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Abstract In this paper, an inverse source problem of time-fractional diffusion-
wave equation on spherically symmetric domain is considered. In general, this
problem is ill-posed. Landweber iterative method is used to solve this inverse
source problem. The error estimates between the regularization solution and
the exact solution are derived by an a-priori and an a-posteriori regularization
parameters choice rules. The numerical examples are presented to verify the
efficiency and accuracy of the proposed methods.
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1. Introduction
In this work, we focus on an inverse source problem for the time-fractional diffusion-
wave equation on spherically symmetric domain as follows:

Dα
t u(r, t)− 2

rur(r, t)− urr(r, t) = f(r), 0 < r < r0, 0 < t < T, 1 < α < 2,

u(r0, t) = 0, 0 ≤ t ≤ T,

u(r, 0) = φ(r), 0 ≤ r ≤ r0,

ut(r, 0) = ψ(r), 0 ≤ r ≤ r0,

limr→0 u(r, t) bounded, 0 < t < T,

u(r, T ) = g(r), 0 ≤ r ≤ r0,

(1.1)
where the time-fractional derivative Dα

t is the Caputo fractional derivative with
respect to t, r0 is the radius, g(r) ∈ L2[0, r0; r

2] is given, f(r) is unknown source.
The Caputo fractional derivative of order α(1 < α < 2) defined by [13]

Dα
t u(x, t) =

1

Γ(2− α)

∫ t

0

∂2u(x, s)

∂s2
ds

(t− s)α−1
, 1 < α < 2. (1.2)
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We use the final time to identify the unknown source f(r). Physically, g(r) can be
measured, there will be measurement errors, and we assume the function gδ(r) ∈
L2[0, r0; r

2] is the measurable data which satisfies

∥gδ(r)− g(r)∥L2[0,r0;r2] ≤ δ, (1.3)

where the positive constant δ > 0 represents a bound on measurement error. And
throughout this paper, L2[0, r0; r

2] denotes the Hilbert space of Lebesgue measur-
able function f with weight r2 in [0, r0]. (·, ·) and ∥ · ∥ denote inner product and
norm on L2[0, r0; r

2], respectively, i.e.,

∥f∥ = (

∫ r0

0

r2|f(r)|2dr) 1
2 , (f, g) =

∫ r0

0

r2f(r)g(r)dr. (1.4)

For the inverse problems of diffusion equation on spherically symmetric domain,
Cheng et al. used different regularization methods to deal with it. For example,
in [2], the authors used the modified Tikhonov regularization method to deal with
inverse heat conduction problem. In [3], the authors used the Tikhonov type’s reg-
ularization method and the Fourier regularization method to deal with the same
problem as [2]. In [4], the modified quasi-boundary value method is used to deal
with a radially symmetric inverse heat conduction problem. From [2–4], when the
authors considered the high dimensional inverse heat conduction problem, the reg-
ularization parameter is a priori choice, which depends on priori bound, but the a
priori bound is difficult to obtain in practical application. In [23], the authors used
the quasi-boundary value method to identify the initial value of heat equation on
a columnar symmetric domain. But, the equation is integer order, not fractional
order. However, time-fractional diffusion equation has received much attention re-
cently, due to many applications in various areas of engineering. The mathematical
theory and associated numerical method for the anomalous diffusion equation have
often been discussed, see [6–8,12]. The inverse source problem about fractional dif-
fusion equation attracted many authors and its physical background can be found
in [17]. Yang et al [24, 25] studied an inverse source problem in a time-fractional
diffusion equation by a mollification regularization method and quasi-reversibility
regularization method. An inversion source problem of time-fractional diffusion
equation is studied by a truncation method [35], a Tikhonov regularization method
and a simplified Tikhonov regularization method [18], a generalized Tikhonov reg-
ularization method [19], a modified quasi-boundary value method [20], Landweber
iterative method [26,27] and quasi-reversibility regularization method [21]. In these
references, about source term identification for the time-fractional diffusion equa-
tion, they only studied one dimensional situations. At present, the research on high
dimensional unknown source identification problem is very difficult. Choulli and
Yarmamoto studied two dimensional unknown source identification problem with
practical application background in [5] and obtained the conditional stability esti-
mate and the uniqueness of solution, but the authors did not give error estimates.
In [28], the authors used the quasi-boundary regularization method to identify the
initial value of time-fractional diffusion equation on spherically symmetric domain.
And there are few research results about the inverse problem for the time-fractional
diffusion-wave equation on spherically symmetric domain. In [9], the authors used
the Landweber method and the conjugate gradient method to identify the space-
dependent force. In [14], the authors solved the backward problem and identified
the unknown source p(t) for the time-fractional diffusion-wave equation. In [15],
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the author identified the time-dependent source for a time-fractional wave equation
in a bound domain and obtained the weak solution of existence, uniqueness and
regularity. In [10], the authors gave the solution of existence, uniqueness for iden-
tifying the time-dependent source for the time-fractional diffusion-wave equation.
The Landweber iterative method and Fourier truncation method are very useful
method for solving the ill-posed problem and has been studied for solving various
types of inverse problems [11,16,22,29–34]. In this paper, we solve an inverse source
problem of time-fractional diffusion-wave equation on spherically symmetric domain
by the Landweber iterative method.

The remainder of this paper is composed of five sections. Some preliminary
results are presented in Section 2. Section 3 develops the Landweber iterative regu-
larization method and gives convergence estimates under an a-priori regularization
parameter choice rule and an a-posteriori regularization parameter choice rule, re-
spectively. Section 4 provides some numerical examples to illustrate the efficiency
of our method. Finally, Section 5 gives a simple conclusion.

2. Preliminaries
In this section, we give preliminary results which are very useful for our main
conclusion.

Definition 2.1 ( [13]). The generalized Mittag-Leffler function is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C, (2.1)

where α > 0 and β ∈ R are arbitrary constants.

Lemma 2.1 ( [13]). Let λ > 0, then we have∫ ∞

0

e−pttγk+β−1Eγ,β
(k)(±atγ)dt = k!pγ−β

(pγ ∓ a)
k+1

, Re(p) > ∥a∥
1
γ , (2.2)

where Eγ,β
(k)(y) := dk

dykEγ,β(y).

Lemma 2.2 ( [13]). Suppose α < 2, β ∈ R, πα
2 < µ < min{π, πα} and µ ≤

|arg(z)| ≤ π. Then there exists a constant C1 > 0 such that

|Eα,β(z)| ≤
C1

1 + |z|
. (2.3)

Lemma 2.3 ( [1]). For 1 < α < 2, β ∈ R and η > 0, we have

Eα,β(−η) =
1

Γ(β − α)η
+O(

1

η2
), η → ∞. (2.4)

Lemma 2.4. For λn = (nπr0 )
2, n = 1, 2, ..., there exists positive constants C2, C3

depending on α, T,C1 such that

C2

n2Tα
≤ |Eα,1+α(−λnTα)| ≤ C3

n2Tα
, (2.5)

where C2 =
r20
π2 , C3 =

r20C1

π2 .
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Proof. By Lemma 2.2, we know

|Eα,α+1(−λnTα)| ≤ C1

1 + λnTα
=

C1

1 + (nπr0 )
2Tα

≤ C1

(nπr0 )
2Tα

=
C3

n2Tα
. (2.6)

Using Lemma 2.3, we have

|Eα,α+1(−λnTα)| ≥ 1

Γ(1)(nπr0 )
2Tα

=
r20

π2n2Tα
=

C2

n2Tα
. (2.7)

Then the proof is completed.
Now, we will need the solution of the direct problem (1.1). Applying the sepa-

ration of variables and Laplace transform of Mittag-Leffler function, we can get the
solution of problem (1.1) as follows:

u(r, t) =

∞∑
n=1

[tαEα,α+1((
nπ

r0
)2tα)(f(r), ωn(r)) + Eα,1(−(

nπ

r0
)2tα)(φ(r), ωn(r))

+ tEα,2(−(
nπ

r0
)2tα)(ψ(r), ωn(r))]ωn(r),

(2.8)

where
ωn(r) :=

√
2nπ

3
√
r30

sin(nπrr0
)

nπr
r0

, n = 1, 2, · · · ,

is a standard orthogonal system with weight r2 in the [0, r0] and it is complete
in the class of square integrable functions on [0, r0]. Now let fn = (f(r), ωn(r)),
φn = (φ(r), ωn(r)), ψn = (ψ(r), ωn(r)) and gn = (g(r), ωn(r)). fn is the Fourier
coefficient of f(r), which is defined as follows

fn =

∫ r0

0

r2f(r)ωn(r)dr. (2.9)

Using g(r) = u(r, T ), we have

g(r) =

∞∑
n=1

[TαEα,α+1((
nπ

r0
)2Tα)fn + Eα,1(−(

nπ

r0
)2Tα)φn

+ TEα,2(−(
nπ

r0
)2Tα)ψn]ωn(r),

(2.10)

then

gn =(g(r), ωn(r)) = TαEα,α+1(−(
nπ

r0
)2Tα)fn + Eα,1(−(

nπ

r0
)2Tα)φn

+ TEα,2(−(
nπ

r0
)2Tα)ψn.

(2.11)

From (2.11), we can get

fn =
gn − Eα,1(−(nπr0 )

2Tα)φn − TEα,2(−(nπr0 )
2Tα)ψn

TαEα,α+1(−(nπr0 )
2Tα)

=
hn

TαEα,α+1(−(nπr0 )
2Tα)

,

(2.12)
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where hn := gn − Eα,1(−(nπr0 )
2Tα)φn − TEα,2(−(nπr0 )

2Tα)ψn.
So

f(r) =

∞∑
n=1

hn
TαEα,α+1(−(nπr0 )

2Tα)
ωn(r). (2.13)

To find f(r), we just need to solve the following integral equation

(Kf)(r) = h(r), 0 ≤ r ≤ r0. (2.14)

It is easily to see that K is a self adjoint operator. And its eigenvalue and eigenvector
are

kn = TαEα,α+1(−(
nπ

r0
)2Tα)

and ωn(r), respectively, n = 0, 1, 2, · · · . From [35], we know K : L2[0, r0; r
2] →

L2[0, r0; r
2] is compact operator, thus this problem is ill-posed. Therefore we use

the Landweber iterative regularization method to recover it.
In order to obtain the error estimate, we assume that f(r) satisfies the following

priori bound condition:

∥f(·)∥Hp
≤ E, p > 0, E > 0, (2.15)

and we define ∥f(·)∥p as follows:

∥f(·)∥Hp
:= ∥

∞∑
n=1

(1 + n2)
p
2 (f(·), ωn(·))∥. (2.16)

Theorem 2.1. Let f(r) ∈ Hp satisfy a priori bound condition

∥f∥Hp
≤ E, p > 0, (2.17)

then we have
∥f∥ ≤ C4E

2
p+2 ∥h∥

p
p+2 , p > 0, (2.18)

where C4 := ( 1
C2

)
p

p+2 is a constant depending on α, T , p.

Proof. From (2.12) and Hölder inequality, we have

∥f∥2 =

∞∑
n=1

f2n =

∞∑
n=1

h2n
|TαEα,α+1(−(nπr0 )

2Tα)|2

=

∞∑
n=1

h
4

p+2
n

|TαEα,α+1(−(nπr0 )
2Tα)|2

h
2p

p+2
n

≤ (

∞∑
n=1

h2n
|TαEα,α+1(−(nπr0 )

2Tα)|p+2
)

2
p+2 (

∞∑
n=1

h2n)
p

p+2 .

(2.19)

Applying (2.5), we get
∞∑

n=1

h2n
|TαEα,α+1(−(nπr0 )

2Tα)|p+2
≤

∞∑
n=1

h2n
|TαEα,α+1(−(nπr0 )

2Tα)|2
(
n2

C2
)p

≤
∞∑

n=1

f2n(1 + n2)pC−p
2 = ∥f∥2pC

−p
2 .

(2.20)
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Combining (2.19) and (2.20), we obtain

∥f∥2 ≤ C
− 2p

p+2

2 ∥f∥
4

p+2
p ∥h∥

2p
p+2 .

So far, this Theorem is proved.

3. Regularization method and convergence rates
In this section, we propose the Landweber iterative regularization method to solve
this inverse source problem of time-fractional diffusion-wave equation on spherically
symmetric domain and give two error estimates under an a-priori regularization pa-
rameter choice rule and an a-posteriori parameter choice rule.

We can use the Landweber iterative regularization method to obtain the regu-
larization solution fm,δ(r) for (1.1). We use operator equation f = (I − aK∗K)f +
aK∗h instead of equation Kf = h for some a > 0 to get the following iterative
format:

f0,δ(r) = 0, fm,δ(r) = (I − aK∗K)fm−1,δ(r)+ aK∗hδ(r), m = 1, 2, 3, · · · , (3.1)

where m is the iterative step number, which is also selected as regularization pa-
rameter. a is called the relaxation factor and satisfies 0 < a < 1

∥K∥2 . For K is a
self-adjoint operator, we denote operator Rm : L2[0, r0; r

2] → L2[0, r0; r
2] as follows

Rm = a

m−1∑
k=0

(I − aK∗K)kK, m = 1, 2, 3, · · · ,

then we obtain

fm,δ(r) = Rmh
δ(r) = a

m−1∑
k=0

(I − aK2)kKhδ(r). (3.2)

Using (3.1) and the singular values kn of K, we get

fm,δ(r) =

∞∑
n=1

1− (1− aT 2αE2
α,α+1(−(nπr0 )

2Tα))m

TαEα,α+1(−(nπr0 )
2Tα)

hδnωn(r), (3.3)

where hδn := gδn − Eα,1(−(nπr0 )
2Tα)φn − TEα,2(−(nπr0 )

2Tα)ψn.

Because kn = TαEα,α+1(−(nπr0 )
2Tα) is singular value of K and 0 < a < 1

∥K∥2 ,
we can easily see 0 < aT 2αE2

α,α+1(−(nπr0 )
2Tα) < 1.

In the following, we give two convergence estimates for ∥fm,δ(r)− f(r)∥ under
an a-priori and an a-posteriori choice rule for the regularization parameter.

3.1. The error estimate with a priori parameter choice
Theorem 3.1. Assume the a priori condition (1.3) and (2.15) hold, let f(r) given
by (2.13) be the exact solution of problem (1.1), fm,δ(r) given by (3.3) be the
regularization solution. Choose the regularization parameter m = [γ], where

γ = (
E

δ
)

4
p+2 , (3.4)
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then we can obtain the following error estimate

∥fm,δ(r)− f(r)∥ ≤ C5E
2

p+2 δ
p

p+2 , (3.5)

where [γ] denotes the largest integer less than or equal to b and C5 =
√
a+ ( p

aC2
2
)

p
4

is positive constant.

Proof. By the triangle inequality, we get

∥fm,δ(r)− f(r)∥ ≤ ∥fm,δ(r)− fm(r)∥+ ∥fm(r)− f(r)∥. (3.6)

On the one hand, from (1.3) and (3.3), we have

∥fm,δ(r)− fm(r)∥2 =

∞∑
n=1

(1− (1− aT 2αE2
α,α+1(−(nπr0 )

2Tα))m)2

T 2αE2
α,α+1(−(nπr0 )

2Tα)
(gδn − gn)

2

≤ sup
n∈N

D(n)2δ2,

(3.7)

where

D(n) :=
1− (1− aT 2αE2

α,α+1(−(nπr0 )
2Tα))m

TαEα,α+1(−(nπr0 )
2Tα)

.

Because 0 < x < 1, we have x ≤
√
x, then

1− (1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))m ≤

√
1− (1− aT 2αE2

α,α+1(−(
nπ

r0
)2Tα))m.

(3.8)
Using Bernoulli inequality, we have√

1− (1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))m ≤

√
amTαEα,α+1(−(

nπ

r0
)2Tα). (3.9)

Combining (3.8) and (3.9), we get

1− (1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))m ≤

√
amTαEα,α+1(−(

nπ

r0
)2Tα), (3.10)

then
D(n) ≤

√
am, (3.11)

so
∥fm,δ(r)− fm(r)∥ ≤

√
amδ. (3.12)

On the other hand, from (2.13) and (2.15), we can obtain

∥fm(r)− f(r)∥2 =

∞∑
n=1

(
(1− aT 2αE2

α,α+1(−(nπr0 )
2Tα))2m

T 2αE2
α,α+1(−(nπr0 )

2Tα)
h2n

=

∞∑
n=1

(1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))2m(1 + n2)−p(f2n(1 + n2)p)

≤ sup
n∈N

M(n)2E2,

(3.13)
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where
M(n) := (1− aT 2αE2

α,α+1(−(
nπ

r0
)2Tα))m(1 + n2)−

p
2 .

Using (2.5), we get

M(n) ≤ (1− aC2
2

n4
)m(n2)−

p
2 . (3.14)

Let
F (x) := (1− aC2

2

x2
)mx−

p
2 , x = n2. (3.15)

Suppose x0 satisfy F ′
(x0) = 0, then we easily get

x0 = (
aC2

2 (4m+ p)

p
)

1
2 ,

thus we have

F (x) ≤ F (x0) = (1− p

4m+ p
)m(

aC2
2 (4m+ p)

p
)−

p
4

≤ (
p

(m+ 1)aC2
2

)
p
4 ,

(3.16)

i.e.,
M(n) ≤ (

p

aC2
2

)
p
4 (m+ 1)−

p
4 . (3.17)

So
∥fm(r)− f(r)∥ ≤ (

p

aC2
2

)
p
4 (m+ 1)−

p
4E. (3.18)

Combining (3.12) and (3.18), we choose m = [γ] and we get

∥fm,δ(r)− f(r)∥ ≤ C5E
2

p+2 δ
p

p+2 , (3.19)

where C5 =
√
a+ ( p

aC2
2
)

p
4 .

This Theorem is proved.

3.2. The error estimate with a posteriori parameter choice
Assume τ > 1 be given a fixed constant. Stop the algorithm at the first occurrence
of m = m(δ) ∈ N0 with

∥Kfm,δ(r)− hδ(r)∥ ≤ τδ, (3.20)

where ∥hδ∥ ≤ τδ.

Lemma 3.1. Let ρ(m) = ∥Kfm,δ(r)− hδ(r)∥, then we have the following results:
(a) ρ(m) is a continuous function;
(b) limm→0 ρ(m) = ∥hδ∥;
(c) limm→+∞ = 0;
(d) ρ(m) is a strictly decreasing function, for any m ∈ (0,+∞).

Lemma 3.2. Let (3.20) hold, so the regularization parameter m = m(δ) ∈ N0

satisfies
m ≤ C

4
p+2

3 (
p+ 2

2aC2
2

)(
E

(τ − 1)δ
)

4
p+2 . (3.21)
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Proof. From (3.2) and (3.3), we have

Rmh =

∞∑
n=1

1− (1− aT 2αE2
α,α+1(−(nπr0 )

2Tα))m

TαEα,α+1(−(nπr0 )
2Tα)

hnωn(r). (3.22)

Thus

∥KRmh− h∥2 =

∞∑
n=1

(1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))2mh2n. (3.23)

Because |1 − aT 2αE2
α,α+1(−(nπr0 )

2Tα)| < 1, we obtain ∥KRm−1 − I∥ ≤ 1. Using
(3.20), we obtain

∥KRm−1h− h∥ ≥ ∥KRm−1h
δ − hδ∥ − ∥(KRm−1 − I)(h− hδ)∥

≥ τδ − ∥KRm−1 − I∥δ
≥ (τ − 1)δ.

On the other hand, using (2.15), we obtain

∥KRm−1h− h∥ = ∥
∞∑

n=1

(1− (1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))m−1)hnωn −

∞∑
n=1

hnωn∥

=

∞∑
n=1

(1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))m−1|hn|

=

∞∑
n=1

(1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))m−1

· |TαEα,α+1(−(
nπ

r0
)2Tα)||fn(1 + n2)

p
2 |(1 + n2)−

p
2

= sup
n∈N

H(n)E,

where

H(n) := (1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))m−1|TαEα,α+1(−(

nπ

r0
)2Tα)|(1 + n2)−

p
2 ,

so
(τ − 1)δ ≤ H(n)E. (3.24)

Using (2.5), we have

H(n) ≤ (1− a
C2

2

n4
)m−1(n2)−

p
2−1C3. (3.25)

Let
G(x) := (1− a

C2
2

x2
)m−1x−

p
2−1C3, x = n2. (3.26)

Suppose x∗ satisfies G′
(x∗) = 0, then we easily get

x∗ = (
aC2

2 (4m+ p− 2)

p+ 2
)

1
2 ,
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so

G(x) ≤ G(x∗) = (1− p+ 2

4m+ p− 2
)m−1(

aC2
2 (4m+ p− 2)

p+ 2
)−

p+2
4 C3

≤ C3(
p+ 2

2maC2
2

)
p+2
4 .

(3.27)

Thus we obtain
H(n) ≤ C3(

p+ 2

2aC2
2

)
p+2
4 m− p+2

4 . (3.28)

Using (3.24) and (3.28), we get

(τ − 1)δ ≤ C3(
p+ 2

2aC2
2

)
p+2
4 m− p+2

4 E. (3.29)

Thus
m ≤ C

4
p+2

3 (
p+ 2

2aC2
2

)(
E

(τ − 1)δ
)

4
p+2 .

Theorem 3.2. Assume the a priori condition (1.3) and (2.15) hold, let f(r) given
by (2.13) be the exact solution of problem (1.1), fm,δ(r) given by (3.3) be the reg-
ularization solution. Regularization parameter m is given by (4.1). Then we have
the following error estimate

∥fm,δ(r)− f(r)∥ ≤ (C5(τ + 1)
p

p+2 + C6)E
2

p+2 δ
p

p+2 , (3.30)

where C6 = (p+2
2C2

2
)

1
2 ( C3

τ−1 )
2

p+2 .

Proof. By the triangle inequality, we get

∥fm,δ(r)− fm(r)∥ ≤ ∥fm,δ(r)− fm(r)∥+ ∥fm(r)− f(r)∥. (3.31)

Using (3.12) and Lemma 3.2., we get

∥fm,δ(r)− fm(r)∥ ≤
√
amδ ≤ C6E

2
p+2 δ

p
p+2 , (3.32)

where C6 := (p+2
2C2

2
)

1
2 ( C3

τ−1 )
2

p+2 . For the second part of the right side of (3.31), we
know

K(fm(r)− f(r)) =

∞∑
n=1

−(1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))mhnωn(r)

=

∞∑
n=1

−(1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))m(hn − hδn)ωn(r)

+

∞∑
n=1

−(1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))mhδnωn(r).

Using (1.3) and (3.20), we have

∥K(fm(r)− f(r))∥ ≤ (τ + 1)δ. (3.33)
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Due to

∥fm(r)− f(r)∥Hp

= (

∞∑
n=1

(1− aT 2αE2
α,α+1(−(

nπ

r0
)2Tα))2m

h2n
(TαEα,α+1(−λnTα))2

(1 + n2)p)
1
2

≤ (

∞∑
n=1

(1 + n2)p
h2n

(TαEα,α+1(−(nπr0 )
2Tα))2

)
1
2

≤ E.

Using Theorem 2.1., we have

∥fm(r)− f(r)∥ ≤ C4(τ + 1)
p

p+2E
2

p+2 δ
p

p+2 . (3.34)

Therefore
∥fm,δ(r)− f(r)∥ ≤ (C4(τ + 1)

p
p+2 + C6)E

2
p+2 δ

p
p+2 .

4. Numerical results
In this section, we present numerical examples to illustrate the efficiency and accu-
racy of the proposed method.

Since the analytic solution of problem (1.1) is difficult to obtain, we construct
the final data g(r) by solving the forward problem with given data f(r), φ(r) and
ψ(r) by a finite difference method. The noisy data are generated by adding a ran-
dom perturbation, i.e., gδ = g + εg · (2rand(size(g)− 1)). The corresponding noise
level is calculated by δ = ε∥g∥.

Let r0 = π, T = 1 and consider the following time-fractional diffusion-wave
equation

Dα
t u(r, t)− 2

rur(r, t)− urr(r, t) = f(r), 0 < r < π, 0 < t < T, 1 < α < 2,

u(r, 0) = φ(r), 0 ≤ r ≤ π,

ut(r, 0) = ψ(r), 0 ≤ r ≤ π,

limr→0 u(r, t) bounded, 0 < t < T,

u(π, t) = 0, 0 ≤ t ≤ T,

u(r, T ) = g(r), 0 ≤ r ≤ π.

(4.1)
Time and space of grid step size are ∆t = T

N and ∆r = π
M , respectively. The

grid points on the time interval [0, T ] is tn = n∆t (n = 0, 1, . . . , N) and ri = i∆r
(i = 0, 1, . . . ,M) is grid points on the space interval [0, r0]. The approximate values
of each grid points u is denoted by uni = (ri, tn).

The time-fractional derivative is given in [1] as follows:

Dα
t u(ri, tn)=

(∆t)1−α

Γ(3−α)
[b0

1

∆t
(uni−un−1

i )−
n−1∑
j=1

(bn−j−1−bn−j)
1

∆t
(uji−u

j−1
i )−bn−1ψ(xi)],

(4.2)
where bk = (k + 1)2−α − (k)2−α, k = 0, 1, 2, · · · .
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Figure 1. The exact solution and regularization solutions by using the a posteriori parameter choice
rule for Example 4.1. (a)α = 1.2, (b)α = 1.5, (c)α = 1.8.

We approximate the space derivatives by

ur(ri, tn) ≈
uni+1 − uni

∆r
, (4.3)

urr(ri, tn) ≈
uni+1 − 2uni + uni−1

(∆r)2
. (4.4)

Example 4.1. Choose

f(r) = sin(αr),

φ(r) = 2α sin r,

ψ(r) = sin r.

Figure 1 shows the comparisons between the exact solution and its regularized
solution for various noise levels ε = 0.01, 0.005, 0.001 in the case of α = 1.2, 1.5, 1.8.
The iterative step m = 352, 753, 4670 for α = 1.2, m = 526, 1042, 6471 for α = 1.5
and m = 1062, 2306, 19286 for α = 1.8.

Example 4.2. Choose

f(r) = αr cos r,

φ(r) = 4 cos r,

ψ(r) = 0.
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Figure 2. The exact solution and regularization solutions by using the a posteriori parameter choice
rule for Example 4.2. (a)α = 1.2, (b)α = 1.5, (c)α = 1.8.

Figure 2 shows the comparisons between the exact solution and its regularized
solution for various noise levels ε = 0.01, 0.05, 0.001 in the case of α = 1.2, 1.5, 1.8.
The iterative step m = 7518, 22361, 229455 for α = 1.2, m = 7816, 23233, 238255
for α = 1.5 and m = 8029, 24013, 244837 for α = 1.8.

According to above two examples, we can find that the smaller ε and α, the
fitting effect between the exact solution and regularized solution is better. Mean-
while, numerical examples verify that the Landweber iterative method is efficient
and accurate.

5. Conclusion
An inverse problem of the time-fractional diffusion-wave equation on spherically
symmetric domain is considered. Based on the conditional stability, we propose a
Landweber iterative regularization method to deal with it and derive the a priori
and a posteriori convergence estimates. In addition, numerical examples verify that
the Landweber iterative regularization method is efficient and accurate.
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