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Abstract To understand the impact of free-living pathogens (FLP) on the
epidemics, an epidemic model with FLP is constructed. The global dynamics
of our model are determined by the basic reproduction number R0. If R0 < 1,
the disease free equilibrium is globally asymptotically stable, and if R0 > 1,
the endemic equilibrium is globally asymptotically stable. Some numerical
simulations are also carried out to illustrate our analytical results.
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1. Introduction

Epidemics are diseases caused by various pathogens which can spread between hu-
mans. Each infectious disease is caused by its specific pathogen, which can be
a microbe or a parasite. Including viruses, bacteria, fungi or parasites, etc. Al-
though the development of medical science has been able to prevent and control
many infectious diseases, there are still some outbreaks or epidemics that danger
people’s health and lives. Some infectious diseases are highly contagious, leading
to high disability rates and great harm, for example, there are 1.5 million deaths
from respiratory infectious worldwide annually [6]. Therefore, it is of great practical
significance to study the process of epidemics.

Following the pioneering of Kermack and Mckendrick [15], many researchers’
attention have been attracted by epidemic models. In order to better understand
the dynamics of infectious diseases, many different epidemic models have emerged
and have been studied in different ways. For example, we can find susceptible-
infectious-recovered (SIR) model (see for example [1, 16]), apart from this, there
is also susceptible-infectious-susceptible (SIS) model [4, 8, 9, 21]. Some researcher-
s added the exposed compartment E or the treatment T to the model, just like
susceptible-exposed-infectious-recovered (SEIR) model in [31]; A. Ricardo. [22]
proposed a susceptible-exposed-infectious-recovered-treatment (SEIRT ) model and
studied the effects of treatment and exposure on epidemics; in addition, there is a
mixture of the above models, like [2,13,20,28–30]. Furthermore, some authors have
studied the virus model (see [26]) to study the virus infection dynamics. From the
work of S.A. Boone, et al. [6] and A. Gabbuti, et al. [10], we know that vaccination
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against hepatitis B is the most effective measure to control the spread of hepatitis B
due to prevention and management of viral disease heavily relies upon vaccines and
antiviral medications. So, many researchers incorporated the new compartment,
that is, the vaccination V to their model, such as [14,19].

However, vaccines and drugs are not absolutely effective, and there are still
no vaccines or drugs for many common viruses [6]. So, avoiding exposure to the
virus is more important to prevent infectious disease. Viral transmission is not only
depend on interaction with the host, but also interaction with the environment.
A contaminated environment such as air, water, food may transmit infection to
susceptible hosts [3, 7, 23]. If we are contacting with infections who is sneezing or
coughing, we will be very susceptible to the pathogens. The pathogens in a free-
living can survive even growth in the environment [5,18]. Additionally, a free-living
pathogen (FLP) in the environment will naturally die and be replenished by the
infected people [3].

By taking into account the above mentioned factors, in this paper, we extend a
simple SIRT model to an SIRTP model that include the FLP capable of growth
and survival in the environment. The organization of this paper is as follows:
In section 2, the model is derived under some assumptions. In section 3, we get
the basic reproduction number and obtain the stability of all the equilibria. Some
numerical simulations are given in section 4 to illustrate our analytical result. Some
discussions are given in the last section.

2. The Model

2.1. System description

Figure 1. Transfer diagram for the dynamics of epidemic model with FLP.

In this section, a simple model with treatment and FLP is introduced. The
total population N(t) is divided into four compartments, namely, S(t) represents
the number of susceptible individuals. I(t) represents the number of infectious
individuals. Note that some people who are infected with pathogens are able to heal
themselves. R(t) represents the number of recovered individuals and the recovered
individuals may be infected again. T (t) represent the number of individuals being
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treated. In our model, we assume that not all people can be cured completely for
some of practical reasons. If the treatment is successful, individuals in compartment
T enter into the compartment of R. If the treatment is terminated or failure, people
who failed the treatment still carry and transmit the virus. And the compartment
P (t) indicates the FLP load in the environment, people who are susceptible to
infection can become infected not only by adequate contacts with infectious people
but also contacting pathogens in the environment. Hence, the total population is
given by

N(t) = S(t) + I(t) +R(t) + T (t).

The transfer diagram of the model is shown in Figure 1 (in this figure, the
dotted line and the solid line represent the dynamics of host and FLP, respectively).
According to Figure 1, we have following model:

.

S = b− βSI − δSP + αR−mS,
.

I = βSI + δSP − (m+ µ1 + ν + k)I + k2T,
.

T = kI − (k2 + k1 +m+ µ2)T,
.

R = νI − (α+m)R+ k1T,
.

P = γI + gP (1− cP )− rP. (2.1)

We assume that α is non-negative and all other parameters in the model are pos-
itive constants. The parameters are described in Tabel 1. In this paper, we assume
that the FLP population cannot maintain itself through growth in the environment
(i.e. the FLP growth rate g is always less than the FLP decay rate r) [3].

Table 1. Description of parameters

Parameter Description Data estimated Data sources

b Host birth rate Variable Estemate

m Host natural death rate 0.01 day−1 Estimate

β Host-to-Host transmission Variable Estemate

δ Environment-to-Host transmission Variable Estemate

γ Pathogen shedding rate 10 cells day−1 individuals−1 [3]

r Pathogen decay rate 0.8 day−1 [3]

1/c Carrying capacity of FLP 106 cells [3]

g Pathogen growth rate 0.3 day−1 [3]

µ1 The disease-related death of the infectious 0.03 day−1 [3]

µ2 The disease-related death of being treated 0.005 day−1 Estemate

k Progression rate to T from I 0.4 day−1 Estemate

k1 The proportion of successful treatment Variable Estemate

k2 The proportion of failure treatment Variable Estemate

1/v Infection period 3 day [3]

1/α Immune period Variable Estemate

2.2. Basic properties

2.2.1. Positive of solutions

For system (2.1), In order to ensure the solutions of the system with positive initial
conditions remain positive for all t > 0, it is necessary for us to prove that all the
variables are non-negative. Therefore, we give the following lemma.
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Lemma 2.1. If S(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0, P (0) ≥ 0, R(0) ≥ 0, the solutions
S(t), I(t), T (t), P (t), R(t), of system (2.1) are positive for all t > 0.

Proof. Under the giving initial conditions, it is easy to prove that the solution of
the system (2.1) are positive; if not, we assume a condition: that there exists a first
time t1 such that

S(t1) = 0, S′(t1) < 0, I(t) ≥ 0, T (t) ≥ 0, P (t) ≥ 0, R(t) ≥ 0, 0 ≤ t ≤ t1, (2.2)

there exists a t2

I(t2) = 0, I ′(t2) < 0, S(t) ≥ 0, T (t) ≥ 0, P (t) ≥ 0, R(t) ≥ 0, 0 ≤ t ≤ t2, (2.3)

there exists a t3

T (t3) = 0, T ′(t3) < 0, S(t) ≥ 0, I(t) ≥ 0, P (t) ≥ 0, R(t) ≥ 0, 0 ≤ t ≤ t3, (2.4)

there exists a t4

R(t4) = 0, R′(t4) < 0, S(t) ≥ 0, I(t) ≥ 0, P (t) ≥ 0, T (t) ≥ 0, 0 ≤ t ≤ t4, (2.5)

there exists a t5

P (t5) = 0, P ′(t2) < 0, S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, T (t) ≥ 0, 0 ≤ t ≤ t2. (2.6)

In the (2.2) we have
S′(t1) = b+ αR(t1) > 0, (2.7)

which is contradictory to the assumption S′(t1) < 0, it means that S′(t) > 0, t ≥ 0.
In the second case, we have

I ′(t2) = δS(t2)P (t2) + k2T (t2) ≥ 0, (2.8)

which is contradictory to the assumption I ′(t2) < 0, it means that I ′(t) > 0, t ≥ 0.
Similarly, it can be shown that T (t) ≥ 0, R(t) ≥ 0, P (t) ≥ 0 for all t ≥ 0.

Hence, the solutions S(t), I(t), T (t), P (t), R(t) of system (2.1) remain positive
for all t > 0.

2.2.2. Invariant regions

Lemma 2.2. We assume that there is a constant H, then, all feasible solution of the
system (2.1) are bounded and enter the region Ω = {(S(t), I(t), T (t), R(t), P (t)) ∈
R4

+ | 0 ≤ S + I + T +R ≤ b
m , P ≤ H}.

Proof. We assume that (S, I, T,R) is any solution with non-negative initial con-
ditions, adding the first four equations of the system (2.1), we have

d

dt
(S + I + T +R) = b−mS −mI − µ1I −mT − µ2T −mR

= b−m(S + I + T +R)− (µ1I + µ2T )

≤ b−m(S + I + T +R)

= b−mN(t),

where
N(t) = S(t) + I(t) + T (t) +R(t).
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It follows that

0 ≤ N(t) ≤ b

m
+N(0)e−mt,

where N(0) represents initial value of the total population. Thus 0 ≤ N(t) ≤ b
m ,

as t→∞.

For the last equation of the system (2.1), we have

dP

dt
= γI + gP (1− cP )− rP

= γI − (r − g)P − gcP 2

≤ γ b
m
− (r − g)P − gcP 2,

and thus there exists H > 0 so that lim supt→∞ P (t) ≤ H. The constant H can be
chosen as the unique positive zero of the quadratic polynomial γ b

m−(r−g)x−gcx2.
Therefore all feasible solutions of system (2.1) enter the region

Ω = {(S(t), I(t), T (t), R(t), P (t)) ∈ R4
+ | 0 ≤ S + I + T +R ≤ b

m
, P ≤ H}.

So we consider dynamic of system (2.1) on the set Ω in this paper.

3. Analysis of the model

3.1. Disease free equilibrium and the reproduction number

It’s easy for us to get the disease free equilibrium of the system (2.1)

E0 = (
b

m
, 0, 0, 0, 0).

In the following, the basic reproduction number of system (2.1) will be derived
by using the next generation matrix method formulated in [3, 12, 25, 27]. At first,
we rearrange system (2.1) as following:

.

I = βSI + δSP − (m+ µ1 + ν + k)I + k2T,
.

T = kI − (k2 + k1 +m+ µ2)T,
.

P = γI + gP (1− cP )− rP,
.

S = b− βSI − δSP + αR−mS,
.

R = νI − (α+m)R+ k1T. (3.1)

Then let x = (I, T, P, S,R)T , thus the system (3.1) can be written as:

dx

dt
= F (x)− V (x),
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where

F (x) =



βSI + δSP

0

0

0

0


, V (x) =



(m+ µ1 + ν + k)I − k2T

(k2 + k1 +m+ µ2)T − kI

−γI − gP (1− cP ) + rP

mS − αR+ δSP + βSI − b

(α+m)R− k1T − νI


.

The Jacobian matrices of F (x) and V (x) at the disease free equilibrium E0 are
respectively,

DF (E0) =


F3×3 0 0

0 0 0

0 0 0

 , DV (E0) =


V3×3 0 0

β b
m 0 δ bm m −α

−ν −k1 0 0 α+m

 .

Where,

F =


β b
m 0 δ bm

0 0 0

0 0 0

 , V =


m+ µ1 + ν + k −k2 0

−k k2 + k1 +m+ µ2 0

−γ 0 r − g

 . (3.2)

The model reproduction number, denoted by R0 is thus given by

R0 = ρ(FV −1)

=
βb(k2 + k1 +m+ µ2)

m[(m+ µ1 + ν + k)(k2 + k1 +m+ µ2)− kk2]

+
δbγ(k2 + k1 +m+ µ2)

m(r − g)[(m+ µ1 + ν + k)(k2 + k1 +m+ µ2)− kk2]
.

Following Theorem 2 of [25], we have the following result on the local stability
of E0.

Theorem 3.1. The disease free equilibrium E0 is locally asymptotically stable for
R0 < 1 and unstable for R0 > 1.

3.2. Global stability of E0

Theorem 3.2. If R0 < 1, the disease free equilibrium E0 of system (2.1) is globally
asymptotically stable.

Proof. The comparison theorem can be used to prove the global stability of the
disease free equilibrium. The rate of change of the variables (I, T, P ) of system (3.1)
can be written as

.

I
.

T
.

P

 = (F − V )


I

T

P

− (1− m

b
S)


β b
m 0 δ bm

0 0 0

0 0 cgP
1−m

b S



I

T

P

 ,
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where F and V are defined in (3.2).

Since γI + (g − r)P − gcP 2 ≤ γI + (g − r)P and S ≤ b
m for all t ≥ 0 in Ω, then

.

I
.

T
.

P

 ≤ (F − V )


I

T

P

 .

Note that both F and V −1 are non-negative. Following the Perron-Frobenius
Theorem, let µT be a non-negative left eigenvector of V −1F with respect to ρ(V −1F ) =
ρ(FV −1) = R0, which is, µTV −1F = R0µ

T . Motivated by [11], give a Lyapunov
function

L = µTV −1(I, T, P ).

The derivative of L is given by

L′ = µTV −1(
.

I,
.

T ,
.

P )

≤ µTV −1(F − V )(I, T, P )

= (R0 − 1)µT (I, T, P ).

If R0 < 1, then L′ = 0 implies that µT (I, P, T ) = 0, and thus I = 0 or T = 0 or
P = 0. It follows from the system (2.1) that the largest invariant set where L′ = 0
satisfies δSP + k2T = 0 or kI = 0 or γI = 0; Therefore, I = T = P = 0 because of
δ ≥ 0, k ≥ 0, γ ≥ 0. The first and the fourth equations of the system (2.1) lead to
S = b

m and R = 0 , respectively, in the above invariant set, which is the singleton

{( bm , 0, 0, 0, 0)}. By LaSalle’s invariance principle [17], the disease free equilibrium
E0 of system (2.1) is globally asymptotically stable in Ω if R0 < 1.

3.3. Epidemic equilibrium

3.3.1. Existence of the endemic equilibrium

Theorem 3.3. The system (2.1) admits a unique endemic equilibrium E∗(S∗, I∗,
T ∗, R∗, P ∗) if and only if R0 > 1.

Proof. The equilibrium equation of the system (2.1) are given by

0 = b− βS∗I∗ − δS∗P ∗ + αR∗ −mS∗,
0 = βS∗I∗ + δS∗P ∗ − (m+ µ1 + ν + k)I∗ + k2T

∗,

0 = kI∗ − (k2 + k1 +m+ µ2)T ∗,

0 = νI∗ − (α+m)R∗ + k1T
∗,

0 = γI∗ + gP ∗(1− cP ∗)− rP ∗. (3.3)

It follows that the endemic equilibrium satisfies

I = ψ(P ) :=
gc

γ
P 2 +

r − g
γ

P,
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P = φ(I):=
I

δ

[
m(m+ µ1 + ν + k)

b− (m+ µ1 + ν + k)I + (α+m)k2k+αν(k2+k1+m+µ2)+αkk1
(k2+k1+m+µ2)(α+m) I

− mkk2 b(k2 + k1 +m+ µ2)− (m+ µ1 + ν + k)(k2 + k1 +m+ µ2)I

+ (α+m)k2k+(k2+k1+m+µ2)αν+αk1k
α+m

I

 − β
]
.

To see if there is a endemic equilibrium solution in the above formulas (3.3),
we only need to judge whether the two lines determined by the functions I =
ψ(P ) and P = φ(I) have intersections. Because of the P and I are all posi-
tive numbers, so we just consider the graphs in the first quadrant, by analyz-
ing these two functions, we can get that the graph of the function I = ψ(P )
is a parabola, the function P = φ(I) has two vertical asymptotes, take I0 =

b(k2+k1+m+µ2)(α+m)
(m+µ1+ν+k)(k2+k1+m+µ2)(α+m)+kk2(α+m)+αν(k2+k1+m+µ2)+αkk1

(Because of the range that

P > 0, another vertical asymptote is not considered here). Then, limI→I0 φ(I) =
+∞, so the intersection exists if and only if φ′(0) < 1

ψ′(0) , see Figure 2 (This is

a figure that reflects the positional relationship between the two functions, in this
figure, the real curve and the dashed curve represent the function I = ψ(P ) and
the function P = φ(I), respectively, while the curve perpendicular to the I axis
represents the asymptote of the function P = φ(I). Through calculations, we get

φ′(0) =
1

δ
(
m(m+ µ1 + ν + k)

b
− mkk2

b(k2 + k1 +m+ µ2)
− β),

and ψ′(0) = r−g
γ . Then,

1

δ
(
m(m+ µ1 + ν + k)

b
− mkk2

b(k2 + k1 +m+ µ2)
− β) <

γ

r − g
.

Organize the above inequality to get

βb(k2 + k1 +m+ µ2)

m[(m+ µ1 + ν + k)(k2 + k1 +m+ µ2)− kk2]

+
δbγ(k2 + k1 +m+ µ2)

m(r − g)[(m+ µ1 + ν + k)(k2 + k1 +m+ µ2)− kk2]
> 1

Thus, the sufficient and necessary condition of a unique endemic equilibrium
exists is R0 > 1.

3.3.2. Global stability of the endemic equilibrium

Theorem 3.4. Assume that α = 0, if R0 > 1 the unique endemic equilibrium E∗

of system (2.1) is globally asymptotically stable.

Proof. If R0 > 1, by Theorem 3.3, we know that there exist a unique endemic
equilibrium E∗(S∗, I∗, T ∗, R∗, P ∗), where S∗, I∗, T ∗ , R∗, P ∗ satisfy the equilibrium
equations (3.3). Following [19,24], we introduce a Lyapunov function V as follows

V = S − S∗ lnS +B(I − I∗ ln I) +D(T − T ∗ lnT ) + E(P − P ∗ lnP ).
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Figure 2. the graphs of functions I = ψ(P ) and P = φ(I).

Where B, D, E are positive constants to be determined later, the derivative of V
is given by

.

V =
.

S(1− S∗

S
) +B

.

I(1− I∗

I
) +D

.

T (1− T ∗

T
) + E

.

P (1− P ∗

P
)

= (1− S∗

S
)(b− βSI − δSP + αR−mS)

+B(1− I∗

I
)(βSI + δSP − (m+ µ1 + ν + k)I + k2T )

+D(1− T ∗

T
)(kI − (k2 + k1 +m+ µ2)T ) +E(1− P ∗

P
)(γI + gP (1− cP )− rP )

= (1− S∗

S
)(βS∗I∗ + δS∗P ∗ +mS∗ − βSI − δSP −mS)

+B(1− I∗

I
)(βSI + δSP − βS∗I∗ + δS∗P ∗ + k2T

∗

I∗
I + k2T )

+D(1− T ∗

T
)(kI − kI∗

T ∗
T ) + E(1− P ∗

P
)(γI + (g − r)P − gcP 2).

By denoting S
S∗ = x, I

I∗ = y, T
T∗ = z, P

P∗ = u, we have

.

V =(1− 1

x
)(βS∗I∗ + δS∗P ∗ +mS∗ − βS∗I∗xy − δS∗P ∗xu−mS∗x)

+B(1− 1

y
)(βS∗I∗xy + δS∗P ∗xu+ k2T

∗z − βS∗I∗y − δS∗P ∗y − k2T
∗y)

+D(1− 1

z
)(kI∗y − kI∗z) + E(1− 1

u
)(γI∗y + (g − r)P ∗u− gcP ∗2u2)

=−mS∗ (1− x)2

x
+ βS∗I∗(1− xy − 1

x
+ y) + δS∗P ∗(1− xu− 1

x
+ u)

+BβS∗I∗(1− 1

y
)(xy − y) +BδS∗P ∗(1− 1

y
)(xu− y) +Bk2T

∗(1− y)(z − y)

+DkI∗(1− 1

z
)(y − z) + EγI∗(1− 1

u
)(y − u)− EgcP ∗2(1− u)2

=−mS∗ (1− x)2

x
− EgcP ∗2(1− u)2 + βS∗I∗(1− xy − 1

x
+ y)
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+ δS∗P ∗(1−xu− 1

x
+u)+BβS∗I∗(xy−y−x+1)+BδS∗P ∗(xu−y− xu

y
+1)

+Bk2T
∗(z − y − z

y
+ 1) +DkI∗(y − z − y

z
+ 1) + EγI∗(y − u− y

u
+ 1)

=−mS∗ (1− x)2

x
− EgcP ∗2(1− u)2

+ [βS∗I∗ + δS∗P ∗ +BβS∗I∗ +BδS∗P ∗ +Bk2T
∗ +DkI∗ + EγI∗]

+ xy[BβS∗I∗ − βS∗I∗]− 1

x
[βS∗I∗ + δS∗P ∗]

+ y[βS∗I∗ −BβS∗I∗ −BδS∗P ∗ −Bk2T
∗ +DkI∗ + EγI∗]

+ xu[BδS∗P ∗ − δS∗P ∗] + u[δS∗P ∗ − EγI∗] + z(Bk2T
∗ −DkI∗)

− xBβS∗I∗ − xu

y
BδS∗P ∗ − z

y
Bk2T

∗ − y

z
DkI∗ − y

u
EγI∗. (3.4)

The variable terms that appear in (3.4) with positive coefficients are xy, y, xu, and

u. If all of the coefficients are positive, then there is a possibility that
.

V could be
positive. Making the coefficients of xy, y, xu, and u equal to zero, we get that

BβS∗I∗ − βS∗I∗ = 0,

BδS∗P ∗ − δS∗P ∗ = 0,

δS∗P ∗ − EγI∗ = 0,

Bk2T
∗ −DkI∗ = 0,

βS∗I∗ −BβS∗I∗ −BδS∗P ∗ −Bk2T
∗ +DkI∗ + EγI∗ = 0. (3.5)

From (3.5), we obtain that

B = 1, E =
δS∗P ∗

γI∗
, D =

k2T
∗

kI∗
.

Hence, we have

.

V = −mS∗ (1− x)2

x
− EgcP ∗2(1− u)2 + βS∗I∗(2− x− 1

x
)

+ δS∗P ∗(3− xu

y
− y

u
− 1

x
) + k2T

∗(2− z

y
− y

z
).

It’s easy for us to see that −mS∗ (1−x)2

x ≤ 0 for x > 0 and −mS∗ (1−x)2

x = 0
if only if x = 1; −EgcP ∗2(1 − u)2 ≤ 0 for u > 0 and −EgcP ∗2(1 − u)2 = 0 if
and only if u = 1. Since the arithmetical mean is greater than or equal to the
geometrical mean, then 2 − x − 1

x ≤ 0 for x > 0 and 2 − x − 1
x = 0 if and only

if x = 1; 3 − xu
y −

y
u −

1
x ≤ 0 for x ≥ 0, y ≥ 0, u ≥ 0 and 3 − xu

y −
y
u −

1
x = 0

if and only if y = 1, x = u; 2 − z
y −

y
z ≤ 0 for z ≥ 0, y ≥ 0 and 2 − z

y −
y
z = 0

if and only if z = y. Therefore,
.

V ≤ 0 for x, y, z, u ≥ 0 and
.

V = 0 if and only if
x = 1, y = 1, x = u, z = y. Substituting relations S = S∗, I = I∗, T = T ∗, P = P ∗

into the first equation of system (2.1) gets 0 = b− βS∗I∗ − δS∗P ∗ + αR−mS∗, it
follows from the first equation of (3.3) that R = R∗. The maximum invariant set of

system (2.1) on set {(x, y, z, u) :
.

V = 0} is the singleton (1, 1, 1, 1). It means that,

the largest invariant set where
.

V = 0 is the singleton {(S∗, I∗, T ∗, P ∗, R∗)}. Thus,
by Laselle’s invariance principle [17], for system (2.1), the endemic equilibrium E∗

is globally asymptotically stable if α = 0 and R0 > 1.
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Remark 3.1. Theorem 3.4 tells us that when α = 0 (1/α is immune period) and
R0 > 1, the endemic equilibrium E∗ is globally asymptotically stable. Note that
the global stability of the endemic equilibrium E∗ is an open problem when α > 0.
But, when α 6= 0, the same result is validated by numerical simulations (Figure 6).

4. Numerical simulation

In this section, to illustrate the analytic results obtained above, we have present-
ed some simulations of system (2.1) using the parameter values in Table 1. The
parameter values are mainly taken from [3].

We choose b = 0.2, β = 2.5 × 106, δ = 1.07 × 10−7, k1 = 0.05, k2 = 0.01, α =
0.01, numerical simulation gives R0 < 1, then the disease free equilibrium E0 is
global asymptotically stable (Figure 3). From Figure 3, we can clearly see that I(t)
declined sharply and get zero finally. It also illustrate our proof of the existence of
E0 is correct.

We choose b = 12.05, β = 0.003, δ = 0.0002, k1 = 0.6, k2 = 0.3, α = 0, numerical
simulation gives R0 = 12.2 > 1, then the endemic equilibrium E∗ is global asymp-
totically stable (Figure 4). From Figure 4, we can clearly see as time going on, the
number of people finally tends to a constant, however, we can’t see some details
clearly from Figure 4. Change the axis range, we can obtain the partial enlarged
imagines as Figure 5, from Figure 5 we can see that four curves reach their equi-
librium positions are not zero. It reveals that our proof of the existence of E∗ is
correct. Figure 6 shows when α 6= 0, the E∗ is also globally asymptotically stable.
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Figure 3. The disease free equilibrium E0 is globally asymptotically stable.

5. Discussion

In this paper, we have formulated a novel epidemic model, which is incorporated
a new compartment, that is, FLP capable of growth and survival in the environ-
ment. With the help of the next generation matrix method, we obtained the basic
reproduction number R0 which play a important role, and we derived the globally
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Figure 4. When α = 0, the endemic equilibrium E∗ is globally asymptotically stable.
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Figure 5. Local amplification of Figure 4
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Figure 6. When α 6= 0, the endemic equilibrium E∗ is globally asymptotically stable.
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(d) The relationship among R0 and β

Figure 7. The relationship among R0 and some parameter values
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Figure 9. The relationship among R0, δ and
γ

dynamics of the model by constructing Lyapunov function. When the basic repro-
duction number R0 is less than unity, the disease free equilibrium is globally asymp-
totically stable, that is, the disease will be extinct; When the basic reproduction
number R0 is greater than unity, the endemic equilibrium is globally asymptotically
stable, which means that the disease will be permanent.

We all know that the basic reproduction number can be used to distinguish



68 Y.F. Xing, L. Zhang & X.H. Wang

10
8

6
4

r
2

00δ

0.5×10-3

0

20

40

120

100

80

60

1

R
0

Figure 10. The relationship among R0, δ and r
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Figure 11. The relationship among R0, β and δ

whether the disease disappears or not. For system (2.1), r reflects pathogens decay
rate, γ reflects pathogens shedding rate while δ and β denote the environment-to-
host transmission and the host-to-host transmission, respectively. In the event of an
epidemic outbreaks, we can control the disease by reducing contact with pathogens,
the measures may including:

(1) more frequent purification of the environment (i.e. increasing the value of r
by washing our hands often or disinfecting and so on);

(2) enhance people’s physical and antiviral ability by antibiotic treatments (i.e.
the shedding rate γ will be decreased);

(3) reducing contacts with infectious host (i.e. the host-to-host transmission β
is reduced);

(4) reducing contacts with contaminated environment (i.e. the environment-to-
host transmission δ is reduced).

Figure 7 shows the change in the basic reproduction number R0 due to changes
in r, γ, δ, β. All other parameter values are as given in Table 1. Note that when r
increase, infectious individuals will decrease, as stated in (1). Moreover, as shown
in Figure 7(b)–7(d), R0 grows with γ, δ, β, it means that if we want to control the
disease, we should reduce the γ, δ and β, just like described in (2)−(4). Comparing
Figure 7(c) with Figure 7(d), we can see that for some infectious diseases, the
environment-to-host transmission is even more serious than the infection between
people. Figure 8 shows the relation among the basic reproduction number R0, r,
and γ. Figure 9 shows the relation among the basic reproduction number R0, δ,
and γ. Figure 10 shows the relation among the basic reproduction number R0, δ,
and r. Figure 11 shows the relation among the basic reproduction number R0, β,
and δ. From Figures 8–11, we can also see that if γ, δ and β are increase, then R0

will increase, and if r increase, then R0 will decrease.
Our results show that the role of environment-to-host disease transmission is

becoming evident, it is necessary and meaningful to take the FLP into account. In
addition, in this paper we discuss the global dynamic behaviors of system (2.1), we
obtain that when the precondition are α = 0 and the basic reproduction number
R0 > 1, the endemic equilibrium is globally asymptotically stable. Although when
α 6= 0, the same result is validated by numerical simulations (Figure 6), we didn’t
prove by mathematics that it is right. So we may need to conduct further research
on this issue in the future.
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