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Abstract In this paper, we formulate a stochastic virus dynamics model
with intracellular delay and humoral immunity. By constructing some suitable
Lyapunov functions, we show that the solution of stochastic model is going
around each of the steady states of the corresponding deterministic model
under some conditions. Then, numerical simulations are given to support the
theoretical results. Finally, we propose several more effective way to control
the spread of the virus by analyzing the sensitivity of the threshold of spread.
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1. Introduction

The modeling of the dynamics of viral infection across host cells is a classical prob-
lem in the field of population dynamics and dispersal [1, 15, 34, 35]. Since math-
ematical modeling and analysis of virus dynamics can be used to clarify and test
different hypothesis, providing new insights into pathogenesis, improving diagnosis
and treatment strategies which raise hopes of viral infected patients, and estimate
key parameter values that control the infection process. Mathematical models of
the viruses that infect the human body play a significant role in understanding the
in-host virus dynamics and in suggesting antiviral treatment [4, 5, 8].

Recently, many researchers have devoted their interest to study virus dynamics
model with intracellular delay or humoral immunity [4–7, 9, 10, 25, 26, 31, 40]. The
intracellular time delay between infection of a healthy cell and production of new
virus particles is called the latent period [7,25,26]. The latent period describes the
finite time interval from the time when the infectious virus binds to the receptor
of a target cell to the time when the first virion is produced from the same target
cell [9, 31]. Immunity is a biological term that describes a state of having sufficient
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biological defenses to avoid infection, disease or other unwanted biological invasion
[10]. Humoral immunity is the aspect of immunity which is mainly based on the B
cells which produce antibodies to attack the virus particles [4].

Since the virus is very sensitive to the environment in natural bio-chemical
system [13], the parameters involved in the virus dynamics model, especially death
rates, always exhibit random fluctuation to a greater or lesser extent. White noise
(Brownian motion) is the name given to the irregular movement of pollen grains,
suspended in water, observed by the Scottish botanist Robert Brown in 1828. The
motion was later explained by the random collisions with the molecules of water.
This random fluctuation can be described very well [22, 23].

Following the idea of the literature [22, 23], we assume that death rates are
random variable which equal to the an average value plus an error term. According
to the central limit theorem, the error terms may be approximated by a normal
distribution. More concretely, death rates µxdt, µydt, µvdt and µzdt are replaced
µxdt+σ1dB1(t), µydt+σ2dB2(t), µvdt+σ3dB3(t) and µzdt +σ4dB4(t) respectively
in a small subsequent time interval dt, where dBi(t) = Bi(t+dt)−Bi(t) (i = 1, 2, 3, 4)
is the increment of a Brownian motion that follows a normal distribution N(0, dt)
with mean 0 and variances dt. The expectation and variance of the term µxdt +
σ1dB1(t) are µxdt and σ1dt, respectively, and he other three terms have simliar
properties. This reasonable way of introducing stochastic environment noise into
biologically population dynamic models has been pursued in [3,11,12,14,16–21,23,
24,28–30,32,33,36–39].

In this work, we are concerned with the following stochastic model with intra-
cellular delay and humoral immunity:

dx(t) =

[
Λ− µxx(t)− βx(t)v(t)

1 + αv(t)

]
dt+ σ1x(t)dB1(t),

dy(t) =

[
βe−mτx(t− τ)v(t− τ)

1 + αv(t− τ)
− µyy(t)

]
dt+ σ2y(t)dB2(t),

dv(t) = [ky(t)− µvv(t)− pz(t)v(t)]dt+ σ3v(t)dB3(t),

dz(t) = [qz(t)v(t)− µzz(t)]dt+ σ4z(t)dB4(t),

(1.1)

with initial conditions

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), v(θ) = ϕ3(θ), z(θ) = ϕ4(θ),

(ϕ1(θ), ϕ2(θ), ϕ3(θ), ϕ4(θ)) ∈ C, ϕi(θ) ≥ 0, ϕi(0) > 0, θ ∈ [−τ, 0], i = 1, 2, 3, 4

where x(t) denotes the concentration of the un-infected target cells, y(t) denotes the
concentration of infected cells, v(t) denotes the concentration of free virus particles,
z(t) denotes the density of the pathogens-specific lymphocytes. Free virus infects

un-infected cells to produce infected cells at the saturation infection rate βx(t)v(t)
1+αv(t) ,

α > 0 is a constant. Bi(t) are the white noises, i.e., Bi(t) are independent standard
Brownian motions defined on a complete probability space (Ω,F ,P) with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous
while F0 contains all P-null sets), σ2

i > 0 denote the intensities of the white noise,
i = 1, 2, 3, 4; C is the Banach space C

(
[−τ, 0];R4

+

)
of continuous functions from the

interval [−τ, 0] to R4
+ and R4

+ = {x = (x1, x2, x3, x4) ∈ R4 : xi > 0, i = 1, 2, 3, 4}.
Other parameters are described in Table 1 and assumed to be positive constants.

When σi = 0, i = 1, 2, 3, 4, model (1.1) reduces to the deterministic model, which
is a generation of the classic three-dimensional virus dynamics model proposed
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Table 1. Parameter symbols used in the model (1.1) and their biological meanings

Parameter Biological meaning
Λ The produced rate of un-infected cells
µx The death rate of un-infected cells
τ The time between viral entry into a target cell and the production

of new virus particles
m The death rate for infected but not yet virus-producing cells
µy The death rate of infected cells
k The produced rate of the free virus particles from the infected cells
µv The death rate of the free virus particles
p The removed rate of pathogens by the immune system
q The proliferate rate of the pathogens-specific lymphocytes in con-

tact with the pathogens
µz The death rate of the pathogens-specific lymphocytes

in [27], and was studied by Xiang et al. [31] very recently. They proved the following
results.

Theorem 1.1. The deterministic model of stochastic model (1.1) has one ba-

sic reproduction number R0 = kΛβe−mτ

µxµyµv
, one immune response reproductive ratio

R1 = qkΛβe−mτ

µyµv(qµx+αµxµz+βµz) and three steady states: the un-infected steady state

is E0 = (x0, 0, 0, 0) =
(

Λ
µx
, 0, 0, 0

)
, the un-immune infected steady state E1 =

(x1, y1, v1, 0) =
(
µyµv(1+αv1)
kβe−mτ , µvv1k , µx

β+αµx
(R0 − 1), 0

)
and the positive equilibrium

point E2 = (x2, y2, v2, z2) =
(

qΛ+µzΛα
qµx+αµxµz+βµz

, µzΛβe−mτ

µyµv(qµx+αµxµz+βµz) ,
µz
q ,

µv
p (R1 − 1)

)
.

And the following statements hold:

(i) The un-infected steady state E0 is globally asymptotically stable, if R0 < 1,

(ii) The un-immune infected steady state E1 is globally asymptotically stable, if
R0 > 1, R1 < 1,

(iii) The immune infected steady state E2 is globally asymptotically stable, if R1 >
1.

The rest of this paper is organized as follows. In Section 2, we show the dy-
namical behavior of the model (1.1). In Section 3, some numerical simulations are
given to support our theoretical results. Finally, we provide a brief discussion and
the summary of the main results.

2. The dynamical behavior of the model (1.1)

First of all, the following theorem shows there exists a unique global positive solution
of the model (1.1) for any positive initial value

Theorem 2.1. For any given initial value X(0) = (x(0), y(0), v(0), z(0)) ∈ R4
+,

there is a unique positive solution X(t) = (x(t), y(t), v(t), z(t)) of model (1.1) on t ≥
0 and the solution will remain in R4

+ with probability 1, namely (x(t), y(t), v(t), z(t)) ∈
R4

+ for all t ≥ 0 almost surely.
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Proof. The proof of this theorem is rather standard and hence is omitted

2.1. Asymptotic behavior around the un-infected steady state
E0 = (x0, 0, 0, 0)

Let un-infected steady state E0 de given in Lemma 1.1. In this section, we will
study the asymptotic behavior of model (1.1) around E0.

Theorem 2.2. Let X(t) = (x(t), y(t), v(t), z(t)) be the solution of model (1.1) with
initial value X(0) ∈ R4

+. If the following conditions are satisfied

R0 < 1, µx > σ2
1 , µy >

1

2
σ2

2 , qµv >
1

2
σ2

3 and pµz >
1

2
σ2

4 (2.1)

where R0 is given in Lemma 1.1, then

lim
t→∞

sup
1

t
E
∫ t

0

(x(s)− x0)2 ds ≤ Dx0 , lim
t→∞

sup
1

t
E
∫ t

0

y2(s) ds ≤ Dy0 ,

lim
t→∞

sup
1

t
E
∫ t

0

v2(s) ds ≤ Dv0 , lim
t→∞

sup
1

t
E
∫ t

0

z2(s) ds ≤ Dz0

where

Dx0
=

σ2
1x

2
0

µx − σ2
1

, Dy0 =

(
4e−2mτ (µx + µy)

2(
µy − 1

2σ
2
2

)2 +
2e−mτσ2

1

µy − 1
2σ

2
2

)
Dx0

+
2e−mτσ2

1x
2
0

µy − 1
2σ

2
2

,

Dv0 =

(
4kq

q
(
qµv − 1

2σ
2
3

) (
qµv − 1

2σ
2
3

) +
4kq

q
(
qµv − 1

2σ
2
3

) (
pµz − 1

2σ
2
4

))Dy0 , (2.2)

Dz0 =

(
4kq

p
(
pµz − 1

2σ
2
4

) (
qµv − 1

2σ
2
3

) +
4kq

p
(
pµz − 1

2σ
2
4

) (
pµz − 1

2σ
2
4

))Dy0 .

Proof. Since the un-infected steady state E0 = (x0, 0, 0, 0) is an equilibrium, we
have

Λ = µxx0. (2.3)

Define

V1(t) =
k

2
(x(t)− x0)

2
.

Using (2.1), (2.3) and Itô′s formula, we get

L V1(t) =k (x(t)− x0)

(
Λ− µxx(t)− βx(t)v(t)

1 + αv(t)

)
+
k

2
σ2

1x
2(t)

=− kµx (x(t)− x0)
2 − kβ (x(t)− x0)

2
v(t)

1 + αv(t)

− kβx0 (x(t)− x0) v(t)

1 + αv(t)
+
k

2
σ2

1 (x(t)− x0 + x0)
2

≤− k
(
µx − σ2

1

)
(x(t)− x0)

2 − kβx0 (x(t)− x0) v(t)

1 + αv(t)
+ kσ2

1x
2
0.
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Then, setting

V2(t) = V1(t) + kemτx0y(t+ τ) + µye
mτx0v(t) + kµye

mτx0

∫ t+τ

t

y(s) ds.

One can obtain that

L V2(t) ≤− k
(
µx − σ2

1

)
(x(t)− x0)

2 − kβx0 (x(t)− x0) v(t)

1 + αv(t)
+ kσ2

1x
2
0

+

(
βe−mτx(t)v(t)

1 + αv(t)
− µyy(t+ τ)

)
kemτx0 + µye

mτx0

× (ky(t)− µvv(t)− pz(t)v(t)) + kµye
mτx0 (y(t+ τ)− y(t))

=− k
(
µx − σ2

1

)
(x(t)− x0)

2 − kβx0 (x(t)− x0) v(t)

1 + αv(t)
+ kσ2

1x
2
0

+
kβx0 (x(t)− x0) v(t)

1 + αv(t)
+
kβx2

0v(t)

1 + αv(t)

− µyemτµvx0v(t)− pµyemτx0z(t)v(t)

≤− k
(
µx − σ2

1

)
(x(t)− x0)

2
+ kσ2

1x
2
0 +

(
R0

1 + αv(t)
− 1

)
µye

mτµvx0v(t)

≤− k
(
µx − σ2

1

)
(x(t)− x0)

2
+ kσ2

1x
2
0. (2.4)

Integrating (2.4) from 0 to t and then taking the expectation on both sides, one can
see that

EV2(t)− EV2(0) ≤ −k
(
µx − σ2

1

)
E
∫ t

0

(x(s)− x0)2 ds+ kσ2
1x

2
0t.

That is to say

lim
t→∞

sup
1

t
E
∫ t

0

(x(s)− x0)2 ds ≤ Dx0

where Dx0
is defined in (2.2). We define the following Lyapunov function

V3(t) =
1

2

(
e−mτx(t)− e−mτx0 + y(t+ τ)

)2
+

(
µy
2
− 1

4
σ2

2

)∫ t+τ

t

y2(s) ds.

Then

L V3(t) =
(
e−mτx(t)− e−mτx0 + y(t+ τ)

) (
e−mτΛ− µxe−mτx(t)− µyy(t+ τ)

)
+
e−mτ

2
σ2

1x
2(t) +

1

2
σ2

2y
2(t+ τ) +

(
µy
2
− 1

4
σ2

2

)(
y2(t+ τ)− y2(t)

)
≤− µxe−2mτ (x(t)− x0)

2 −
(
µy −

1

2
σ2

2

)
y2(t+ τ)

− e−mτ (µx + µy) (x(t)− x0) y(t+ τ) + e−mτσ2
1x

2
0 + e−mτσ2

1 (x(t)− x0)
2

+

(
µy
2
− 1

4
σ2

2

)(
y2(t+ τ)− y2(t)

)
≤−

(
µy −

1

2
σ2

2

)
y2(t+ τ) +

(
µy
2
− 1

4
σ2

2

)
y2(t+ τ)
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+
2e−2mτ (µx + µy)

2

µy − 1
2σ

2
2

(x(t)− x0)
2

+ e−mτσ2
1x

2
0

+ e−mτσ2
1 (x(t)− x0)

2
+

(
µy
2
− 1

4
σ2

2

)(
y2(t+ τ)− y2(t)

)
=−

(
µy
2
− 1

4
σ2

2

)
y2(t) +

(
2e−2mτ (µx + µy)

2

µy − 1
2σ

2
2

+ e−mτσ2
1

)
(x(t)− x0)

2

+ e−mτσ2
1x

2
0. (2.5)

Integrating (2.5) from 0 to t and then taking the expectation on both sides yield
that

EV3(t)− EV3(0) ≤−
(
µy
2
− 1

4
σ2

2

)
E
∫ t

0

y2(s) ds+ e−mτσ2
1x

2
0t

+

(
2e−2mτ (µx + µy)

2

µy − 1
2σ

2
2

+ e−mτσ2
1

)
E
∫ t

0

(x(s)− x0)
2
ds.

Then we can get

lim
t→∞

sup
1

t
E
∫ t

0

y2(s) ds ≤ Dy0 .

Define

V4(t) =
1

2
(qv(t) + pz(t))

2
+ 2p (µv + µz) z(t).

We obtain

L V4(t) ≤− q

2

(
qµv −

1

2
σ2

3

)
v2(t)− p

2

(
pµz −

1

2
σ2

4

)
z2(t)

+

(
2kq

qµv − 1
2σ

2
3

+
2kq

pµz − 1
2σ

2
4

)
y2(t). (2.6)

Integrating (2.6) from 0 to t and then taking the expectation on both sides result
in

EV4(t)− EV4(0) ≤− q

2

(
qµv −

1

2
σ2

3

)
E
∫ t

0

v2(s) ds− p

2

(
pµz −

1

2
σ2

4

)
E
∫ t

0

z2(s) ds

+

(
2kq

qµv − 1
2σ

2
3

+
2kq

pµz − 1
2σ

2
4

)
E
∫ t

0

y2(s) ds.

Then one can see that

lim
t→∞

sup
1

t
E
∫ t

0

v2(s) ds ≤ Dv0 , lim
t→∞

sup
1

t
E
∫ t

0

z2(s) ds ≤ Dz0

where Dv0 and Dz0 are defined in (2.2). This completes the proof of Theorem 2.2.

2.2. Asymptotic behavior around the un-immune infected steady
state E1 = (x1, y1, v1, 0)

Let un-immune infected steady state E1 be given in Lemma 1.1. In this section,
we will study the asymptotic behavior of model (1.1) around E1.
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Theorem 2.3. Let X(t) = (x(t), y(t), v(t), z(t)) be the solution of model (1.1) with
initial value X(0) ∈ R4

+. If the following conditions are satisfied

R0 > 1, R1 < 1, µx > σ2
1 , µy > σ2

2 , qµv > σ2
3 and pµz >

1

2
σ2

4 (2.7)

where R0 and R1 are given in Lemma 1.1, then

lim
t→∞

sup
1

t
E
∫ t

0

(x(s)− x1)2 ds ≤ Dx1 , lim
t→∞

sup
1

t
E
∫ t

0

(y(s)− y1)2 ds ≤ Dy1 ,

lim
t→∞

sup
1

t
E
∫ t

0

(v(s)− v1)2 ds ≤ Dv1 , lim
t→∞

sup
1

t
E
∫ t

0

z2(s) ds ≤ Dz1

where

Dx1
=

βx2
1v1

µxx1 (1 + αv1) (µx − σ2
1)

(
σ2

1x1

2
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2

)
+

x1

µx − σ2
1

(
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2

)
+

σ2
1x

2
1

µx − σ2
1

,

Dy1 =

(
4e−mτ (µx + µy)

(µy − σ2
2)

2 +
2e−mτσ2

1

µy − σ2
2

)
Dx1

+
e−mτσ2

1x
2
1 + σ2

2y
2
1

µy − σ2
2

,

Dv1 =

(
4kq

q (qµv − σ2
3)

2 +
4kq

q (qµv − σ2
3)
(
pµz − 1

2σ
2
4

))Dy1 +
2σ2

3v
2
1

qµv − σ2
3

,

Dz1 =

(
4kq

p (qµv − σ2
3)
(
pµz − 1

2σ
2
4

) +
4kq

p
(
pµz − 1

2σ
2
4

)2
)
Dy1 +

2qσ2
3v

2
1

p
(
pµz − σ2

4

2

) . (2.8)

Proof. Since the un-immune infected steady state E1 is an equilibrium, we have
Λ = µxx1 +

βx1v1

1 + αv1
,

βe−mτx1v1

1 + αv1
= µyy1,

ky1 = µvv1.

(2.9)

First, defining some C2 functions as follows

V5(t) = x(t)− x1 − x1Ln
x(t)

x1
,

V6(t) = y(t)− y1 − y1Ln
y(t)

y1
,

V7(t) =
µy
k

(
v(t)− v1 − v1Ln

v(t)

v1

)
+
pµy
kq

z(t).

Using (2.7), (2.9) and Itô′s formula, we arrive at

L V5(t) =

(
1− x1

x(t)

)(
Λ− µxx(t)− βx(t)v(t)

1 + αv(t)

)
+
σ2

1x1

2
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=Λ− µxx(t)− βx(t)v(t)

1 + αv(t)
− x1Λ

x(t)
+ µxx1 +

βx1v(t)

1 + αv(t)
+
σ2

1x1

2

=µxx1

(
2− x1

x(t)
− x(t)

x1

)
+
σ2

1x1

2
+

βx1v1

1 + αv1

×
(

1− (1 + αv1)x(t)v(t)

(1 + αv(t))x1v1
− x1

x(t)
+

(1 + αv1)v(t)

(1 + αv(t))v1

)
,

L V6(t) =

(
1− y1

y(t)

)(
βe−mτx(t− τ)v(t− τ)

1 + αv(t− τ)
− µyy(t)

)
+
σ2

2y1

2

=
βe−mτx(t− τ)v(t− τ)

1 + αv(t− τ)
− µyy(t)

− βe−mτx(t− τ)v(t− τ)

1 + αv(t− τ)

y1

y(t)
+ µyy1 +

σ2
2y1

2

=

(
(1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1
− y(t)

y1
− (1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1

y1

y(t)
+ 1

)
× βe−mτx1v1

1 + αv1
+
σ2

2y1

2
,

L V7(t) =
µy
k

(
1− v1

v(t)

)
(ky(t)− µvv(t)− pz(t)v(t))

+
pµy
kq

(qz(t)v(t)− µzz(t)) +
σ2

3v1

2

=µyy(t)− µv
µy
k
v(t)− pµy

k
z(t)v(t)− µyy(t)

v1

v(t)
+ µv

µy
k
v1 + p

µy
k
z(t)v1

+
pµy
kq

(qz(t)v(t)− µzz(t)) +
σ2

3v1

2

=
βe−mτx1v1

1 + αv1

(
y(t)

y1
− v(t)

v1
− v1y(t)

y1v(t)
+ 1

)
+ p

µy
k
z(t)(v1 −

µz
q

) +
σ2

3v1

2
.

Since R1 < 1, one can get

v1 <
µz
q
.

It follows that

L V7(t) ≤ βe−mτx1v1

1 + αv1

(
y(t)

y1
− v(t)

v1
− v1y(t)

y1v(t)
+ 1

)
+
σ2

3v1

2
.

We define the following Lyapunov functions

V8(t) =V5(t) + emτV6(t) + emτV7(t)

+
βx1v1

1 + αv1

∫ t

t−τ

[
(1 + αv1)x(s)v(s)

(1 + αv(s))x1v1
− 1− Ln (1 + αv1)x(s)v(s)

(1 + αv(s))x1v1

]
ds,

V9(t) =emτV6 + emτV7

+
βx1v1

1 + αv1

∫ t

t−τ

[
(1 + αv1)x(s)v(s)

(1 + αv(s))x1v1
− 1− Ln (1 + αv1)x(s)v(s)

(1 + αv(s))x1v1

]
ds.

Then it is easy to obtain

L V8(t) ≤µxx1

(
2− x1

x(t)
− x(t)

x1

)
+

(
1− (1+αv1)x(t)v(t)

(1+αv(t))x1v1
− x1

x(t)
+

(1+αv1)v(t)

(1+αv(t))v1

)
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× βx1v1

1 + αv1
+
σ2

1x1

2
+

βx1v1

1 + αv1

×
(

(1+αv1)x(t−τ)v(t−τ)

(1+αv(t−τ))x1v1
− y(t)

y1
− (1+αv1)x(t−τ)v(t−τ)

(1+αv(t−τ))x1v1

y1

y(t)
+1

)
+
σ2

2y1e
mτ

2
+

βx1v1

1 + αv1

(
y(t)

y1
− v(t)

v1
− v1y(t)

y1v(t)
+ 1

)
+
σ2

3v1e
mτ

2

+

(
(1 + αv1)x(t)v(t)

(1 + αv(t))x1v1
− Ln (1 + αv1)x(t)v(t)

(1 + αv(t))x1v1

)
βx1v1

1 + αv1

− βx1v1

1 + αv1

(
(1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1
− Ln (1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1

)
=µxx1

(
2− x1

x(t)
− x(t)

x1

)
− βx1v1

1 + αv1

×
(

(1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1

y1

y(t)
+

x1

x(t)
+
v1y(t)

y1v(t)
− 3

)
+

βx1v1

1 + αv1

(
(1 + αv1)v(t)

(1 + αv(t))v1
− v(t)

v1

)
+

βx1v1

1 + αv1

×
(
Ln

(1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1
− Ln (1 + αv1)x(t)v(t)

(1 + αv(t))x1v1

)
+
σ2

1x1

2
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2

≤µxx1

(
2− x1

x(t)
− x(t)

x1

)
− βx1v1

1 + αv1

×
(
Ln

(1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1
+ Ln

y1

y(t)
+ Ln

x1

x(t)
+ Ln

v1y(t)

y1v(t)

)
+

βx1v1

1 + αv1

(
(1 + αv1)v(t)

(1 + αv(t))v1
− v(t)

v1

)
+

βx1v1

1 + αv1

×
(
Ln

(1+αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1
− Ln (1 + αv1)x(t)v(t)

(1 + αv(t))x1v1

)
+
σ2

1x1

2
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2

=µxx1

(
2− x1

x(t)
− x(t)

x1

)
+

βx1v1

1 + αv1

×
(
Ln

1+αv(t)

1+αv1
− v(t)

v1
+

(1+αv1)v(t)

(1+αv(t))v1

)
+
σ2

1x1

2
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2

≤µxx1

(
2− x1

x(t)
− x(t)

x1

)
+

βx1v1

1 + αv1

×
(

1+αv(t)

1+αv1
−1− v(t)

v1
+

(1+αv1)v(t)

(1+αv(t))v1

)
+
σ2

1x1

2
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2

=µxx1

(
2− x1

x(t)
− x(t)

x1

)
− βx1v1

1 + αv1

α(v(t)− v1)2

(1 + αv1)(1 + αv(t))v1

+
σ2

1x1

2
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2



1434 L. Zhang, T. Liu & X. Zhang

≤µxx1

(
2− x1

x(t)
− x(t)

x1

)
+
σ2

1x1

2
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2
,

L V9(t) ≤
(

(1+αv1)x(t−τ)v(t−τ)

(1+αv(t−τ))x1v1
− y(t)

y1
− (1+αv1)x(t−τ)v(t−τ)

(1+αv(t−τ))x1v1

y1

y(t)
+1

)
× βx1v1

1+αv1
+
σ2

2y1e
mτ

2
+
βx1v1

1+αv1

(
y(t)

y1
− v(t)

v1
− v1y(t)

y1v(t)
+1

)
+
σ2

3v1e
mτ

2

+

(
(1 + αv1)x(t)v(t)

(1 + αv(t))x1v1
− Ln (1 + αv1)x(t)v(t)

(1 + αv(t))x1v1

)
βx1v1

1 + αv1

− βx1v1

1 + αv1

(
(1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1
− Ln (1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1

)
=
βx1v1

1 + αv1

(
−x(t)

x1
+ 1 +

(1 + αv1)x(t)v(t)

(1 + αv(t))x1v1
− (1 + αv1)v(t)

(1 + αv(t))v1

)
+

βx1v1

1 + αv1

(
−v(t)

v1
+

(1 + αv1)v(t)

(1 + αv(t))v1

)
− βx1v1

1 + αv1

(
−3 +

(1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1

y1

y(t)
+

x1

x(t)
+
v1y(t)

y1v(t)

)
+

βx1v1

1 + αv1

(
x(t)

x1
+

x1

x(t)
− 2

)
+

βx1v1

1 + αv1

(
Ln

(1 + αv1)x(t− τ)v(t− τ)

(1 + αv(t− τ))x1v1
− Ln (1 + αv1)x(t)v(t)

(1 + αv(t))x1v1

)
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2

≤ βx1v1

1 + αv1

(
−x(t)

x1
+ 1 +

(1 + αv1)x(t)v(t)

(1 + αv(t))x1v1
− (1 + αv1)v(t)

(1 + αv(t))v1

)
+

βx1v1

1 + αv1

(
x(t)

x1
+

x1

x(t)
− 2

)
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2
.

Let

V10(t) =
1

2
(x(t)− x1)2.

We have

L V10(t) =(x(t)− x1)

(
Λ− µxx(t)− βx(t)v(t)

1 + αv(t)

)
+
σ2

1x
2(t)

2

=− µx(x(t)− x1)2 +
βx1v1

1 + αv1
(x(t)− x1)− β(x(t)− x1)2v(t)

1 + αv(t)

− βx1(x(t)− x1)v(t)

1 + αv(t)
+
σ2

1(x(t)− x1 + x1)2

2

≤− (µx − σ2
1)(x(t)− x1)2

+ x1
βx1v1

1+αv1

(
x(t)

x1
−1− (1+αv1)x(t)v(t)

(1+αv(t))x1v1
+

(1+αv1)v(t)

(1+αv(t))v1

)
+σ2

1x
2
1.

Choosing

V11(t) =
βx2

1v1

µxx1(1 + αv1)
V8 + x1V9 + V10.
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We can see

L V11(t) ≤−
(
µx−σ2

1

)
(x(t)−x1)2+

βx2
1v1

µxx1(1+αv1)

(
σ2

1x1

2
+
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2

)
+ x1

(
σ2

2y1e
mτ

2
+
σ2

3v1e
mτ

2

)
+ σ2

1x
2
1. (2.10)

Integrating (2.10) from 0 to t and then taking the expectation on both sides lead to

EV11(t)− EV11(0) ≤−
(
µx − σ2

1

)
E
∫ t

0

(x(s)− x1)2 ds+Dx1

(
µx − σ2

1

)
t

where Dx1
is defined in (2.8). Then we can get

lim
t→∞

sup
1

t
E
∫ t

0

(x(s)− x1)2 ds ≤ Dx1 .

Define

V12(t) =
1

2

(
e−mτx(t)−e−mτx1+y(t+τ)−y1

)2
+

(
µy−σ2

2

)
2

∫ t+τ

t

(y(s)−y1)2 ds,

We can get

L V12(t) =
(
e−mτx(t)−e−mτx1+y(t+τ)−y1

) (
e−mτΛ−µxe−mτx(t)−µyy(t+τ)

)
+
e−mτ

2
σ2

1x
2(t) +

1

2
σ2

2y
2(t+ τ)

+

(
µy − σ2

2

)
2

[
(y(t+ τ)− y1)2 − (y(t)− y1)2

]
=
(
e−mτx(t)− e−mτx1 + y(t+ τ)− y1

)
×
(
−µxe−mτ (x(t)− x1)− µy(y(t+ τ)− y1)

)
+
e−mτ

2
σ2

1x
2(t)

+
1

2
σ2

2y
2(t+ τ) +

(
µy − σ2

2

)
2

[
(y(t+ τ)− y1)2 − (y(t)− y1)2

]
=− µxe−2mτ (x(t)− x1)2 − µy(y(t+ τ)− y1)2

− e−mτ (µx + µy)(x(t)− x1)(y(t+ τ)− y1) +
e−mτ

2
σ2

1(x(t)− x1 + x1)2

+
1

2
σ2

2(y(t+τ)−y1+y1)2+

(
µy−σ2

2

)
2

[
(y(t+τ)−y1)2−(y(t)−y1)2

]
≤−

(
µy − σ2

2

)
(y(t+ τ)− y1)2 +

(
µy − σ2

2

)
2

(y(t+ τ)− y1)2

+
2e−mτ (µx + µy)

(µy − σ2
2)

(x(t)− x1)2 + e−mτσ2
1x

2
1 + e−mτσ2

1(x(t)− x1)2

+ σ2
2y

2
1 +

(
µy − σ2

2

)
2

[(y(t+ τ)− y1)2 − (y(t)− y1)2]

=−
(
µy − σ2

2

)
2

(y(t)− y1)2

+

(
2e−mτ (µx + µy)

(µy − σ2
2)

+ e−mτσ2
1

)
(x(t)− x1)2 + e−mτσ2

1x
2
1 + σ2

2y
2
1 .

(2.11)
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Integrating (2.11) from 0 to t and then taking the expectation on both sides, we
have

EV12(t)− EV12(0) ≤−
(
µy − σ2

2

)
2

E
∫ t

0

(y(s)− y1)2 ds+ (e−mτσ2
1x

2
1 + σ2

2y
2
1)t

+

(
2e−mτ (µx + µy)

(µy − σ2
2)

+ e−mτσ2
1

)
E
∫ t

0

(x(s)− x1)2 ds.

In other words,

lim
t→∞

sup
1

t
E
∫ t

0

(y(s)− y1)2 ds ≤ Dy1

where Dy1 is defined in (2.8). At last, we define the following C2 functions.

V13(t) =
1

2
(qv(t)− qv1 + pz(t))

2
+ 2p(µv + µz)z(t).

We obtain

L V13(t) =(qv(t)−qv1+pz(t))[q(ky(t)−µvv(t)−pz(t)v(t))+p(qz(t)v(t)−µzz(t))]

+
q

2
σ2

3v
2(t) +

p

2
σ2

4z
2(t) + 2p(µv + µz)(qz(t)v(t)− µzz(t))

=(qv(t)− qv1 + pz(t))[kq(y(t)− y1)− qµv(v(t)− v1)− pµzz(t)]

+
q

2
σ2

3v
2(t) +

p

2
σ2

4z
2(t) + p(µv + µz)(qz(t)v(t)− µzz(t))

≤− q
(
qµv − σ2

3

)
(v(t)− v1)2 − p

(
pµz −

σ2
4

2

)
z2(t)

+ p(µv + µz)z(t)(qv1 − µz) + kq2(v(t)− v1)(y(t)− y1)

+ kpq(y(t)− y1)z(t) + qσ2
3v

2
1

≤− q
(
qµv − σ2

3

)
(v(t)− v1)2 − p

(
pµz −

σ2
4

2

)
z2(t)

+ kq2(v(t)− v1)(y(t)− y1) + kpq(y(t)− y1)z(t) + qσ2
3v

2
1

≤− q
(
qµv − σ2

3

)
(v(t)− v1)2 − p

(
pµz −

σ2
4

2

)
z2(t)

+
q

2

(
qµv − σ2

3

)
(v(t)− v1)2 +

2kq

qµv − σ2
3

(y(t)− y1)2

+
p

2

(
pµz − σ2

4

)
z2(t) +

2kq

pµz − 1
2σ

2
4

(y(t)− y1)2 + qσ2
3v

2
1

=− q

2
(qµv − σ2

3)(v(t)− v1)2 +
2kq

qµv − σ2
3

(y(t)− y1)2

− p

2

(
pµz −

σ2
4

2

)
z2(t) +

2kq

pµz − 1
2σ

2
4

(y(t)− y1)2 + qσ2
3v

2
1 . (2.12)

Integrating (2.12) from 0 to t and then taking the expectation on both sides give

EV13(t)− EV13(0) ≤− q

2

(
qµv − σ2

3

)
E
∫ t

0

(v(s)− v1)2 ds
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+

(
2kq

qµv − σ2
3

+
2kq

pµz − 1
2σ

2
4

)
E
∫ t

0

(y(s)− y1)2 ds

− p

2

(
pµz −

σ2
4

2

)
E
∫ t

0

z2(s) ds+ qσ2
3v

2
1t.

Then we have

lim
t→∞

sup
1

t
E
∫ t

0

(v(s)− v1)2 ds ≤ Dv1 , lim
t→∞

sup
1

t
E
∫ t

0

z2(s) ds ≤ Dz1

where Dv1 and Dz1 is defined in (2.8). This completes the proof of Theorem 2.3.

2.3. Asymptotic behavior around the positive equilibrium point
E2 = (x2, y2, v2, z2)

Let immune infected steady state E2 be given in Lemma 1.1. In this section, we
will study the asymptotic behavior of model (1.1) around E2.

Theorem 2.4. Let X(t) = (x(t), y(t), v(t), z(t)) be the solution of model (1.1) with
initial value X(0) ∈ R4

+. If the following conditions are satisfied

R1 > 1, µx > σ2
1 , µy > σ2

2 , qµv > σ2
3 and pµz > σ2

4

where R1 is given in Lemma 1.1, then

lim
t→∞

sup
1

t
E
∫ t

0

(x(s)− x2)2 ds ≤ Dx2
, lim
t→∞

sup
1

t
E
∫ t

0

(y(s)− y2)2 ds ≤ Dy2 ,

lim
t→∞

sup
1

t
E
∫ t

0

(v(s)− v2)2 ds ≤ Dv2 , lim
t→∞

sup
1

t
E
∫ t

0

(z(s)− z2)2 ds ≤ Dz2

where

Dx2 =
βx2

2v2

µxx2(1 + αv2) (µx − σ2
1)

(
σ2

1x2

2
+
σ2

2y2e
mτ

2
+
µyσ

2
3v2e

mτ

2k
+
pµyσ

2
4z2e

mτ

2kq

)
+

x2

µx − σ2
1

(
σ2

2y2e
mτ

2
+
µyσ

2
3v2e

mτ

2k
+
pµyσ

2
4z2e

mτ

2kq

)
+

σ2
1x

2
2

µx − σ2
1

,

Dy2 =

(
4e−mτ (µx + µy)

(µy − σ2
2)

2 +
2e−mτσ2

1

µy − σ2
2

)
Dx2

+
e−mτσ2

1x
2
2 + σ2

2y
2
2

µy − σ2
2

,

Dv2 =

(
4kq

q (qµv − σ2
3)

2 +
4kq

q (qµv − σ2
3) (pµz − σ2

4)

)
Dy2

+
2qσ2

3v
2
2 + 2pσ2

4z
2
2 + p(µv + µz)σ

2
4z2

q (qµv − σ2
3)

,

Dz2 =

(
4kq

p (pµz − σ2
4) (qµv − σ2

3)
+

4kq

p (pµz − σ2
4)

2

)
Dy2

+
2qσ2

3v
2
2 + 2pσ2

4z
2
2 + p(µv + µz)σ

2
4z2

p (pµz − σ2
4)

.

Proof. The proof is similar to Theorem 2.3 and hence is omitted.
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3. Numerical simulation

To illustrate the theoretical results obtained above, some numerical simulations
are displayed in the following figures. We show the dynamics of the model (1.1)
by fixing value of the parameters. Some of the values of parameters are taken in
the reference [31] and the rest of the parametric values are assumed for numerical
requirements.

Example 3.1. Let (x(0), y(0), v(0), z(0)) = (3.000, 3.000, 1.000, 3.000), Λ = 0.900,
β = 0.300, µx = 0.200, α = 0.200, µy = 0.300, k = 0.500, µv = 0.100, p = 0.050,
q = 0.200, µz = 0.300, τ = 15.000, m = 0.300, σ1 = 0.100, σ2 = 0.100, σ3 = 0.100,
σ4 = 0.100. By calculating, we obtain R0 ≈ 0.250 < 1, µx > σ2

1 , µy > 1
2σ

2
2 ,

qµv > 1
2σ

2
3 and pµz > 1

2σ
2
4 . By virtue of Theorem 2.2 and Figure 1, we can

observe that population y(t), v(t) and z(t) of model (1.1) will go to extinction with
probability one.
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Figure 1. The solutions x(t), y(t), v(t) and z(t) for the stochastic model (1.1) with parameters in
Example 3.1.

Example 3.2. Let (x(0), y(0), v(0), z(0)) = (3.000, 3.000, 1.000, 3.000), Λ = 0.900,
β = 0.300, µx = 0.200, α = 0.200, µy = 0.300, k = 0.500, µv = 0.100, p = 0.050,
q = 0.200, µz = 0.300, τ = 7.000, m = 0.300, σ1 = 0.100, σ2 = 0.100, σ3 = 0.100,
σ4 = 0.100. By calculating, we obtain R0 ≈ 2.755 > 1, R1 ≈ 0.776 < 1, µx > σ2

1 ,
µy > σ2

2 , qµv > σ2
3 and pµz >

1
2σ

2
4 , the conditions of Theorem 2.3 are satisfied.

Then from Figure 2, we can see that only population z(t) of model (1.1) will go to
extinction with probability one.
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Figure 2. The solutions x(t), y(t), v(t) and z(t) for the stochastic model (1.1) with parameters in
Example 3.2.

Example 3.3. Let (x(0), y(0), v(0), z(0)) = (3.000, 3.000, 1.000, 3.000), Λ = 0.900,
β = 0.300, µx = 0.200, α = 0.200, µy = 0.300, k = 0.500, µv = 0.100, p = 0.050,
q = 0.200, µz = 0.300, τ = 3.000, m = 0.300, σ1 = 0.100, σ2 = 0.100, σ3 = 0.100,
σ4 = 0.100. By calculating, we obtain R0 ≈ 9.148 > 1, R1 ≈ 2.577 > 1, µx > σ2

1 ,
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µy > σ2
2 , qµv > σ2

3 and pµz > σ2
4 , the conditions of Theorem 2.4 are satisfied. Then

from Figure 3, we can see that the populations of model (1.1) are permanent.
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Figure 3. The solutions x(t), y(t), v(t) and z(t) for the stochastic model (1.1) with parameters in
Example 3.3.

4. Discussion and summary

In this work, we discussed the long-term behavior of a stochastic viral model with
intracellular delay and humoral immunity. We show that the solution of stochastic
model (1.1) is going around the steady states of deterministic model under some
conditions by constructing some suitable Lyapunov functions. And our theoretical
results has been verified by numerical simulation.

To assist policymakers in targeting prevention and treatment resources for maxi-
mum effectiveness, we study the relationship between the basic reproduction number
R0 (the immune response reproductive ratio R1) and the parameters of the basic re-
production number R0 (the immune response reproductive ratio R1) by sensitivity
index. The normalized forward sensitivity index of a variable to a parameter is the
ratio of the relative change in the variable to the relative change in the parameter [2],
which can be defined as follows.

Definition 4.1 ( [2]). The normalized forward sensitivity index of a variable y,
that depends differentiably on a parameter x, is defined as:

Axy =
∂x

∂y
× y

x
= y

∂

∂y
Lnx.

The sensitivity indices for R0 and R1 are respectively shown in Table 2 and
Table 3.

Table 2. Sensitivity indices for R0

Parameter Index Parameter Index
k +1.000 τ −mτ
Λ +1.000 µx −1.000
β +1.000 µy −1.000
m −mτ µv −1.000

The Table 2 and Table 3 indicates that the following several ways would be more
effective to control the spread of the virus.

(i) We should increase the time between viral entry into a target cell and the
production of new virus particles (τ), the death rate for infected but not yet
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Table 3. Sensitivity indices for R1

Parameter Index Parameter Index

q αµxµz+βµz
qµx+αµxµz+βµz

µx
−qµx−αµxµz

qµx+αµxµz+βµz

k +1.000 µy −1.000
Λ +1.000 µv −1.000

β qµx+αµxµz
qµx+αµxµz+βµz

µz
−αµxµz−βµz

qµx+αµxµz+βµz

m −mτ α −αµxµz
qµx+αµxµz+βµz

τ −mτ

virus-producing cells (m), the death rate of the free virus particles (µv) and
infected cells (µy).

(ii) We should reduce the produced rate of free virus from infected cells (k).
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