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ON SOLVABILITY OF SINGULAR
INTEGRAL-DIFFERENTIAL EQUATIONS
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Abstract In this paper, we study a class of singular integral-different e-
quations of convolution type with Cauchy kernel. By means of the classical
boundary value theory, of the theory of Fourier analysis, and of the principle
of analytic continuation, we transform the equations into the Riemann-Hilbert
problems with discontinuous coefficients and obtain the general solutions and
conditions of solvability in class {0}. Thus, the result in this paper generalizes
the classical theory of integral equations and boundary value problems.
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1. Introduction

There were rather complete investigations on the singular integral equations (SIEs)
and Riemann-Hilbert problems (R-HPs) [4,10,13,14,26]. Litvinchuk [11,12] studied
singular integral-differential equations, in which the class of differentiable functions
was extended to the class of a Hölder continuous function, next the singular integral-
differential equation which the coefficients contain a discontinuity point of the first
kind was also studied. Li and Ren [15–20]proposed a general method to solve SIEs
with a mixture of convolution kernel and Cauchy kernel, in which the convolution
kernel has discontinuous property, that is to transform this kind of integral equations
to a R-HP by using Fourier transform. In this paper, we set up and discuss one class
of singular integral-differential equations of convolution type with Cauchy kernel.
By using Fourier transform, we transform this class of equations into a R-HP, and
obtain the general solution and conditions of solvability in class {0}. Simultaneously,
other classes of singular integral-different equations of convolution type can be also
solved by the method of this paper, such as equation of Wiener-Hopf type, equations
of dual type and so on.

2. Preliminaries

In this section we present some definitions and lemmas.
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Definition 2.1. If F (x) ∈ H ∩ L2(R), we say that F (x) ∈ {{0}}, where H, L2(R)
are the Hölder continuous function space and the Lebesgue space, respectively.

Definition 2.2. The Fourier transform F of a function f(t) is defined by

F[f(t)] =
1√
2π

∫
R
f(t)eixtdt, (2.1)

we denote F[f(t)] = F (x).

And the inverse Fourier transform F−1 of a function F (x) is denoted by

F−1[F (x)] =
1√
2π

∫
R
F (x)e−ixtdx, (2.2)

we also denote F−1[F (x)] = f(t), where two integrals appeared in (2.1) and (2.2)
exist.

Definition 2.3. Let F (x) = Ff(t). If F (x) ∈ {{0}}, we say that f(t) ∈ {0}.

Definition 2.4. The operators P and Q are defined as follows

P (f(t)) = f(−t), Q(f(t)) = f(t)sgnt, t ∈ R;

when f(t) ∈ {0}, we define the operator T of Cauchy principal value integral

Tf =
1

πi

∫
R

f(τ)

τ − t
dτ, t ∈ R.

It is easy to see that

F[Pf(t)] = PF (x), F−1[PF (x)] = Pf(t).

The following lemmas 2.1-2.4 are important to our results.

Lemma 2.1. Assume that a function f(t) as well as its derivatives f (j)(t) (1 ≤
j ≤ n) belong to {0}. Then

F[f
(j)
± (t)] = (−ix)jF[f±(t)]− 1√

2π

j−1∑
m=0

(−ix)mf (j−m−1)(0) (1 ≤ j ≤ n), (2.3)

where

f+(t) =

{
f(t), t ≥ 0,

0, t < 0;
f−(t) =

{
0, t ≥ 0,

−f(t), t < 0.

Proof. By induction on j. For j = 1 we have

F[f
′

+(t)] =
1√
2π

∫
R
f
′

+(t)eixtdt =
1√
2π

∫
R+

f
′
(t)eixtdt

=
1√
2π

∫
R+

eixtdf(t) =
1√
2π

[f(t)eixt]|+∞0 − 1√
2π
ix

∫
R+

f(t)eixtdt

= − 1√
2π
f(0) + (−ix)F[f+(t)].

(2.4)
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Suppose that (2.3) is true for j = k, that is,

F[f
(k)
+ (t)] = (−ix)kF[f+(t)]− 1√

2π

k−1∑
m=0

(−ix)mf (k−m−1)(0). (2.5)

For j = k + 1 we find

F[f
(k+1)
+ (t)] = (−ix)k+1F[f+(t)]− 1√

2π

k∑
m=0

(−ix)mf (k−m)(0). (2.6)

Therefore, the case f+(t) is proved.
Similarly, we can prove the case f−(t).

Lemma 2.2. Let f(t) ∈ {0}, we have F(Tf(t)) = −QF (x).

Proof. Since

F[Tf(t)] =
1√
2π

∫
R
[

1

πi

∫
R

f(τ)

τ − t
dτ ]eixtdt

= − 1√
2π

∫
R

[
1

πi

∫
R

eixt

t− τ
dt]f(τ)dτ,

(2.7)

by the extended residue theorem [10], we have

1

πi

∫
R

eixt

t− τ
dt =


eixτ , if x > 0,

0, if x = 0,

−eixτ , if x < 0.

(2.8)

Substituting (2.8) into (2.7), we obtain

F[Tf(t)] = −sgnx
1√
2π

∫
R
f(t)eixtdt = −sgnxF (x) = −QF (x). (2.9)

Lemma 2.3 (See [29]). If f(t) ∈ {0} and Ff(0) = 0, then Tf(t) ∈ {0}.

Lemma 2.4. Let f (j)(t) ∈ {0}(0 ≤ j ≤ n) and Ff(0) = 0, we have F[Tf (j)(t)] =
−(−ix)jQF (x), where

Tf (j)(t) =
1

πi

∫
R

f (j)(τ)

τ − t
dτ.

Proof. By Lemma 2.1, we obtain

F[f (j)(t)] = F[f
(j)
+ (t)]−F[f

(j)
− (t)] = (−ix)jF[f+(t)]− (−ix)jF[f−(t)] = (−ix)jF (x).

(2.10)
Again using Lemma 2.2, we have F[Tf (j)(t)] = −(−ix)jQF (x).

For two functions f(t) and g(t), if we use the notation of convolution

f ∗ g =
1√
2π

∫ +∞

−∞
f(t− τ)g(τ)dτ,

then it is well known that

F(f ∗ g) = Ff · Fg = FG,

where F,G are the Fourier transforms of f, g, respectively.
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3. Presentation of the problem

Some practical problems, such as atomic diffusion theory, heat conduction, trans-
port and nuclear collision, and mathematics physics research, are closed related to
singular integral-differential equations and integral differential equations with con-
volution kernel [7, 21]. In fact, the above-mentioned problems can often attribute
to finding the solution for the following generalized singular integral-differential
equations of convolution type with Cauchy kernel.

Let us solve the following equation

n∑
j=0

{ajf (j)(t) +
bj
πi

∫
R

f (j)(τ)

τ − t
dτ +

cj√
2π

∫
R+

kj(t− τ)f (j)(τ)dτ

+
dj√
2π

∫
R−

hj(t− τ)f (j)(τ)dτ} = g(t), t ∈ R,

(3.1)

where aj , bj , cj , dj (0 ≤ j ≤ n) are real constants, and
∑n
j=0 |bj | 6= 0. The known

functions kj(t), hj(t), g(t) ∈ {0}(0 ≤ j ≤ n), and the unknown function f(t) as well
as its derivatives f (j)(t)(1 ≤ j ≤ n) belong to {0}.

The presentation and the solving method of Eq.(3.1) rich a theory of singular
integral equation. It is mentioned that the methods of solution for other singular
integral-differential equations are still effective. Hence, (3.1) has important meaning
not only in application but also in the theory of resolving the equation itself.

In order to solve Eq.(3.1), we may write it as

n∑
j=0

{ajf (j)(t) +
bj
πi

∫
R

f (j)(τ)

τ − t
dτ +

cj√
2π

∫
R
kj(t− τ)f

(j)
+ (τ)dτ

− dj√
2π

∫
R
hj(t− τ)f

(j)
− (τ)dτ} = g(t), t ∈ R.

(3.2)

Take the Fourier transforms in both sides of (3.2), by using lemmas 2.1-2.4, we
can transform (3.2) to the following Riemann-Hilbert problem:

F+(x) = B(x)F−(x) +D(x), x ∈ R, (3.3)

where

B(x) =

n∑
j=0

[aj − bjsgnx+ djHj(x)](−ix)j

n∑
j=0

[aj − bjsgnx+ cjKj(x)](−ix)j
,

D(x) =

G(x) + 1√
2π

n∑
j=1

{[
j−1∑
m=0

(−ix)mAj,m](cjKj(x)− djHj(x))}

n∑
j=0

[aj − bjsgnx+ cjKj(x)](−ix)j
,

F±(x) = F[f±(t)], G(x) = F[g(t)], Kj(x) = F[kj(t)], Hj(x) = F[hj(t)], 0 ≤ j ≤ n,

and Aj,m = f (j−m−1)(0)(0 ≤ m ≤ j − 1, 1 ≤ j ≤ n) are undetermined constants.
(3.3) is a R-HP with node x = 0 on an infinite straight line, and it can be directly
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solved by the classical method [6, 27]. In this paper, we shall take another method
to solve R-HP (3.3).

We make the following linear transform

z =
ζ

i(ζ + i)
. (3.4)

(3.4) maps the real axis X in plane Z onto a circle C : |ζ + i
2 | = 1

2 in plane
ζ, which surrounds an interior region S+ and an exterior region S−, and maps
the upper half-plane Imz > 0 and the lower half-plane Imz < 0 onto S+ and S−

respectively. Again let

F (z) = Ψ(ζ), G(z) = W (ζ), Kj(z) = B1,j(ζ), Hj(z) = B2,j(ζ), 0 ≤ j ≤ n.

Then (3.3) is readily reduced to the following R-HP in plane ζ

Ψ+(τ) = M(τ)Ψ−(τ) +N(τ), τ ∈ C, (3.5)

where

N(τ) =

W (τ) + 1√
2π

n∑
j=1

{[
j−1∑
m=0

(− τ
τ+i )

mAj,m](cjB1,j(τ)− djB2,j(τ))}

n∑
j=0

[aj − bjδ(τ) + cjB1,j(τ)](− τ
τ+i )

j

,

M(τ) =

n∑
j=0

[aj − bjδ(τ) + djB2,j(τ)](− τ
τ+i )

j

n∑
j=0

[aj − bjδ(τ) + cjB1,j(τ)](− τ
τ+i )

j

,

δ(τ) =

{
1, τ ∈ C1;

−1, τ ∈ C2,

here C1, C2 are the left half circles and the right half circles of C, respectively.

Note that the solutions of (3.2), (3.3), and (3.5) are equivalent to each other.
On the solutions of R-HP (3.5), we will consider the two cases: the normal type
and the non-normal type.

4. The solving method of (3.5)

4.1. The normal type case of (3.5 )

If
n∑
j=0

[aj−bjδ(τ)+cjB1,j(τ)](− τ
τ+i )

j 6= 0 or
n∑
j=0

[aj−bjδ(τ)+djB2,j(τ)](− τ
τ+i )

j 6= 0

(τ ∈ C), then τ = 0 is a discontinuous point of M(τ) and N(τ), therefore it is also
node of (3.5), in this case, we call (3.5) the R-HP of normal type with node τ = 0.
Let

γ = α+ iβ =
1

2πi
{logM(−0)− logM(+0)} (4.1)
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(the definitions of M(±0) see [15,22]). Because logM(τ) has infinite number branch-
es, we may take a continuous branch of logM(τ) such as logM(−i) = 0, and again
take the integer µ such as

0 ≤ α′ = α− µ < 1, λ = γ − µ = α′ + iβ, (4.2)

and call µ the index of (3.5). We can define the following piece-wise function

X(ζ) =

{
eΓ(ζ), ζ ∈ S+;

(ζ + i
2 )−µeΓ(ζ), ζ ∈ S−,

(4.3)

where

Γ(ζ) =
1

2πi

∫
C

logM(τ)

τ − ζ
dτ, ζ /∈ C, (4.4)

therefore, we obtain
X+(τ) = M(τ)X−(τ), τ ∈ C. (4.5)

Next we shall solve the R-HP (3.5). Since Ψ(ζ) is bounded at ζ =∞, therefore,
(3.5) has a solution in class R0. The homogeneous problem of (3.5) is denoted by

Ψ+(τ) = M(τ)Ψ−(τ), τ ∈ C. (4.6)

From (4.5) and (4.6), we have

Ψ+(τ)

X+(τ)
=

Ψ−(τ)

X−(τ)
. (4.7)

Consider the function

D(ζ) =
Ψ(ζ)

X(ζ)
,

by (4.7), we known that, D(ζ) is analytic on the complex plane and has a pole-point
∞ with the order µ. By generalized Liouville theorem [10], we can get a general
solution of (4.6)

Ψ(ζ) = X(ζ)Pµ(ζ), (4.8)

and Pµ(ζ) = e0 + e1ζ + . . .+ eµζ
µ(µ ≥ 0) is a polynomial of degree µ with complex

coefficients; when µ < 0, Pµ(ζ) ≡ 0, that is, (4.6) only has zero solution.
In order to solve (3.5), we define the following Cauchy principal value integral

with the kernel density function N(τ)
X+(τ) , that is,

U(ζ) =
1

2πi

∫
C

N(τ)

X+(τ)(τ − ζ)
dτ. (4.9)

By applying Plemelj’s formula [26], we easily prove that the following (4.10) is
a special solution of (3.5)

U∗(ζ) =
X(ζ)

2πi

∫
C

N(τ)

X+(τ)(τ − ζ)
dτ. (4.10)

According to the theory of linear algebra, we obtain a general solution of (3.5)
as follows

Ψ(ζ) = U∗(ζ) +X(ζ)Pµ(ζ), (4.11)
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that is,

Ψ(ζ) = X(ζ)[
1

2πi

∫
C

N(τ)

X+(τ)(τ − ζ)
dτ + Pµ(ζ)], (4.12)

where Pµ(z) is as the above. But, when µ < 0, Pµ(z) ≡ 0, and the following −µ− 1
solvable conditions ∫

C

N(τ)τ j

X+(τ)
dτ = 0, 0 ≤ j ≤ −µ− 2 (4.13)

are also satisfied. Therefore, when µ < 0, (3.5) has only solution and its solution is
still (4.12) (with Pµ(z) ≡ 0).

Now we consider the case of the solution at τ = 0.
By lemma 2.3, we have F (x) ∈ {{0}} and F (0) = 0. If τ = 0 is an ordinary

node, then 0 < α < 1 and λ 6= 0. Because Ψ(ζ) is continuous at τ = 0, and
F (0) = 0, we may obtain Ψ(0) = 0, thus we have the following solvable condition

W (0) +
1√
2π

n∑
j=1

Aj,0[cjB1,j(0)− djB2,j(0)] = 0. (4.14)

If τ = 0 is a special node, then α = 0 and λ = iβ0. When β0 6= 0, (4.14) and
the following condition must be fulfilled

c+
1

2πi

∫
C

N(τ)

X+(τ)τ
dτ = 0, (4.15)

where c is a constant term of Pµ(ζ). When β0 = 0, we have λ = 0, hence Ψ(0) = 0 if
and only if (4.14) holds. So the necessary condition of the existence of the solution
for (3.5) is (4.14). Once (4.14) and (4.15) are fulfilled, then F (ζ) ∈ H near τ = 0
and therefore Ψ±(ζ) are continuous at τ = 0.

Now we can formulate the main results about the solutions of Eq.(3.1) in the
following form.

Theorem 4.1. Under the case of normal type, the necessary condition of the exis-
tence of the solution for Eq.(3.1) is (4.14). Assume that (4.14) is fulfilled.

(1) Let τ = 0 be an ordinary node. When µ ≥ −1, (3.1) is solvable, and its
solution is given by f(t) = F−1[F (x)], where F (x) = F+(x)−F−(x); when µ < −1,
and (4.13) satisfies, (3.1) has only solution (4.12) (with Pµ(z) ≡ 0). It follows from
F (x) ∈ {{0}} that f(t) ∈ {0}.

(2) Let τ = 0 be a special node. When µ ≥ −1, and (4.14), (4.15) hold, (3.1) has
a solution; when µ < −1 and (4.13) satisfies, (3.1) has a solution and its solution
is the same as the case in (1).

4.2. The non-normal type case of (3.5)

Assume that N(τ) has some zero-points and pole-points on C, then R-HP (3.5)
is called the non-normal type case. Let

n∑
j=0

[aj − bjδ(τ) + cjB1,j(τ)](− τ

τ + i
)j
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and
n∑
j=0

[aj − bjδ(τ) + djB2,j(τ)](− τ

τ + i
)j

have common and the same order zero-points a1, a2, · · · , aq, with the orders γ1,
γ2, · · · , γq respectively on C;

n∑
j=0

[aj − bjδ(τ) + cjB1,j(τ)](− τ

τ + i
)j

has some zero-points b1, b2, · · · , bs with the orders α1, α2, · · · , αs respectively on C;

n∑
j=0

[aj − bjδ(τ) + djB2,j(τ)](− τ

τ + i
)j

has zero-points c1, c2, · · · , cl with the orders β1, β2, · · · , βl respectively on C. Here
αj , βj , γj are positive integers. Again let

v1(τ) =

s∏
j=1

(τ − bj)αj , v2(τ) =

l∏
j=1

(τ − cj)βj ,

s∑
j=1

αj = N1,

l∑
j=1

βj = N2,

q∑
j=1

γj = N3.

Thus, (3.5) is reduced to the following form

Ψ+(τ) =
v2(τ)

v1(τ)
M0(τ)Ψ−(τ) +M(τ), τ ∈ C. (4.16)

It follows from F (x) ∈ {{0}} that Ψ(τ) is bounded on C. In order that Ψ(τ)
satisfies the conditions at aj(1 ≤ j ≤ q), the following equalities must be fulfilled

{W (τ) +
1√
2π

n∑
j=1

[

j−1∑
m=0

(−1)m(
τ

τ + i
)mAj,m](cjB1,j(τ)− djB2,j(τ))}(k)|τ=aj = 0

(4.17)
for any k = 0, 1, · · · , γj − 1; j = 1, 2, · · · , q. In order that computation of (4.17) is
effective, W (τ), B1,j(τ), B2,j(τ) (0 ≤ j ≤ n) must exist derivatives until order γj−1
on the neighborhood of aj , and all order derivatives satisfy Hölder conditions.

We discuss only the case aj + bj 6= 0, aj − bj 6= 0 (0 ≤ j ≤ n) in this paper. On
other cases, such as aj + bj = 0, aj − bj 6= 0 (0 ≤ j ≤ n); aj + bj 6= 0, aj − bj =
0 (0 ≤ j ≤ n) can be discussed similarly. Under satisfying the above conditions,
(4.16) is a non-normal type R-HP with discontinuous coefficients. We first discuss
the following homogeneous problem

Ψ+(τ) =
v2(τ)

v1(τ)
M0(τ)Ψ−(τ), τ ∈ C. (4.18)

By means of the method of solution in [5,12,23,24], and applying the extended
Liouville theory and the principle of analytic continuation [8,28], it is easy to obtain
the general solution of (4.18):

Ψ∗(ζ) =

{
X(ζ)v2(ζ)Pµ−N1(ζ), ζ ∈ S+;

X(ζ)v1(ζ)Pµ−N1
(ζ), ζ ∈ S−,

(4.19)
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where X(ζ) also takes the from of (4.3), but Γ(ζ) is replaced by the following
equality

Γ(ζ) =
1

2πi

∫
C

logM0(τ)

τ − ζ
dτ, ζ /∈ C. (4.20)

In the following, we shall discuss the non-homogeneous R-HP (4.16). Define the
following piece-wise function

ϕ(ζ) =
1

2πi

∫
C

v1(τ)N(τ)

X+(τ)(τ − ζ)
dτ, ζ /∈ C. (4.21)

It follows from F (x) ∈ {{0}} that Ψ(ζ) is bounded on C, hence Ψ(ζ) has no
singularity at τ = bj , cj . In order to solve (4.16), we need to consider a following
Hermite interpolation polynomial

Ωρ(ζ) = e0ζ
ρ + e1ζ

ρ−1 + · · ·+ eρ (ρ = N1 +N2 − 1),

where Ωρ(ζ) has some zero-points of orders αj , βj at bj , cj respectively, and ej are
constants. By means of the above Hermite interpolation polynomial Ωρ(ζ), we can
define the following function

Y (ζ) =

{
X(ζ)(Ωρ(ζ)−ϕ(ζ))

v1(ζ) , ζ ∈ S+;
X(ζ)(Ωρ(ζ)−ϕ(ζ))

v2(ζ) , ζ ∈ S−.
(4.22)

Since Y (ζ) is bounded at bj , cr (j = 1, 2, · · · , s; r = 1, 2, · · · , l), therefore, the
following conditions of solvability∫

C

v1(τ)N(τ)

X+(τ)(τ − bj)p
dτ = 0, j = 1, 2, · · · , s; p = 0, 1, 2, · · · , αj ,∫

C

v1(τ)N(τ)

X+(τ)(τ − cr)q
dτ = 0, r = 1, 2, · · · , l; p = 0, 1, 2, · · · , βr

(4.23)

are fulfilled. Under the solvable conditions (4.17) and (4.23), by applying Plemelj’s
formula, we can verify that (4.22) is a special solution of (4.16). According to the
theory of linear algebra, we obtain a general solution of (4.16)

Ψ(ζ) = Y (ζ) + Ψ∗(ζ). (4.24)

By taking the boundary values to (4.24), we have the following explicit expres-
sions for R-HP (4.16)

Ψ(ζ) =
1

2
N(ζ) +

X+(ζ)(Ωρ(ζ)− ϕ(ζ))

v1(ζ)
+X+(ζ)v2(ζ)Pµ−N1(ζ), ζ ∈ S+;

Ψ(ζ) = −1

2

N(ζ)

M0(ζ)
+
X−(ζ)(Ωρ(ζ)− ϕ(ζ))

v2(ζ)
+X−(ζ)v1(ζ)Pµ−N1(ζ), ζ ∈ S−.

(4.25)
Next, we shall discuss the property of the solution (4.25) at τ = 0. If τ = 0 is

an ordinary node, similar to the above discussion, the solvable condition (4.14) is
fulfilled. If τ = 0 is a special node, (4.14) is also fulfilled, and the constant term c
of Pµ(ζ) should take the value

c =
Ωρ(0)− ϕ(0)

v1(0)v2(0)
. (4.26)
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Finally, we come to consider the behavior of the solution at τ =∞. By (4.22),
we have the following results.

(1) When N1 − µ− 1 > 0, Y (ζ) has a pole point ∞ with the order N1 − µ− 1.
In order that Ψ(ζ) is bounded at ∞, one must have

e0 = e1 = · · · = eN1−µ−2 = 0, (4.27)

and Ωρ(ζ) should be a polynomial with the degree ρ− (N1−µ−1), where ρ− (N1−
µ− 1) = N2 + µ.

(2) When N2 + µ ≤ −1, we have Ωρ(ζ) ≡ 0, and when N2 + µ < −1, since Ψ(ζ)
is bounded at ∞, the following conditions of solvability are satisfied∫

C

v1(τ)N(τ)τk−1

X+(τ)
dτ = 0, k = 0, 1, · · · ,−N2 − µ+ 1. (4.28)

In conclusion, we obtain the following theorem.

Theorem 4.2. Under conditions aj ± bj 6= 0 (0 ≤ j ≤ n), the necessary conditions
of solvability for (3.1) are (4.14) and (4.17). Assume that both (4.14) and (4.17)
are fulfilled.

(1) Let τ = 0 be an ordinary node. If µ − N1 ≥ 0, (3.1) is solvable and has
µ − N1 linearly independent solutions; if µ − N1 = −1, (3.1) has only solution; if
µ−N1 < −1, the solvable condition of Eq.(3.1) is (4.27), and if N2 + µ < −1, one
require also that (4.28) holds, then (3.1) has just only solution, and its solution is
given by (4.24), and when µ−N1 ≤ −1, Pµ−N1

(ζ) ≡ 0.
(2) Let τ = 0 be a special node, then (4.14) and (4.26) should be fulfilled. In

this case, (3.1) has a solution, and its solution is also given by (4.24).
(3) In the case τ =∞, the conditions of solvability for Eq. (3.1) are (4.27) and

(4.28).
Under all of the above conditions, the solution of (3.1) is given by f(t) =

F−1[F (x)], where F (x) = F+(x)− F−(x), F±(x) are given by (4.24). It is easy to
prove that f(t) ∈ {0}.

Remark 4.1. From f (j)(t) ∈ {0} it follows that (F±(x))(j) ∈ {{0}}(j = 0, 1, · · · , n).
In the following, we give the undetermined constants Aj,m (0 ≤ m ≤ j − 1, 1 ≤ j ≤
n), note that {Aj,m} = {Aj,0} = {f(0), f ′(0), · · · , f (n−1)(0)}. In the neighborhood
of z =∞, we can make the expansion in series for F+(x), and we only take former
finite number terms, that is,

F+(x) = a1x
−1 +O(| x |−1),

F+(x) = a1x
−1 + a2x

−2 +O(| x |−2), · · · ,
F+(x) = a1x

−1 + · · ·+ anx
−n +O(| x |−n).

(4.29)

Because Aj,0 =
√

2πiaj (j = 1, 2, · · · , n), we may obtain Aj,0 (j = 1, 2, · · · , n)
by solving Eqs.(4.29). Moreover, Aj,0 (j = 1, 2, · · · , n) can be determined in the
following way.

Owing to

lim
x→∞

{(−ix)jF+(x)− 1√
2π

j−1∑
m=0

(−ix)mAj,m} = 0, j = 1, 2, · · · , n, (4.30)

by solving Eqs. (4.30) we can obtain the undetermined constants Aj,0(j=1, 2,· · ·, n).
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In this paper, we have solved a class of singular integral-different equations of
convolution type with Cauchy kernel. Indeed, it is possible to studying the above
mentioned equations in Clifford analysis, which is similar to that in [1–3, 9, 25].
Further discussion is omitted here.

5. Conclusions

In this paper, we study the singular integral-different equations of convolution type
with Cauchy kernel. This class of equations have important applications in practical
problems, such as elastic mechanics, heat conduction, and electrostatics. Hence, the
study about Eq. (3.1) has important meaning not only in application but also in
the theory of resolving the equation itself. Many problems, such as piezoelectric
material, voltage magnetic materials and functional gradient materials, can often
attribute the problem to finding solutions for this classes of equations. Hence, the
result in this paper improves some results in Refs. [1–7], which provides theoretical
basis for solving relative physics problems. Here, our method is different from
the ones for the classical R-HPs, and it is novel and effective. Thus, this paper
generalizes the theory of classical R-HPs and SIEs.

Acknowledgements. The author is grateful to the anonymous referees for their
useful suggestions which improve the contents of this article.
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