)f ′(S∗)h(i∗(a))da and π =

∫∞
0
β(a)f(S∗)h′(i∗(a))e−λaΓ(a)da.

After expanding, the characteristic equation is∫ ∞
0

β(a)f ′(S∗)h(i∗(a))da+ λ+ µs

=(λ+ µs)

∫ ∞
0

β(a)f(S∗)h′(i∗(a))e−λaΓ(a)da

∫ ∞
0

γ(a)e−λaΩ(a)da.

By way of contradiction, we assume that it has an eigenvalue λ0 with Re(λ0) ≥ 0.
Then ∣∣∣∣(λ0 + µs)

∫ ∞
0

β(a)f(S∗)h′(i∗(a))e−λ0aΓ(a)da

∫ ∞
0

γ(a)e−λ0aΩ(a)da

∣∣∣∣
≤
∣∣∣∣(λ0 + µs)

∫ ∞
0

β(a)f(S∗)
h(i∗(a))

i∗(0)Γ(a)
e−λ0aΓ(a)da

∫ ∞
0

γ(a)e−λ0aΩ(a)da

∣∣∣∣
≤
∣∣∣∣(λ0 + µs)

e∗(0)

i∗(0)

∫ ∞
0

γ(a)e−λ0aΩ(a)da

∣∣∣∣
≤ |λ0 + µs|

and ∣∣∣∣∫ ∞
0

β(a)f ′(S∗)h(i∗(a))da+ λ0 + µs

∣∣∣∣
=

∣∣∣∣λ0 +
Λs − e∗(0)

S∗
+
e∗(0)f ′(S∗)

f(S∗)

∣∣∣∣
≥
∣∣∣∣λ0 +

(Λs − e∗(0))f ′(S∗)

f(S∗)
+
e∗(0)f ′(S∗)

f(S∗)

∣∣∣∣
=

∣∣∣∣λ0 +
Λsf

′(S∗)

f(S∗)

∣∣∣∣ .
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Here we have used (5.1), (5.2), (5.3) and Assumption 2.2 which implies

f ′(x)x ≤ f(x) ≤ f ′(0)x.

Thus we get ∣∣∣∣λ0 +
Λsf

′(S∗)

f(S∗)

∣∣∣∣ ≤ |λ0 + µs| ,

which is impossible. In fact, we have

|λ0 + µs|2 −
∣∣∣∣λ0 +

Λsf
′(S∗)

f(S∗)

∣∣∣∣2 =

(
2Re(λ0) + µs +

Λsf
′(S∗)

f(S∗)

)(
µs −

Λsf
′(S∗)

f(S∗)

)
< 0,

since

µs −
Λsf

′(S∗)

f(S∗)
=

Λs − e∗(0)

S∗
− Λsf

′(S∗)

f(S∗)

≤ (Λs − e∗(0))f ′(S∗)

f(S∗)
− Λsf

′(S∗)

f(S∗)

=
−e∗(0)f ′(S∗)

f(S∗)

<0.

This completes the proof.

6. Global stability of the endemic equilibrium

In this section, we use Lyapunov functional to prove the global stability of the
endemic equilibrium E∗. We start with some properties of solutions of (2.1).

Proposition 6.1. For any solution (S(t), e(t, ·), i(t, ·)) of (2.1), the following iden-
tities hold.

(a)
∫∞

0
β(a)f(S∗)h(i∗(a))

(
f(S(t))h(i(t,a))
f(S∗)h(i∗(a)) −

e(t,0)
e∗(0)

)
da = 0.

(b)
∫∞

0
γ(a)e∗(a)

(
e(t,a)
e∗(a) −

i(t,0)
i∗(0)

)
da = 0.

(c)
∫∞

0
β(a)f(S∗)h(i∗(a))da− e∗(0)

i∗(0)

∫∞
0
γ(a)e∗(a)da = 0.

Proof. First, ∫ ∞
0

β(a)f(S∗)h(i∗(a))
e(t, 0)

e∗(0)
da

=

∫ ∞
0

β(a)f(S∗)h(i∗(a))
e(t, 0)∫∞

0
β(a)f(S∗)h(i∗(a))da

da

= e(t, 0)

=

∫ ∞
0

β(a)f(S(t))h(i(t, a))da

=

∫ ∞
0

β(a)f(S∗)h(i∗(a))
f(S(t))h(i(t, a))

f(S∗)h(i∗(a))
da.
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This proves (a).
Similarly, we can investigate case (b) and obtain∫ ∞

0

γ(a)e∗(a)
i(t, 0)

i∗(0)
da = i(t, 0) =

∫ ∞
0

γ(a)e∗(a)
e(t, a)

e∗(a)
da.

Finally, (c) is obvious due to the boundary conditions (2.2).
Now, we are ready to prove the main result of this paper.

Theorem 6.1. The endemic equilibrium E∗ of (2.1) is globally asymptotically sta-
ble.

Proof. By Theorem 5.1, it suffices to show that E∗ is globally attractive. For this
purpose, we define a Lyapunov functional as

L(t) = L1(t) +
e∗(0)

i∗(0)
L2(t) + L3(t),

where

L1(t) = S(t)−
∫ S(t)

S∗

f(S∗)

f(τ)
dτ,

L2(t) =

∫ ∞
0

αe(a)g

(
e(t, a)

e∗(a)

)
da,

L3(t) =

∫ ∞
0

αi(a)g

(
i(t, a)

i∗(a)

)
da,

αe(a) =

∫ ∞
a

γ(θ)e∗(θ)dθ,

αi(a) =

∫ ∞
a

β(θ)f(S∗)h(i∗(θ))dθ,

g(x) = x− 1− lnx.

Since g(x) has the global minimum value 0 only at x = 1 and f(τ) is an increasing
function, we know that L is nonnegative and L = 0 only at the endemic equilibrium
E∗.

Now we calculate the derivative of L. Firstly,

dL1(t)

dt
=

(
1− f(S∗)

f(S(t))

)
dS(t)

dt

=

(
1− f(S∗)

f(S(t))

)
(µsS

∗ − µsS(t))

+

(
1− f(S∗)

f(S(t))

)(∫ ∞
0

β(a)f(S∗)h(i∗(a))da

−
∫ ∞

0

β(a)f(S(t))h(i(t, a))da

)
=

µs
f(S(t))

(f(S(t))− f(S∗))(S∗ − S(t))

+

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
1− f(S(t))h(i(t, a))

f(S∗)h(i∗(a))
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− f(S∗)

f(S(t))
+
h(i(t, a))

h(i∗(a))

)
da.

Next, recall that

e(t, a)

e∗(a)
=
e(t− a, 0)Ω(a) + Ψ(a)Ω(a)

e∗(0)Ω(a) + Ψ(a)Ω(a)
=
e(t− a, 0) + Ψ(a)

e∗(0) + Ψ(a)
,

where

Ψ(a) =

∫ a

0

Λe(σ)

Ω(σ)
dσ.

Using the similar calculation as that in [30], we have

dL2(t)

dt
=

d

dt

∫ ∞
0

αe(a)g

(
e(t− a, 0) + Ψ(a)

e∗(0) + Ψ(a)

)
da

=
d

dt

∫ t

−∞
αe(t− τ)g

(
e(τ, 0) + Ψ(t− τ)

e∗(0) + Ψ(t− τ)

)
dτ

= αe(t− τ)g

(
e(τ, 0) + Ψ(t− τ)

e∗(0) + Ψ(t− τ)

) ∣∣∣∣
τ=t

+

∫ t

−∞
α′e(t− τ)g

(
e(τ, 0) + Ψ(t− τ)

e∗(0) + Ψ(t− τ)

)
dτ

+
∫ t
−∞ αe(t− τ)g′

(
e(τ,0)+Ψ(t−τ)
e∗(0)+Ψ(t−τ)

)(
e(τ,0)+Ψ(t−τ)
e∗(0)+Ψ(t−τ)

)′
dτ .

Note that

d

dt

(
e(τ, 0) + Ψ(t− τ)

e∗(0) + Ψ(t− τ)

)
=

Ψ′(t− τ)(e∗(0) + Ψ(t− τ))−Ψ′(t− τ)(e(τ, 0) + Ψ(t− τ))

(e∗(0) + Ψ(t− τ))2

= Ψ′(t− τ)
e∗(0) + Ψ(t− τ)−Ψ(t− τ)− e(τ, 0)

(e∗(0) + Ψ(t− τ))2

=
Ψ′(t− τ)

e∗(0) + Ψ(t− τ)

(
1− e(τ, 0) + Ψ(t− τ)

e∗(0) + Ψ(t− τ)

)
=

Ψ′(t− τ)

e∗(0) + Ψ(t− τ)

(
1− e(t, t− τ)

e∗(t− τ)

)
.

Then with the change of variable we get

dL2(t)

dt
= αe(0)g

(
e(t, 0)

e∗(0)

)
+

∫ ∞
0

α′e(a)g

(
e(t, a)

e∗(a)

)
da

+

∫ ∞
0

αe(a)Λe(a)

e∗(a)

(
1− e∗(a)

e(t, a)

)(
1− e(t, a)

e∗(a)

)
da.

Here we have used g′(x) = 1− 1
x and Ψ′(a)

e∗(0)+Ψ(a) = Λe(a)
e∗(a) . Since α′e(a) = −γ(a)e∗(a)

and αe(0) =
∫∞

0
γ(a)e∗(a)da, we can rewrite dL2(t)

dt as

dL2(t)

dt
=

∫ ∞
0

γ(a)e∗(a)

(
g

(
e(t, 0)

e∗(0)

)
− g

(
e(t, a)

e∗(a)

))
da
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−
∫ ∞

0

αe(a)Λe(a)

e∗(a)

(e(t, a)− e∗(a))2

e(t, a)e∗(a)
da.

Similarly,

dL3(t)

dt
=

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
g

(
i(t, 0)

i∗(0)

)
− g

(
i(t, a)

i∗(a)

))
da

−
∫ ∞

0

αi(a)Λi(a)

i∗(a)

(i(t, a)− i∗(a))2

i(t, a)i∗(a)
da.

Therefore,

dL(t)

dt
=

µs
f(S(t))

(f(S(t))− f(S∗))(S∗ − S(t)) +H (6.1)

−e
∗(0)

i∗(0)

∫ ∞
0

αe(a)Λe(a)

e∗(a)

(e(t, a)− e∗(a))2

e(t, a)e∗(a)
da

−
∫ ∞

0

αi(a)Λi(a)

i∗(a)

(i(t, a)− i∗(a))2

i(t, a)i∗(a)
da,

where

H =

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
1− f(S(t))h(i(t, a))

f(S∗)h(i∗(a))
− f(S∗)

f(S(t))
+
h(i(t, a))

h(i∗(a))

)
da

+
e∗(0)

i∗(0)

∫ ∞
0

γ(a)e∗(a)

(
g

(
e(t, 0)

e∗(0)

)
− g

(
e(t, a)

e∗(a)

))
da

+

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
g

(
i(t, 0)

i∗(0)

)
− g

(
i(t, a)

i∗(a)

))
da.

Because of Assumption 2.2, µs
f(S(t)) (f(S(t))− f(S∗))(S∗ − S(t)) ≤ 0. Now we deal

with H. By using (i) and (ii) of Proposition 6.1, we have

H =

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
1− e(t, 0)

e∗(0)
− f(S∗)

f(S(t))
+
h(i(t, a))

h(i∗(a))

)
da

+

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
ln

f(S∗)

f(S(t))
− ln

f(S∗)

f(S(t))

)
da

+
e∗(0)

i∗(0)

∫ ∞
0

γ(a)e∗(a)

(
e(t, 0)

e∗(0)
− ln

e(t, 0)

e∗(0)
− e(t, a)

e∗(a)
+ ln

e(t, a)

e∗(a)

)
da

+

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
i(t, 0)

i∗(0)
− ln

i(t, 0)

i∗(0)
− i(t, a)

i∗(a)
+ ln

i(t, a)

i∗(a)

)
da

= −
∫ ∞

0

β(a)f(S∗)h(i∗(a))g

(
f(S∗)

f(S(t))

)
da

+

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
−e(t, 0)

e∗(0)
− ln

f(S∗)

f(S(t))
+
h(i(t, a))

h(i∗(a))

)
da

+
e∗(0)

i∗(0)

∫ ∞
0

γ(a)e∗(a)

(
e(t, 0)

e∗(0)
− ln

e(t, 0)

e∗(0)
− e(t, a)

e∗(a)
+ ln

e(t, a)

e∗(a)

)
da

+

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
i(t, 0)

i∗(0)
− ln

i(t, 0)

i∗(0)
− i(t, a)

i∗(a)
+ ln

i(t, a)

i∗(a)

)
da.
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With the help of Proposition 6.1 again, we obtain

H = −
∫ ∞

0

β(a)f(S∗)h(i∗(a))g

(
f(S∗)

f(S(t))

)
da

+

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
1− f(S(t))h(i(t, a))e∗(0)

f(S∗)h(i∗(a))e(t, 0)
− e(t, 0)

e∗(0)

)
da

+

∫ ∞
0

β(a)f(S∗)h(i∗(a))

(
− ln

f(S∗)

f(S(t))
+
h(i(t, a))

h(i∗(a))

)
da

+
e∗(0)

i∗(0)

∫ ∞
0

γ(a)e∗(a)

(
e(t, 0)

e∗(0)
− ln

e(t, 0)

e∗(0)
− e(t, a)

e∗(a)
+ ln

e(t, a)

e∗(a)

)
da

+
e∗(0)

i∗(0)

∫ ∞
0

γ(a)e∗(a)

(
1− e(t, a)i∗(0)

e∗(a)i(t, 0)

)
da

+

∫ ∞
0

β(a)f(S∗)i∗(a)

(
i(t, 0)

i∗(0)
− ln

i(t, 0)

i∗(0)
− i(t, a)

i∗(a)
+ ln

i(t, a)

i∗(a)

)
da

= −
∫ ∞

0

β(a)f(S∗)i∗(a)g

(
f(S∗)

f(S(t))

)
da

−
∫ ∞

0

β(a)f(S∗)i∗(a)g

(
f(S(t))h(i(t, a))e∗(0)

f(S∗)h(i∗(a))e(t, 0)

)
da

+

∫ ∞
0

β(a)f(S∗)i∗(a)

(
g

(
h(i(t, a))

h(i∗(a))

)
− g

(
i(t, a)

i∗(a)

))
da

−e
∗(0)

i∗(0)

∫ ∞
0

γ(a)e∗(a)g

(
e(t, a)i∗(0)

e∗(a)i(t, 0)

)
da.

From [34, Proposition A.1],
(
g
(
h(i(t,a))
h(i∗(a))

)
− g

(
i(t,a)
i∗(a)

))
≤ 0. It follows that

dL(t)

dt
≤ 0.

Since L is bounded on any solution x(t), the omega limit set of x(t) must be
contained inM, the largest invariant subset of {dL

dt = 0}. From {dL
dt = 0}, we have

S(t) = S∗. Take S(t) into system (2.1), gives us e(t, a) = e∗(a) and i(t, a) = i∗(a).
It follows that M = {E∗}. By the Lyapunov-LaSalle invariance principle, E∗ is
globally attractive. This completes the proof.

7. Application and numerical simulations

In this section we apply our results to an example and give some numerical simula-
tions, consider the following model with saturation incidence rate, which have been
studied in [29,49].

dS(t)

dt
= Λs − µsS(t)− S(t)

1 + αS(t)

∫ ∞
0

β(a)i(t, a)da,(
∂

∂t
+

∂

∂a

)
e(t, a) = Λe(a)− (µe(a) + γ(a))e(t, a),(

∂

∂t
+

∂

∂a

)
i(t, a) = Λi(a)− (µi(a) + δ(a))i(t, a),

(7.1)
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with the boundary and initial conditions

e(t, 0) =
S(t)

1 + αS(t)

∫ ∞
0

β(a)i(t, a)da,

i(t, 0) =

∫ ∞
0

γ(a)e(t, a)da,

x0 = (S(0), e(0, ·), i(0, ·)) = (S0, e0, i0) ∈ X+,

(7.2)

where α is the saturation constant.
From Assumption (2.2), we can easily check (7.1) with (7.2) is a special case of

(2.1) with (2.2) and (2.3). By Theorems (6.1), we obtain the following corollary.

Corollary 7.1. The endemic equilibrium E∗∗ of system (7.1) with (7.2) is globally
asymptotically stable.

Next, to verify the validity of the theoretical results of this paper, we perform
numerical simulation to the special case (7.1) with (7.2). Denote Λe, Λi, γ, µi and
δ are the averages of Λe(a), Λi(a), γ(a), µi(a) and δ(a), respectively. Since the
transmission of tuberculosis can described by SEIR model, we choose the param-
eters from references of tuberculosis. Initial condition is set as (4500, 300, 0). The
parameter values used for simulations are listed in Table 2. We set the maximum
age for the upper bound of latent and infection age as 10 years and

β(a) = β

(
1 + sin

(a− 5)π

10

)
, µi(a) = µi

(
1 + sin

(a− 5)π

10

)
,

Λe(a) = Λe

(
1 + sin

(a− 5)π

10

)
, Λi(a) = Λi

(
1 + sin

(a− 5)π

10

)
and

δ(a) = δ

(
1 + sin

(a− 5)π

10

)
, for 0 ≤ a ≤ 10.

From Corollary 7.1, the theoretical result is the endemic equilibrium E∗∗ of
system (7.1) with (7.2) is globally asymptotically stable. This fact is revealed by
Figure 1, it shows an example in which (S(t), e(t, a), i(t, a)) converge to the positive
steady states (S∗, e∗(a), i∗(a)). Furthermore, we show the distribution of e(t, a) and
i(t, a) at age a = 5, Figure 2 shows that this is a stationary distribution. In Figure
3, we choose different averages value of Λi(a), the simulation shows the higher of
Λi, the higher levels of endemic state.

8. Discussion

In this paper, we have investigated the global behavior of an SEIR epidemiological
model with infection age and immigration. By constructing suitable Lyapunov
functional, we have succeeded in showing the global asymptotic stability of the
endemic equilibrium.

Our model is an extended work to that of McCluskey [30], which the model is
a special of ours with f(S(t)) = S(t) and h(i(t, a)) = i(t, a). But the mathematical
analysis here is much more difficult because of the nonlinear incidence rate. As
special examples of the model, we considered the age-structured SEIR models with
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Figure 1. The long time dynamical behaviors (7.1) with (7.2)
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Figure 2. The long time dynamical behaviors at age a = 5 of (7.1) with (7.2)
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Figure 3. The long time dynamical behaviors of i(t, a) at age a = 5 on different Λi
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Table 2. Parameter values used for simulations of model (7.1).

Parameter Value Unit References

β 0.003 Person −1 year −1 [47]
µS , µe 1/70 year −1 [6]
γ 0.00368 year −1 [3]
µi 0.17 year −1 [46]
δ 0.01 year −1 [38]
ΛS 2000 Person year−1 Assumed
α 0.008 Person −1 year −1 Assumed
Λe 400 Person year−1 Assumed
Λi 200 Person year−1 Assumed

saturation incidence rate which is an application on transmission of tuberculosis,
the numerical simulations that come to be consistent with theoretical results.

The results of this paper show that the disease would not die out if there is
immigration of exposed and/or infected individuals. These results also provide
guidelines for control the spread of infectious diseases, just like border screening.
For example, during the 2009 influenza A (H1N1) pandemic in China, there was the
isolation of those detected infected individuals from the border screening [42,48].

Acknowledgements. The authors are very grateful to the editors and reviewers
for their valuable comments and suggestions that have helped us improving the
presentation of this paper. We would also very grateful to Prof. Yuming Chen for
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