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ITERATIVE METHOD FOR A CLASS OF
FOURTH-ORDER P -LAPLACIAN BEAM

EQUATION∗

Zhanbing Bai1,†, Zengji Du2 and Shuo Zhang3

Abstract This paper considers the existence of the solutions for a class of
fourth-order p-Laplacian. The boundary value problem considered can de-
scribe the tiny deformation of an elastic beam. By using a novel efficient
iteration method, the existence and uniqueness result of solution for the prob-
lem is obtained. An example is given to illustrate the main results.
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1. Introduction

This paper studies a class of fourth-order p-Laplace boundary value problem.

[φp(u
′′(t))]′′ = f(t, u(t), u′′(t)), t ∈ (0, 1), (1.1)

u(0) = 0, u(1) = au(ξ), u′′(0) = 0, φp(u
′′(1)) = bφp(u

′′(ζ)), (1.2)

where φp(t) = |t|p−2 · t, p > 1, 0 < ξ, ζ < 1, 0 ≤ a < 1/ξ, 0 ≤ b < 1/ζ, 1/p+1/q =
1, p, q ≥ 0, function f : [0, 1]× R2 → R is continuous.

Problems of the above form occur in beam theory [8], for example,

(1). a beam with small deformations (also called geometric linearity);

(2). a beam of a material which satisfies a nonlinear power-like stress-strain law;

(3). a beam with two-sided links (for example, springs) which satisfies a nonlinear
power-like elasticity law.

Many scholars have investigated the boundary value problem (1.1), (1.2) via
fixed point theorem, nonlinear alternative on cone, upper and lower solutions, or
coincidence degree theorem [1]– [40]. The best known setting is the boundary value
problem when p = 2, a = b = 0.
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This problem arises when one describes deformations of an elastic beam. Usually
both ends are simply supported, or one end is simply supported and the other end is
clamped by sliding clamps. Also vanishing moments and shear forces at the beam
ends are frequently included in the boundary conditions [18]. One derivation of
this fourth order equation plus the two-point boundary conditions occurs when the
method of lines is used in the description over regions of certain partial differential
equations describing the detection of an elastic beam. Ma etc [25] investigated the
following problem in 1997,

u(4)(t) = f(t, u(t), u′′(t)), 0 < t < 1, (1.3)

u(0) = u(1) = u′′(0) = u′′(1) = 0. (1.4)

For this kind of problem, the method of upper and lower solutions is effective.
They obtained the upper and lower solutions via some new maximum principles
and constructed monotone sequences to get the existence of the positive solutions.
The maximum principles of fourth-order linear operator play a very important role
in their proofs. However, when p 6= 2, the operator [φp(u

′′)]′′ is a nonlinear operator,
the maximum principle and the Fredholm alternative cannot be applied.

For p 6= 2, a 6= 0, b 6= 0, Bai etc [6] investigated the problem:

[φp(u
′′(t))]′′ = f(t, u(t), u′′(t)), t ∈ (0, 1), (1.5)

u(0) = 0, u(1) = au(ξ), u′′(0) = 0, u′′(1) = bu′′(ζ), (1.6)

where φp(t) = |t|p−2 · t, p > 1, 0 < ξ, ζ < 1, 0 ≤ a < 1
ξ , 0 ≤ b < min{ 1ζ , φq(

1
ζ )},

function f : [0, 1] × R2 → R is continuous. The existence of iterative solutions
for problem (1.5), (1.6) without any growth restriction on the nonlinear term f
is obtained. The solution is between a lower solution β and an upper solution α.
However, the construction of upper and lower solutions is difficult and complicate.
For most boundary value problems, we even can’t get suitable upper and lower
solutions. We pointed here that there was a small mistake in [6] that the boundary
condition u′′(1) = bu′′(ζ) should be φp(u

′′(1)) = bφp(u
′′(ζ)).

More recently, Bachouche etc [2] proved existence of positive solutions to a
more general fourth-order semipositone ϕ-Laplacian boundary value problem. The
nonlinearity may have time singularity and change sign. Existence results are proved
using the Krasnoselskii and the Leggett-Williams fixed point theorems.

In 2017, Dang etc [13] proposed a novel efficient method for boundary value
problem (1.3), (1.4) and obtained the existence of positive solutions. They reduced
the problem to two second-order operator equations. Under some easily verified
conditions on this function in a specified bounded domain he proved the contraction
of the operator. This guarantees the existence and uniqueness of a solution of the
problem. This idea also be used for other beam equation [14,32].

Motivated by the mentioned excellent works, in this paper, we use the method
due to Dang to obtain the existence of the positive solution. Differently from
[3, 10, 25], we must consider influence of the index p. Specifically, we define a
more general operator A to consider the problem (1.1), (1.2). Some preliminaries
are presented in section 2. The main results will be given in section 3. An example
is presented in section 4.
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2. Preliminaries

Suppose that E = C[0, 1] is a real Banach space with the maximum norm ‖u‖ =
maxt∈[0,1] |u(t)|. Given η ∈ C2[0, 1], consider the following boundary value problem

[φp(u
′′(t))]′′ = f(t, η(t), η′′(t)), t ∈ (0, 1), (2.1)

u(0) = 0, u(1) = au(ξ), u′′(0) = 0, φp(u
′′(1)) = bφp(u

′′(ζ)), (2.2)

where 0 ≤ a < 1/ξ, 0 ≤ b < 1/ζ.

Lemma 2.1. Boundary value problem (2.1), (2.2) has a unique solution u(t) and

u(t) = (Tη)(t) = (HF (η))(t),

where

(Fη)(s) =

∫ 1

0

G1(s, τ)f(τ, η(τ), η′′(τ))dτ,

(Hy)(t) =

∫ 1

0

G2(t, s)φq(y(s))ds,

G1(t, s) =


s ∈ [0, ζ] :

{
t

1−bζ [(1− s)− b(ζ − s)], t ≤ s;
s

1−bζ [(1− t)− b(ζ − t)], s ≤ t,

s ∈ [ζ, 1] :

{
1

1−bζ t(1− s), t ≤ s;
1

1−bζ [s(1− t) + bζ(t− s)], s ≤ t,

G2(t, s) =


s ∈ [0, ξ] :

{
t

1−aξ [(1− s)− a(ξ − s)], t ≤ s;
s

1−aξ [(1− t)− a(ξ − t)], s ≤ t,

s ∈ [ξ, 1] :

{
1

1−aξ t(1− s), t ≤ s;
1

1−aξ [s(1− t) + aξ(t− s)], s ≤ t.

Moreover, G1(t, s) ≥ 0, G2(t, s) ≥ 0, for t, s ∈ [0, 1].

Proof. Let y = φp(u
′′), then boundary value problem (2.1), (2.2) changed as

y′′(t) = f(t, η(t), η′′(t)), t ∈ (0, 1), (2.3)

u′′(t) = φq(y(t)), (2.4)

y(0) = 0, y(1) = by(ζ), (2.5)

u(0) = 0, u(1) = au(ξ). (2.6)

With the condition 0 ≤ a < 1/ξ, 0 ≤ b < 1/ζ, the Green function for the second
order three-point boundary value problem was given in [17]. We denote the Green
function of (2.3), (2.5) with G1(t, s), and the Green function of (2.4), (2.6) with
G2(t, s). The positivity of the Green functions are a special case of [5]. We refer the
readers to [5,17] for details. A computation show that for p > 1, there is φq = φ−1p .
In fact, let

s = φp(t) = |t|p−2 · t
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=

 tp−1, for t ≥ 0;

−|t|p−1, for t < 0,

then

t =

 s
1

p−1 , for s ≥ 0;

−|s|
1

p−1 , for s < 0.

=

 sq−1, for s ≥ 0;

−|s|q−1, for s < 0.

= |s|q−2 · s = φq(s).

To sum up, the proof is complete.

Lemma 2.2. Given ϕ ∈ C[0, 1], let

v(t) = φq

(∫ 1

0

G1(t, s)ϕ(s)ds

)
, u(t) =

∫ 1

0

G2(t, τ)v(τ)dτ,

M1 = max
0≤t≤1

∫ 1

0

G1(t, s)ds, M2 = max
0≤t≤1

∫ 1

0

G2(t, s)ds.

Then

‖v‖ ≤Mq−1
1 ‖ϕ‖q−1, ‖u‖ ≤M2M

q−1
1 ‖ϕ‖q−1.

where p, q > 0, 1/p+ 1/q = 1, ‖ · ‖ is the maximum norm.

Proof. Noticed that q − 1 = 1/(p− 1) and φq is increasing, so

v(t) = φq

(∫ 1

0

G1(t, s)ϕ(s)ds

)
≤ φq

(∫ 1

0

G1(t, s)||ϕ||ds
)

≤ φq
(∫ 1

0

G1(t, s)ds‖ϕ‖
)
≤Mq−1

1 ||ϕ||q−1.

Thus, ‖v‖ ≤ Mq−1
1 ‖ϕ‖q−1. Similarly, ‖u‖ ≤ M2M

q−1
1 ‖ϕ‖q−1. The proof is com-

pleted.

Lemma 2.3 (Lemma 2.2, [33]). The following relations hold:
(1) If 1 < q ≤ 2, then for all u, v ∈ R,

|φq(u+ v)− φq(u)| ≤ 22−q|v|q−1,

(2) If q > 2, then for all u, v ∈ R,

|φq(u+ v)− φq(u)| ≤ (q − 1)(|u|+ |v|)q−2|v|.

3. Main results

In this section, we use the Banach fixed point theorem to obtain the existence of
positive solution of boundary value problem (1.1), (1.2).
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Given M > 0, denote by the set DM as

DM =
{

(t, u, v) ∈ R3 | 0 ≤ t ≤ 1, |u| ≤M2M
q−1
1 Mq−1, |v| ≤Mq−1

1 Mq−1
}
.

Denote by B[O,M ] a closed ball centred at O with the radius M in the space of
continuous functions C[0, 1].

Theorem 3.1. Suppose that f : [0, 1]×R2 → R is a continuous function, 1 < p ≤ 2
and there exist three numbers M,L1, L2 ≥ 0 such that

(i) |f(t, u, v)| ≤M , for (t, u, v) ∈ DM ;

(ii) |f(t, u2, v2)−f(t, u1, v1)| ≤ L1|u2−u1|+L2|v2−v1|, for (t, ui, vi) ∈ DM , i =
1, 2;

(iii) k := (q − 1)(3M)q−2Mq−1
1 (L1M2 + L2) < 1.

Then the boundary value problem (1.1), (1.2) has a unique solution u(t) ∈ C[0, 1]
such that

|u(t)| ≤M2M
q−1
1 Mq−1, |u′′(t)| ≤Mq−1

1 Mq−1.

Proof. Firstly, define an operator A : C[0, 1]→ C[0, 1] by

(Aϕ)(t) = f

(
t,

∫ 1

0

G2(t, τ)φq

(∫ 1

0

G1(τ, s)ϕ(s)ds

)
dτ ,

φq

(∫ 1

0

G1(t, s)ϕ(s)ds

))
.

By the continuity of G1(t, s), G2(t, s) and f(t, u, v), it is easy to check that A is a
continuous operator. With Lemma 2.1, it is clear that if ϕ(t) is a fixed point of the
operator A, then

u(t) =

∫ 1

0

G2(t, τ)φq

(∫ 1

0

G1(τ, s)ϕ(s)ds

)
dτ

is a solution of the problem (1.1), (1.2). On the contrary, if problem (1.1), (1.2) has
a solution u(t), then ϕ(t) = [φp(u

′′(t))]′′ is a fixed point of the operator A.
Secondly, we show that the operator A maps B[O,M ] into itself. For any ϕ(t) ∈

B[O,M ], by Lemma 2.2, we have

|u(t)| ≤M2M
q−1
1 Mq−1, |v(t)| ≤Mq−1

1 Mq−1.

Consequently, for any t ∈ [0, 1], we have (t, u(t), v(t)) ∈ DM . Meanwhile, from
assumption (i) of Theorem 3.1, we can conclude that

|(Aϕ)(t)| = |f(t, u(t), v(t))| ≤M, t ∈ [0, 1],

thus (Aϕ)(t) ∈ B[O,M ]. So the operator A maps B[O,M ] into itself.
Thirdly, we show that the operator A : B[O,M ] → B[O,M ] is a contraction

mapping. Since B[O,M ] is a subspace of C([0, 1], ‖ · ‖), so B[O,M ] is a complete
distance space. By using the assumption (ii) of Theorem 3.1, Lemma 2.2, and (2)
of Lemma 2.3, for ϕ1(t), ϕ2(t) ∈ B[O,M ], there is

|(Aϕ2)(t)− (Aϕ1)(t)|
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= |f(t, u2(t), v2(t))− f(t, u1(t), v1(t))|
≤ L1|u2(t)− u1(t)|+ L2|v2(t)− v1(t)|

≤ L1

∣∣∣∣∫ 1

0

G2(t, τ)

[
φq(

∫ 1

0

G1(τ, s)ϕ2(s)ds)− φq(
∫ 1

0

G1(τ, s)ϕ1(s)ds)

]
dτ

∣∣∣∣
+ L2

∣∣∣∣φq (∫ 1

0

G1(t, s)ϕ2(s)ds

)
− φq

(∫ 1

0

G1(t, s)ϕ1(s)ds

)∣∣∣∣
≤ L1

∣∣∣∣∫ 1

0

G2(t, τ)

[
(q − 1)

(∣∣∣∣∫ 1

0

G1(τ, s)ϕ1(s)ds

∣∣∣∣
+

∣∣∣∣∫ 1

0

G1(τ, s)(ϕ2(s)− ϕ1(s))ds

∣∣∣∣)q−2 · ∣∣∣∣∫ 1

0

G1(τ, s)(ϕ2(s)− ϕ1(s))ds

∣∣∣∣
]
dτ

+ L2(q − 1)

(∣∣∣∣∫ 1

0

G1(τ, s)ϕ1(s)ds

∣∣∣∣+

∣∣∣∣∫ 1

0

G1(τ, s)(ϕ2(s)− ϕ1(s))ds

∣∣∣∣)q−2
·
∣∣∣∣∫ 1

0

G1(τ, s)(ϕ2(s)− ϕ1(s))ds

∣∣∣∣
≤ L1M2(q − 1)(3MM1)q−2M1‖ϕ2 − ϕ1‖

+ L2(q − 1)(3MM1)q−2M1‖ϕ2 − ϕ1‖
≤ (q − 1)(3M)q−2Mq−1

1 (L1M2 + L2)‖ϕ2 − ϕ1‖
= k‖ϕ2 − ϕ1‖.

Hence,

‖(Aϕ2)− (Aϕ1)‖ ≤ k‖ϕ2 − ϕ1‖, 0 < k < 1.

Thus, the operator A : B[O,M ] → B[O,M ] is a contraction mapping and it has a
unique fixed point in B[O,M ]. According to Lemma 2.1, Lemma 2.2, we can obtain
that the boundary value problem (1.1), (1.2) has a unique solution u(t) ∈ C[0, 1]
such that

|u(t)| ≤M2M
q−1
1 Mq−1, |u′′(t)| ≤Mq−1

1 Mq−1.

The proof is complete.
Now we consider the following iterative process:
(1). u1(t) = v1(t) = 0,
For n = 2, 3, 4, · · · , let
(2). ϕn(t) = f(t, un−1(t), vn−1(t)),

(3). vn(t) = φq

(∫ 1

0
G1(t, s)ϕn(s)ds

)
,

(4). un(t) =
∫ 1

0
G2(t, s)vn(s)ds.

By using the Banach contracting mapping principle, the sequence {ϕn(t)} con-
verges with the rate of geometric progression to the fixed-point of the operator A,
denote it as ϕ∗(t). And there holds the estimation

‖ϕn − ϕ∗‖ ≤
kn

1− k
‖ϕ1 − ϕ0‖. (3.1)

Therefore, we can obtain a iterative sequence solution {un(t)} of the problem (1.1),
(1.1)

un(t) =

∫ 1

0

G2(t, τ)φq

(∫ 1

0

G1(τ, s)ϕn(s)ds

)
dτ,
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which converges to the unique solution u∗ of the problem (1.1), (1.1).

Remark 3.1. For p > 2, to use the similar method, one has to apply (1) of Lemma
2.3. In this situation, the nonlinearity f should satisfy

|f(t, u2, v2)− f(t, u1, v1)| ≤ L1|u2 − u1|p−1 + L2|v2 − v1|p−1,

for (t, ui, vi) ∈ DM , i = 1, 2. However, it is well know that under the condition that
the exponent of the Hölder α > 1 the function is constant. So, the problem is not
solved yet.

4. An Example

Example 4.1. Consider the following boundary value problem:

[φp(u
′′(t))]′′ = −3u2(t)u′′(t) + 3u(t)− 4u′′(t) + 5 sin(πt), (4.1)

u(0) = u(1) = u′′(0) = u′′(1) = 0. (4.2)

Let f(t, u, v) = −3u2v + 3u− 4v + 5 sin(πt). Firstly, we choose p = 2.
From the definitions of M1,M2, we can calculate that M1 = M2 = 1/8. Then, we

need choose a suitable M > 0 such that all conditions of Theorem 3.1 are satisfied.
Clearly, for (t, u, v) ∈ DM , there is

|f(t, u, v)| ≤ | − 3u2v + 3u− 4v + 5 sin(πt)|

≤ 3

(
M

64

)2
M

8
+ 3

M

64
+ 4

M

8
+ 5 sin(πt) ≤M

as soon as 11.4 < M < 64.02. Thus, choose M = 12, the condition (i) of Theorem
3.1 hold in DM .

In the other hand, for (t, u, v) ∈ DM ,

|fu| = | − 6uv + 3| ≤ 6
M

64

M

8
+ 3 ≤ 3.5,

|fv| = | − 3u2 − 4| ≤ 3

(
M

64

)2

+ 4 ≤ 4.5.

So we choose L1 = 3.5, L2 = 4.5, the condition (ii) of Theorem 3.1 is satisfied.
Moreover,

k = M1(L1M2 + L2) ≈ 0.6172 < 1,

the condition (iii) of Theorem 3.1 is satisfied. Hence, the problem (4.1), (4.2) has
a uniqueness solution (see Figure 1 and Table 1 for the iterative process).

Table 1. The numerical approximation of the solution (4.1), (4.2) for p = 2

We can find that the iterative method is very effective.
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Figure 1. The approximation of the solution (4.1), (4.2) for p = 2

Secondly, we consider the case that 1 < p < 2. We choose p = 3/2.
In this case, the conditions (i), (ii) of Theorem 3.1 are satisfied clearly. We only

need notice that

k = (q − 1)(3M)q−2Mq−1
1 (L1M2 + L2) =

1

2
9−

1
2 (

1

8
)

1
2 (

3.5

8
+ 4.5) ≈ 0.291 < 1,

the condition (iii) of Theorem 3.1 is satisfied, too. Hence, the problem (4.1), (4.2)
has a uniqueness solution (see Figure 2 and Table 2 for the iterative process).

Figure 2. The approximation of the solution (4.1), (4.2) for p = 3/2

Table 2. The numerical approximation of the solution (4.1), (4.2) for p = 3/2

Acknowledgements. The authors are grateful to the anonymous referees for their
useful suggestions which improve the contents of this article.



Iterative method for a class beam equation 1451

References
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