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INFINITELY MANY SOLUTIONS FOR A ZERO
MASS SCHRÖDINGER-POISSON-SLATER
PROBLEM WITH CRITICAL GROWTH∗
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Abstract In this paper, we are concerned with the following Schrödinger-
Poisson-Slater problem with critical growth:

−∆u+ (u2 ?
1

|4πx| )u = µk(x)|u|p−2u+ |u|4u in R3.

We use a measure representation concentration-compactness principle of Lions
to prove that the (PS)c condition holds locally. Via a truncation technique
and Krasnoselskii genus theory, we further obtain infinitely many solutions for
µ ∈ (0, µ∗) with some µ∗ > 0.
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1. Introduction

In this paper we investigate the multiplicity of solutions for the following version of
Schrödinger-Poisson-Slater problem with critical growth:

−∆u+ (u2 ?
1

|4πx|
)u = µk(x)|u|p−2u+ |u|4u, in R3, (1.1)

where µ > 0, 1 < p < 2 and k(x) ∈ L
6

6−p (R3).
The problem (1.1) arises in the study of standing wave solutions for the nonlocal

nonlinear Schrödinger equation

i
∂ψ

∂t
= −∆ψ + V (x)ψ + λ(ψ2 ?

1

|4πx|
)ψ − µ|ψ|p−2ψ, (ψ, t) ∈ R3 × R (1.2)
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and its stationary counterpart

−∆u+ V (x)u+ (u2 ?
1

|4πx|
)u = µ|u|p−2u in R3. (1.3)

Equation (1.3) appears in the physical as an approximation of the Hartree-Fock
model of a quantum many body system of electrons under the presence of the ex-
ternal potential V (x), u2 denotes the density of electrons in the original many-body
system, (u2 ? 1

|4πx| )u represents the Coulombic repulsion between the electrons,

|u|p−2u was introduced by Slater and µ is called Slater constant. For more infor-
mation on these models and their deduction, see [7, 9, 15,21].

In the literature there are many papers on the equations for (1.3) by using
variational methods since it was introduced in [7]. Recently, a lot of attention has
been focused on the study of the existence of solutions, sign-changing solutions,
ground states, radial and semiclassical states, see [1,3,4,6,10,11,13,17,23,27,29–33]
and the references therein.

When V (x) = 0, equation (1.3) becomes as the following static case

−∆u+ (u2 ?
1

|4πx|
)u = µ|u|p−2u in R3, (1.4)

which is called “zero mass” problem (see [8]). Compared with problem (1.3), there
has been only few works in recent years on the existence of solutions of systems like
(1.4). We refer to [12, 22, 24,25]. More precisely, a limit profile was studied in [25].
For the case of p ≥ 2, we see [12] for the existence of ground and bound states. We
emphasize that (1.4) presents an interesting competition between local and nonlocal
nonlinearities, which yields to some non expected situations, as has been shown in
the literature [25]. Moreover, due to the absence of a phase term, the standard
Sobolev space H1(R3) is not a good framework in the study of (1.4). In [25], a new
variational framework was established and the so-called Coulomb-Sobolev function
space was introduced:

E =

{
u ∈ D1,2(R3) :

∫
R3

∫
R3

u2(x)u2(y)

|x− y|
dxdy < +∞

}
,

where the double integral expression is called Coulomb energy of the wave. It was
shown in [25] that E is a uniformly convex separable Banach space, that E ⊂
Lq(RN ) for every q ∈ [3, 6]. Recently, a more general Coulomb-Sobolev space
was established in [22] and a family of optimal interpolation inequalities and the
existence of ground state solutions was studied for a general static Schrödinger-
Poisson-Slater problem. Recently, in [19], the existence of positive solutions for
the following equation with critical growth was obtained via a novel perturbation
approach in the case of 2 < p < 5 and truncation technique (see [2]) for 11

7 < p < 2,

−∆u+ (u2 ?
1

|4πx|
)u = µ|u|p−1u+ |u|4u in R3. (1.5)

To our best knowledge, there is no result about the infinitely many solutions
for equation (1.1) in the literature. Motivated by the above and the idea of [2,
5, 16–19, 28], the aim of this paper is to study the existence of infinitely many
solutions for Schrödinger-Poisson-Slater equations with critical nonlinearity in R3.
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The main difficulty is to show the (PS)c condition holds, because the embedding
E ↪→ Lq(RN ) is not compact for q ∈ [3, 6]. By applying a measure representation
concentration-compactness principle of Lions [20] and more delicate analysis, we
prove that (PS)c condition holds locally. To obtain the infinitely many solutions,
we use a new version of the symmetric mountain-pass lemma due to Kajikiya [14].
However, we have to consider a truncation because the functional J is not bounded
below.

Our main result reads as follows:

Theorem 1.1. Suppose that Ω := {x ∈ R3 : k(x) > 0} is an open subset and
0 < |Ω| < +∞, 1 < p < 2. Then there exists µ? > 0 such that equation (1.1) has a
sequence of solutions {un} with J(un) ≤ 0, J(un)→ 0 and un → 0 in E as n→∞
for µ ∈ (0, µ?).

The remainder of this paper is organized as follows. Some preliminaries are
presented in Section 2. In Section 3, we complete the proof of Theorem 1.1.

2. Preliminaries

Define φu = 1
4π|x| ? u

2, then u ∈ E if and only if both u and φu belong to D1,2(R3).

In such case, problem (1.1) can be rewritten as a system in the following form:{
−∆u+ φu = µk(x)|u|p−2u+ |u|4u, in R3,

−∆φ = u2, on R3.
(2.1)

Moreover, ∫
R3

|∇φu|2dx =

∫
R3

φuu
2dx =

∫
R6

u2(x)u2(y)

4π|x− y|
dxdy.

Define the norm ‖ · ‖ : E → R+ ∪ {0} for the space E as follows

‖u‖ :=

(∫
R3

|∇u|2dx+ (

∫
R6

u2(x)u2(y)

4π|x− y|
dxdy)1/2

)1/2

.

For the space E, some properties have been proved in [12,25].

Lemma 2.1 (See [25]). (‖ · ‖, E) is a uniformly convex Banach space. Moreover,
C∞0 (R3) is dense in E. E ↪→ Lq(R3) continuously for q ∈ [3, 6] and E ↪→ Lq(Ω)
compactly for q ∈ [1, 6) with bounded Ω ⊂ R3.

Define M : E → R as

M(u) :=

∫
R3

|∇u|2dx+

∫
R6

u2(x)u2(y)

4π|x− y|
dxdy.

We can easily obtain for any u ∈ E,

1

2
‖u‖4 ≤M(u) ≤ ‖u‖2, if either ‖u‖ ≤ 1 or M(u) ≤ 1. (2.2)

The following estimate will be of use.
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Lemma 2.2 (See [12]). There exists C > 0 such that

‖u‖p+1
p+1 ≤ CM(u)

2p−1
3

for u ∈ E with p ∈ [2, 5].

We consider the energy functional J : E → R defined by

J(u) =
1

2

∫
R3

|∇u|2dx+
1

4

∫
R3

φuu
2dx− µ

p

∫
R3

k(x)|u|pdx− 1

6

∫
R3

u6dx.

Owing to k(x) ∈ L
6

6−p (R3) and Lemma 2.1, J belongs to C1(E,R). It is well known
that a critical point of J is a weak solution of problem (1.1). To get compactness
of the (PS) sequence in E, we recall the well-known concentration-compactness
principle due to P. Lions [20](see Lemmas I.1- I.2 of [20] for the details of proof).

Lemma 2.3 (See [20]). Let {un} be a sequence weakly converging to u in D1,2(R3).
Then, up to subsequence,

(A1) |∇un|2 weakly converges in M(R3) to a nonnegative measure µ̃,

(A2) |un|6 weakly converges in M(R3) to a nonnegative measure ν,

and there exist an at most countable index set K, a family {xj : j ∈ K} of distinct
points of R3, and families {νj : j ∈ K}, {µ̃j : j ∈ K} of positive numbers such that

µ̃ ≥ |∇u|2dx+
∑
j∈K

µ̃jδxj , ν = |u|6dx+
∑
j∈K

νjδxj

and for all j ∈ K,Sν1/3
j ≤ µ̃j, where δxj is the Dirac measure at point xj.

To study the concentration at infinity of the sequence we recall the following
quantities.

Lemma 2.4 (See [20]). Let {un} be a sequence weakly converging to u in D1,2(R3)
and define

ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|un|6dx, µ̃∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|∇un|2dx.

Then the quantities ν∞ and µ̃∞ are well defined and satisfy

ν∞ +

∫
R3

dν = lim sup
n→∞

∫
|x|>R

|un|6dx, µ̃∞ +

∫
R3

dµ̃ = lim sup
n→∞

∫
|x|>R

|∇un|2dx,

and Sν
1/3
∞ ≤ µ̃∞, where µ̃ and ν defined in Lemma 2.3.

Lemma 2.5. Suppose that 1 < p < 2 holds, and then any (PS)c sequence {un} of
J is bounded in E.

Proof. Let {un} be a sequence in E such that

c+o(1)=J(un)=
1

2

∫
R3

|∇un|2dx+
1

4

∫
R3

φunu
2
ndx−µ

p

∫
R3

k(x)|un|pdx−
1

6

∫
R3

u6
ndx,

(2.3)
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and for all v ∈ E

〈J ′(un), v〉=
∫
R3

∇un∇vdx+

∫
R3

φununvdx−µ
∫
R3

k(x)|un|p−1vdx−
∫
R3

u5
nvdx=o(‖v‖).

(2.4)
Combining (2.3) with (2.4), we have

c+ o(‖un‖)

= J(un)− 1

6
J ′(un)un

=
1

3

∫
R3

|∇un|2dx+
1

12

∫
R3

φunu
2
ndx− (

µ

p
− µ

6
)

∫
R3

k(x)|un|pdx

≥ 1

3

∫
R3

|∇un|2dx+
1

12

∫
R3

φunu
2
ndx− (

µ

p
−µ

6
)(

∫
R3

|k(x)|
6

6−p dx)
6−p

6 (

∫
R3

|un|6dx)
p
6

≥ 1

12
M(un)− (

µ

p
− µ

6
)C‖k‖ 6

6−p
M(un)p/2,

(2.5)
which implies that {un} is bounded in E due to 1 < p < 2. �

Lemma 2.6. Let 1 < p < 2 and c < 0. Then there exists µ∗ > 0 such that for
µ ∈ (0, µ∗), J satisfies (PS)c condition.

Proof. By Lemma 2.5, any (PS)c sequence {un} is bounded in E. We may assume
that there exists u ∈ E such that un ⇀ u in E as n → ∞. we have J ′(u) = 0. It
follows from Lemma 2.3 that |∇un|2dx converges in the weak∗-sence of measure to
a measure µ̃ and |un|6dx converges in the weak∗-sence of measure to a measure ν.
Furthermore, we obtain an at most countable index set K and sequences {xi} ⊂ R3

and families {µ̃i, νi : i ∈ K} of positive numbers such that

µ̃ ≥ |∇u|2dx+
∑
j∈K

µ̃jδxj , ν = |u|6dx+
∑
j∈K

νjδxj

and for all j ∈ K,Sν1/3
j ≤ µ̃j .

Now for any ε > 0, we define χε(x) := χ̄ε(x − xi), where χ̄ε ∈ C∞0 (R3, [0, 1]) is
such that χ̄ε ≡ 1 on Bε(0), χ̄ε ≡ 0 on R3 \B2ε(0) and |∇χ̄ε| ∈ [0, 2

ε ]. Now we divide
the proof into four steps.

Step 1: For any i ∈ K, νi = µ̃i.
It is clear that the sequence {χεun} is bounded, then we have J ′(un)(χεun)→ 0

as n→∞. Thus,∫
R3

un∇un∇χεdx =

∫
R3

(−|∇un|2 − φunu2
n + µk(x)|un|p + u6

n)χεdx+ o(1). (2.6)

Using the Hölder inequality, we obtain the following limit expression:

|
∫
R3

un∇un∇χεdx| ≤(

∫
B2ε(xi)

|un∇un|3/2)
2
3 (

∫
B2ε(xi)

|∇χε|3)
1
3

≤C(

∫
B2ε(xi)

u6
ndx)

1
6 → 0 (2.7)
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as ε→ 0. Moreover, since un → u in Lsloc(R3) for all 1 < s < 6 and χε has compact
support, it follows from that

lim
n→∞

∫
R3

un∇un∇χεdx=−
∫
R3

(|∇u|2+φuu2−µk(x)|u|p−u6)χεdx+

∫
R3

χεdν−
∫
R3

χεdµ̃.

(2.8)
Letting ε→ 0 in (2.8), we conclude νi = µ̃i.

Step 2: ν∞ ≥ µ̃∞.
For any R > 0, let ψR : R3 → [0, 1] be a smooth function satisfying ψR ≡ 0 if

|x| ≤ R and ψR ≡ 1 if |x| ≥ 2R, and |∇ψR| ≤ 2/R. It is easy to see that {unψR} is
bounded in E and J ′(un)(unψR)→ 0 as n→∞, which implies∫

R3

∇un∇(unψR)dx+

∫
R3

φunu
2
nψRdx = µ

∫
R3

k(x)|un|pψRdx+

∫
R3

u6
nψRdx. (2.9)

Similar to (2.8), by Lemma 2.4, we have

lim
R→∞

lim sup
n→∞

(
µ

∫
R3

k(x)|un|pψRdx+

∫
R3

u6
nψRdx

)
= ν∞. (2.10)

On the other hand, we also have

lim
R→∞

lim sup
n→∞

∫
R3

∇un∇(unψR)dx = lim
R→∞

lim sup
n→∞

∫
R3

(|∇un|2ψR + un∇un∇ψR)dx

=µ̃∞ + lim
R→∞

lim sup
n→∞

∫
R3

un∇un∇ψRdx

(2.11)
and

lim
R→∞

lim sup
n→∞

|
∫
R3

un∇un∇ψRdx| ≤(

∫
R3

|∇un|2dx)1/2(

∫
R3

|∇ψR|2dx)1/4‖un‖4

≤ lim
R→∞

lim sup
n→∞

C

R
1
4

(

∫
R3

|∇un|2dx)1/2‖un‖4 = 0.

(2.12)
Combining (2.9)-(2.12), we have ν∞ ≥ µ̃∞.

Step 3: νi = 0 for any i ∈ K and ν∞ = 0.
Suppose that there exists i0 ∈ K such that νi0 > 0 or ν∞ > 0. Using Lemmas

2.3-2.4, we have
S3νi0 ≤ µ̃3

i0 = ν3
i0 , S3ν∞ ≤ µ̃3

∞ = ν3
∞,

which implies
νi0 ≥ S3/2, ν∞ ≥ S3/2. (2.13)

For c < 0, we have

0 > c =J(un)− 1

6
J ′(un)un

=
1

3

∫
R3

|∇un|2dx+
1

12

∫
R3

φunu
2
ndx− (

1

p
− 1

6
)µ

∫
R3

k(x)|un|pdx

≥ 1

12
M(un)− (6− p)µC

6p
‖k‖ 6

6−p
M(un)p/2.

(2.14)
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This implies that

M(un) ≤ Cµ
2

2−p .

If νi0 > 0, then we obtain

0 > c =J(un)− 1

6
J ′(un)un

=
1

3

∫
R3

|∇un|2dx+
1

12

∫
R3

φunu
2
ndx− (

1

p
− 1

6
)µ

∫
R3

k(x)|un|pdx

≥1

3

∫
R3

|∇un|2χεdx−
(6− p)µC

6p
‖k‖ 6

6−p
M(un)p/2

≥1

3
µ̃i0 −

(6− p)µC
6p

‖k‖ 6
6−p

Cp/2µ
p

2−p

≥1

3
νi0 −

(6− p)µC
6p

‖k‖ 6
6−p

Cp/2µ
p

2−p

≥1

3
S3/2 − (6− p)µC

6p
‖k‖ 6

6−p
Cp/2µ

p
2−p .

(2.15)

However, we can choose µ∗ > 0 small enough such that for every µ ∈ (0, µ∗), the
last term on the right-hand side above is greater than zero, which is a contradiction.
Similarly, if ν∞ > 0, we can get

0 > c =J(un)− 1

4
J ′(un)un

≥1

4

∫
R3

|∇un|2ψRdx+
1

12

∫
R3

|un|6ψRdx− (4− p)µC
4p

‖k‖ 6
6−p

M(un)p/2

≥ 1

12
ν∞ −

(4− p)µC
4p

‖k‖ 6
6−p

Cp/2µ
p

2−p

≥ 1

12
S3/2 − (6− p)µC

6p
‖k‖ 6

6−p
Cp/2µ

p
2−p . (2.16)

So we can choose µ∗ > 0 so small such that for every µ ∈ (0, µ∗), the last term on
the right-hand side above is larger than zero, which is also contradiction. Therefore,
νi = 0 for any i ∈ K and ν∞ = 0.

Step 4: un → u in E.
By the conclusions of Step 3 and Lemmas 2.3-2.4, we obtain

lim
n→∞

∫
R3

|un|6dx = lim
n→∞

∫
R3

|u|6dx.

Using the Fatou Lemma, the following holds immediately

lim
n→∞

∫
R3

|un − u|6dx = 0.

Using the fact that J ′(u) = 0, we have∫
R3

|∇u|2dx+

∫
R3

φuu
2dx ≤ lim inf

n→∞

∫
R3

|∇un|2dx+

∫
R3

φunu
2
ndx

≤ lim sup
n→∞

∫
R3

k(x)|un|pdx+

∫
R3

u6
ndx
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≤
∫
R3

k(x)|u|pdx+

∫
R3

u6dx

=

∫
R3

|∇u|2dx+

∫
R3

φuu
2dx. (2.17)

Hence, we immediately get un → u in E. �

3. Proof of the main result

In this section, we prove the existence of infinitely many solutions to (1.1) which
tend to zero. Let X be a Banach space and denote

Σ := {A ⊂ X \ {0} : A is closed in X and symmetric with respect to the orgin}.

For A ∈ Σ, we define genus γ(A) as

γ(A) := inf{m ∈ N : ∃φ ∈ C(a,Rm \ {0}),−φ(x) = φ(−x)}.

If there is no mapping φ as above for any m ∈ N, then γ(A) = +∞. Let Σk denote
the family of closed symmetric subsets A of X such that 0 6= A and γ(A) ≥ k. We
now list some properties of the genus(see [14,26]).

Proposition 3.1. Let A,B be closed symmetric subsets of X which do not contain
the origin. Then the following holds.

(1) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B);

(2) If there is an odd homeomorphism from A to B, then γ(A) = γ(B);

(3) If γ(B) <∞, then γ(A \B) ≥ γ(A)− γ(B);

(4) Then n-dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam
Theorem;

(5) If A is compact, then γ(A) < +∞ and there exists δ > 0 such that Uδ(A) ∈ Σ
and γ(Uδ(A)) = γ(A), where Uδ(A) = {x ∈ X : ‖x−A‖ ≤ δ}.

The following version of the symmetric mountain-pass lemma is due to Kajikiya
[14].

Proposition 3.2. Let X be an infinite-dimensional Banach space and J ∈ C1(X,R)
and suppose the following conditions holds.

(1) J(u) is even, bounded from below, J(0) = 0 and J(u) satisfies the local (PS)
condition, i.e. for some C > 0, in the case when every sequence {un} in X
satisfying lim

n→∞
J(un) = c < C and J ′(un)→ 0 has a convergent subsequence;

(2) For each k ∈ N, there exists an Ak ∈ Σk such that supu∈Ak J(u) < 0.

Then either (J1) or (J2) below holds.

(J1) There exists a sequence {uk} such that J ′(uk) = 0, J(uk) < 0 and uk → 0 in
X as k →∞;

(J2) There exist two sequences {uk}, {vk} such that J ′(uk) = 0, J(uk) < 0 and
uk 6= 0, uk → 0 in X as k → ∞, J ′(vk) = 0, J(vk) < 0, J(vk) → 0,and {vk}
converges to a non-zero limit.
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In the proof of our main result, we need that J is bounded below, which con-
tradicts with the critical growth term. To overcome this difficulty, we introduce a
truncation in functional J . It follows from Lemma 2.2 that

J(u) =
1

2

∫
R3

|∇u|2dx+
1

4

∫
R3

φuu
2dx− µ

p

∫
R3

k(x)|u|pdx− 1

6

∫
R3

u6dx

≥1

4
M(u)− µC

p
‖k‖ 6

6−p
M(u)

p
2 − C

6
M(u)3.

(3.1)

Let

g(t) =
1

4
t− µC

p
‖k‖ 6

6−p
t
p
2 − C

6
t3,

then J(u) ≥ g(M(u)). Note that there exists

µ∗∗ > 0 (3.2)

such that if µ ∈ (0, µ∗∗), then there exist R1, R2 > 0 such that g(t) ≥ 0 over interval
I = [R1, R2], where g(R1) = g(R2) = 0. Moreover, g(t) < 0 over interval (0, R1)
and (R2,+∞). Now we consider the following truncation of J :

J̄(u) =
1

2

∫
R3

|∇u|2dx+
1

4

∫
R3

φuu
2dx− µ

p

∫
R3

k(x)|u|pdx− 1

6
ϕ(M(u))

∫
R3

u6dx,

(3.3)
where ϕ ∈ C∞0 (R+, [0, 1]), such that ϕ(t) ≡ 1 if t ∈ [0, R1] and ϕ(t) ≡ 0 if t ∈
[R2,+∞). Hence, J̄(u) ≥ g1(M(u)), where

g1(t) =
1

4
t− µC

p
‖k‖ 6

6−p
t
p
2 − C

6
ϕ(t)t3.

Note that g1(t) < 0 over interval (0, R1) and g1(t) > 0 over (R1,+∞).

The proof of Theorem 1.1 requires some lemmas.

Lemma 3.1. There exists µ? > 0 such that if any 0 < µ < µ?, then the following
holds:
(i) If J̄(u) < 0, then M(u) < R1 and J(u) = J̄(u).
(ii) J̄ satisfies (PS)c condition for c < 0.

Proof. Consider µ∗ and µ∗∗ given, respectively, by Lemma 2.6 and (3.2), we
choose µ? sufficiently small, such that µ? < min{µ∗, µ∗∗}. Conclusion (i) follows
immediately from the definition of J̄(u).
(ii) Assume that J̄(un)→ c < 0 and J̄ ′(un)→ 0 as n→∞. By conclusion (i), we
have M(un) < R1 and J(un)→ c < 0 and J ′(un)→ 0. By Lemma 2.6, there exists
u ∈ E such that un → u in E. �

Remark 3.1. Denote Kc = {u ∈ E : J̄ ′(u) = 0, J̄(u) = c}. If µ is as in (ii) above,
then Kc is compact for c < 0.

Lemma 3.2. For any m ∈ N, there is εm < 0 such that γ(J̄εm) ≥ m.

Proof. Denote by E0(Ω) the closure of C∞0 (Ω). We extend functions in E0(Ω) by
0 outside Ω. Let Xm be a m-dimensional subspace of E0(Ω). For any u ∈ Xm, u 6= 0,
define u = rmw with w ∈ Xm and ‖w‖ = 1 and rm > 0. From the assumptions of
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k(x), it is easy to see that, for every w ∈ Xm with ‖w‖ = 1, there exists dm > 0
such that ∫

Ω

k(x)|w|pdx ≥ dm.

Take 0 < rm < min{R1, 1}. Since all the norms are equivalent and 0 < |Ω| < +∞,
by (2.2) we have

J̄(u) = J(u) =
1

2

∫
R3

|∇u|2dx+
1

4

∫
R3

φuu
2dx− µ

p

∫
R3

k(x)|u|pdx− 1

6

∫
R3

u6dx

≤1

2
‖u‖2 − µ

p

∫
Ω

k(x)|u|pdx− 1

6

∫
Ω

u6dx

≤1

2
r2
m −

µ

p
Crpm −

1

6
Cr6

m := εm.

(3.4)
Hence, we can choose rm so small that J̄(u) < εm < 0. Let

Srm = {u ∈ E : ‖u‖ = rm}.

Then Srm ∩ Xm ⊂ γ(J̄εm). Then by Proposition 3.1, we have γ(J̄εm) ≥ γ(Srm ∩
Xm) ≥ m. �

Therefore, we can denote Γm = {A ∈ Σ : γ(A) ≥ m} and define

cm := inf
A∈Γm

sup
u∈A

J̄(u), (3.5)

then
−∞ < cm ≤ εm < 0, m ∈ N, (3.6)

because J̄εm ∈ Γm and J̄ is bounded from below.

Lemma 3.3. Let µ be as in Lemma 3.1, Then, all cm given by (3.5) are critical
values of J̄ and cm → 0 as m→∞.

Proof. It is clear that cm ≤ cm+1. By (3.6), we have cm < 0 for any fixed m ∈ N.
Hence cm → c̄ ≤ 0. Moreover, since (PS)c is satisfied, it follows from a standard
argument as in [26] that all cm given by (3.5) are critical values of J̄ . We claim
c̄ = 0. If c̄ < 0, then by Remark 3.4, we get that Kc̄ is compact and Kc̄ ∈ Σ.
By Proposition 3.1, we have m0 : γ(Kc̄) < +∞, which implies that there exists
δ > 0 such that γ(Kc̄) = γ(Nδ(Kc̄)) = m0. By the deformation lemma, there exist
ε > 0(c̄+ ε < 0) and an odd homeomorphism η such that

η(J̄ c̄+ε \Nδ(Kc̄)) ⊂ J̄ c̄−ε. (3.7)

Since cm is increasing and converges to c̄, there exists m ∈ N such that cm > c̄− ε
and cm+m0 ≤ c̄. There exists A ∈ Γm+m0 such that supu∈A J̄(u) < c̄ + ε. By
proposition 3.1, we have

γ(A \ N̄δ(Kc̄)) ≥ γ(A)− γ(Nδ(Kc̄)) ≥ m. (3.8)

Thus,
η(A \ N̄δ(Kc̄)) ∈ Γm.

Consequently,
sup

u∈η(A\N̄δ(Kc̄))
J̄(u) ≥ cm > c̄− ε. (3.9)
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On the other hand, by (3.7) and (3.8), we have

η(A \Nδ(Kc̄)) ⊂ η(J̄ c̄+ε \Nδ(Kc̄)) ⊂ J̄ c̄−ε, (3.10)

which contradicts with (3.9). Hence cm → 0 as m→∞. �

Now, we conclude with the proof of our main result.

Proof of Theorem 1.1. By the Lemma 3.1, there is µ? > 0 such that J(u) = J̄(u)
if 0 < µ < µ? and J̄(u) < 0. Then by Lemma 3.1, Lemma 3.2, Lemma 3.3 and
(3.6), we can see that all the assumptions of Proposition 3.2 are satisfied for J̄ .
Therefore, the conclusions of Theorem 1.1 are obtained. �
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